1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 | Lib/decimal.py
# Copyright (c) 2004 Python Software Foundation. # All rights reserved. # Written by Eric Price <eprice at tjhsst.edu> # and Facundo Batista <facundo at taniquetil.com.ar> # and Raymond Hettinger <python at rcn.com> # and Aahz <aahz at pobox.com> # and Tim Peters # This module is currently Py2.3 compatible and should be kept that way # unless a major compelling advantage arises. IOW, 2.3 compatibility is # strongly preferred, but not guaranteed. # Also, this module should be kept in sync with the latest updates of # the IBM specification as it evolves. Those updates will be treated # as bug fixes (deviation from the spec is a compatibility, usability # bug) and will be backported. At this point the spec is stabilizing # and the updates are becoming fewer, smaller, and less significant. """ This is a Py2.3 implementation of decimal floating point arithmetic based on the General Decimal Arithmetic Specification: http://speleotrove.com/decimal/decarith.html and IEEE standard 854-1987: http://en.wikipedia.org/wiki/IEEE_854-1987 Decimal floating point has finite precision with arbitrarily large bounds. The purpose of this module is to support arithmetic using familiar "schoolhouse" rules and to avoid some of the tricky representation issues associated with binary floating point. The package is especially useful for financial applications or for contexts where users have expectations that are at odds with binary floating point (for instance, in binary floating point, 1.00 % 0.1 gives 0.09999999999999995 instead of the expected Decimal('0.00') returned by decimal floating point). Here are some examples of using the decimal module: >>> from decimal import * >>> setcontext(ExtendedContext) >>> Decimal(0) Decimal('0') >>> Decimal('1') Decimal('1') >>> Decimal('-.0123') Decimal('-0.0123') >>> Decimal(123456) Decimal('123456') >>> Decimal('123.45e12345678901234567890') Decimal('1.2345E+12345678901234567892') >>> Decimal('1.33') + Decimal('1.27') Decimal('2.60') >>> Decimal('12.34') + Decimal('3.87') - Decimal('18.41') Decimal('-2.20') >>> dig = Decimal(1) >>> print dig / Decimal(3) 0.333333333 >>> getcontext().prec = 18 >>> print dig / Decimal(3) 0.333333333333333333 >>> print dig.sqrt() 1 >>> print Decimal(3).sqrt() 1.73205080756887729 >>> print Decimal(3) ** 123 4.85192780976896427E+58 >>> inf = Decimal(1) / Decimal(0) >>> print inf Infinity >>> neginf = Decimal(-1) / Decimal(0) >>> print neginf -Infinity >>> print neginf + inf NaN >>> print neginf * inf -Infinity >>> print dig / 0 Infinity >>> getcontext().traps[DivisionByZero] = 1 >>> print dig / 0 Traceback (most recent call last): ... ... ... DivisionByZero: x / 0 >>> c = Context() >>> c.traps[InvalidOperation] = 0 >>> print c.flags[InvalidOperation] 0 >>> c.divide(Decimal(0), Decimal(0)) Decimal('NaN') >>> c.traps[InvalidOperation] = 1 >>> print c.flags[InvalidOperation] 1 >>> c.flags[InvalidOperation] = 0 >>> print c.flags[InvalidOperation] 0 >>> print c.divide(Decimal(0), Decimal(0)) Traceback (most recent call last): ... ... ... InvalidOperation: 0 / 0 >>> print c.flags[InvalidOperation] 1 >>> c.flags[InvalidOperation] = 0 >>> c.traps[InvalidOperation] = 0 >>> print c.divide(Decimal(0), Decimal(0)) NaN >>> print c.flags[InvalidOperation] 1 >>> """ __all__ = [ # Two major classes 'Decimal', 'Context', # Contexts 'DefaultContext', 'BasicContext', 'ExtendedContext', # Exceptions 'DecimalException', 'Clamped', 'InvalidOperation', 'DivisionByZero', 'Inexact', 'Rounded', 'Subnormal', 'Overflow', 'Underflow', # Constants for use in setting up contexts 'ROUND_DOWN', 'ROUND_HALF_UP', 'ROUND_HALF_EVEN', 'ROUND_CEILING', 'ROUND_FLOOR', 'ROUND_UP', 'ROUND_HALF_DOWN', 'ROUND_05UP', # Functions for manipulating contexts 'setcontext', 'getcontext', 'localcontext' ] __version__ = '1.70' # Highest version of the spec this complies with import math as _math import numbers as _numbers try: from collections import namedtuple as _namedtuple DecimalTuple = _namedtuple('DecimalTuple', 'sign digits exponent') except ImportError: DecimalTuple = lambda *args: args # Rounding ROUND_DOWN = 'ROUND_DOWN' ROUND_HALF_UP = 'ROUND_HALF_UP' ROUND_HALF_EVEN = 'ROUND_HALF_EVEN' ROUND_CEILING = 'ROUND_CEILING' ROUND_FLOOR = 'ROUND_FLOOR' ROUND_UP = 'ROUND_UP' ROUND_HALF_DOWN = 'ROUND_HALF_DOWN' ROUND_05UP = 'ROUND_05UP' # Errors class DecimalException(ArithmeticError): """Base exception class. Used exceptions derive from this. If an exception derives from another exception besides this (such as Underflow (Inexact, Rounded, Subnormal) that indicates that it is only called if the others are present. This isn't actually used for anything, though. handle -- Called when context._raise_error is called and the trap_enabler is not set. First argument is self, second is the context. More arguments can be given, those being after the explanation in _raise_error (For example, context._raise_error(NewError, '(-x)!', self._sign) would call NewError().handle(context, self._sign).) To define a new exception, it should be sufficient to have it derive from DecimalException. """ def handle(self, context, *args): pass class Clamped(DecimalException): """Exponent of a 0 changed to fit bounds. This occurs and signals clamped if the exponent of a result has been altered in order to fit the constraints of a specific concrete representation. This may occur when the exponent of a zero result would be outside the bounds of a representation, or when a large normal number would have an encoded exponent that cannot be represented. In this latter case, the exponent is reduced to fit and the corresponding number of zero digits are appended to the coefficient ("fold-down"). """ class InvalidOperation(DecimalException): """An invalid operation was performed. Various bad things cause this: Something creates a signaling NaN -INF + INF 0 * (+-)INF (+-)INF / (+-)INF x % 0 (+-)INF % x x._rescale( non-integer ) sqrt(-x) , x > 0 0 ** 0 x ** (non-integer) x ** (+-)INF An operand is invalid The result of the operation after these is a quiet positive NaN, except when the cause is a signaling NaN, in which case the result is also a quiet NaN, but with the original sign, and an optional diagnostic information. """ def handle(self, context, *args): if args: ans = _dec_from_triple(args[0]._sign, args[0]._int, 'n', True) return ans._fix_nan(context) return _NaN class ConversionSyntax(InvalidOperation): """Trying to convert badly formed string. This occurs and signals invalid-operation if an string is being converted to a number and it does not conform to the numeric string syntax. The result is [0,qNaN]. """ def handle(self, context, *args): return _NaN class DivisionByZero(DecimalException, ZeroDivisionError): """Division by 0. This occurs and signals division-by-zero if division of a finite number by zero was attempted (during a divide-integer or divide operation, or a power operation with negative right-hand operand), and the dividend was not zero. The result of the operation is [sign,inf], where sign is the exclusive or of the signs of the operands for divide, or is 1 for an odd power of -0, for power. """ def handle(self, context, sign, *args): return _SignedInfinity[sign] class DivisionImpossible(InvalidOperation): """Cannot perform the division adequately. This occurs and signals invalid-operation if the integer result of a divide-integer or remainder operation had too many digits (would be longer than precision). The result is [0,qNaN]. """ def handle(self, context, *args): return _NaN class DivisionUndefined(InvalidOperation, ZeroDivisionError): """Undefined result of division. This occurs and signals invalid-operation if division by zero was attempted (during a divide-integer, divide, or remainder operation), and the dividend is also zero. The result is [0,qNaN]. """ def handle(self, context, *args): return _NaN class Inexact(DecimalException): """Had to round, losing information. This occurs and signals inexact whenever the result of an operation is not exact (that is, it needed to be rounded and any discarded digits were non-zero), or if an overflow or underflow condition occurs. The result in all cases is unchanged. The inexact signal may be tested (or trapped) to determine if a given operation (or sequence of operations) was inexact. """ class InvalidContext(InvalidOperation): """Invalid context. Unknown rounding, for example. This occurs and signals invalid-operation if an invalid context was detected during an operation. This can occur if contexts are not checked on creation and either the precision exceeds the capability of the underlying concrete representation or an unknown or unsupported rounding was specified. These aspects of the context need only be checked when the values are required to be used. The result is [0,qNaN]. """ def handle(self, context, *args): return _NaN class Rounded(DecimalException): """Number got rounded (not necessarily changed during rounding). This occurs and signals rounded whenever the result of an operation is rounded (that is, some zero or non-zero digits were discarded from the coefficient), or if an overflow or underflow condition occurs. The result in all cases is unchanged. The rounded signal may be tested (or trapped) to determine if a given operation (or sequence of operations) caused a loss of precision. """ class Subnormal(DecimalException): """Exponent < Emin before rounding. This occurs and signals subnormal whenever the result of a conversion or operation is subnormal (that is, its adjusted exponent is less than Emin, before any rounding). The result in all cases is unchanged. The subnormal signal may be tested (or trapped) to determine if a given or operation (or sequence of operations) yielded a subnormal result. """ class Overflow(Inexact, Rounded): """Numerical overflow. This occurs and signals overflow if the adjusted exponent of a result (from a conversion or from an operation that is not an attempt to divide by zero), after rounding, would be greater than the largest value that can be handled by the implementation (the value Emax). The result depends on the rounding mode: For round-half-up and round-half-even (and for round-half-down and round-up, if implemented), the result of the operation is [sign,inf], where sign is the sign of the intermediate result. For round-down, the result is the largest finite number that can be represented in the current precision, with the sign of the intermediate result. For round-ceiling, the result is the same as for round-down if the sign of the intermediate result is 1, or is [0,inf] otherwise. For round-floor, the result is the same as for round-down if the sign of the intermediate result is 0, or is [1,inf] otherwise. In all cases, Inexact and Rounded will also be raised. """ def handle(self, context, sign, *args): if context.rounding in (ROUND_HALF_UP, ROUND_HALF_EVEN, ROUND_HALF_DOWN, ROUND_UP): return _SignedInfinity[sign] if sign == 0: if context.rounding == ROUND_CEILING: return _SignedInfinity[sign] return _dec_from_triple(sign, '9'*context.prec, context.Emax-context.prec+1) if sign == 1: if context.rounding == ROUND_FLOOR: return _SignedInfinity[sign] return _dec_from_triple(sign, '9'*context.prec, context.Emax-context.prec+1) class Underflow(Inexact, Rounded, Subnormal): """Numerical underflow with result rounded to 0. This occurs and signals underflow if a result is inexact and the adjusted exponent of the result would be smaller (more negative) than the smallest value that can be handled by the implementation (the value Emin). That is, the result is both inexact and subnormal. The result after an underflow will be a subnormal number rounded, if necessary, so that its exponent is not less than Etiny. This may result in 0 with the sign of the intermediate result and an exponent of Etiny. In all cases, Inexact, Rounded, and Subnormal will also be raised. """ # List of public traps and flags _signals = [Clamped, DivisionByZero, Inexact, Overflow, Rounded, Underflow, InvalidOperation, Subnormal] # Map conditions (per the spec) to signals _condition_map = {ConversionSyntax:InvalidOperation, DivisionImpossible:InvalidOperation, DivisionUndefined:InvalidOperation, InvalidContext:InvalidOperation} ##### Context Functions ################################################## # The getcontext() and setcontext() function manage access to a thread-local # current context. Py2.4 offers direct support for thread locals. If that # is not available, use threading.currentThread() which is slower but will # work for older Pythons. If threads are not part of the build, create a # mock threading object with threading.local() returning the module namespace. try: import threading except ImportError: # Python was compiled without threads; create a mock object instead import sys class MockThreading(object): def local(self, sys=sys): return sys.modules[__name__] threading = MockThreading() del sys, MockThreading try: threading.local except AttributeError: # To fix reloading, force it to create a new context # Old contexts have different exceptions in their dicts, making problems. if hasattr(threading.currentThread(), '__decimal_context__'): del threading.currentThread().__decimal_context__ def setcontext(context): """Set this thread's context to context.""" if context in (DefaultContext, BasicContext, ExtendedContext): context = context.copy() context.clear_flags() threading.currentThread().__decimal_context__ = context def getcontext(): """Returns this thread's context. If this thread does not yet have a context, returns a new context and sets this thread's context. New contexts are copies of DefaultContext. """ try: return threading.currentThread().__decimal_context__ except AttributeError: context = Context() threading.currentThread().__decimal_context__ = context return context else: local = threading.local() if hasattr(local, '__decimal_context__'): del local.__decimal_context__ def getcontext(_local=local): """Returns this thread's context. If this thread does not yet have a context, returns a new context and sets this thread's context. New contexts are copies of DefaultContext. """ try: return _local.__decimal_context__ except AttributeError: context = Context() _local.__decimal_context__ = context return context def setcontext(context, _local=local): """Set this thread's context to context.""" if context in (DefaultContext, BasicContext, ExtendedContext): context = context.copy() context.clear_flags() _local.__decimal_context__ = context del threading, local # Don't contaminate the namespace def localcontext(ctx=None): """Return a context manager for a copy of the supplied context Uses a copy of the current context if no context is specified The returned context manager creates a local decimal context in a with statement: def sin(x): with localcontext() as ctx: ctx.prec += 2 # Rest of sin calculation algorithm # uses a precision 2 greater than normal return +s # Convert result to normal precision def sin(x): with localcontext(ExtendedContext): # Rest of sin calculation algorithm # uses the Extended Context from the # General Decimal Arithmetic Specification return +s # Convert result to normal context >>> setcontext(DefaultContext) >>> print getcontext().prec 28 >>> with localcontext(): ... ctx = getcontext() ... ctx.prec += 2 ... print ctx.prec ... 30 >>> with localcontext(ExtendedContext): ... print getcontext().prec ... 9 >>> print getcontext().prec 28 """ if ctx is None: ctx = getcontext() return _ContextManager(ctx) ##### Decimal class ####################################################### class Decimal(object): """Floating point class for decimal arithmetic.""" __slots__ = ('_exp','_int','_sign', '_is_special') # Generally, the value of the Decimal instance is given by # (-1)**_sign * _int * 10**_exp # Special values are signified by _is_special == True # We're immutable, so use __new__ not __init__ def __new__(cls, value="0", context=None): """Create a decimal point instance. >>> Decimal('3.14') # string input Decimal('3.14') >>> Decimal((0, (3, 1, 4), -2)) # tuple (sign, digit_tuple, exponent) Decimal('3.14') >>> Decimal(314) # int or long Decimal('314') >>> Decimal(Decimal(314)) # another decimal instance Decimal('314') >>> Decimal(' 3.14 \\n') # leading and trailing whitespace okay Decimal('3.14') """ # Note that the coefficient, self._int, is actually stored as # a string rather than as a tuple of digits. This speeds up # the "digits to integer" and "integer to digits" conversions # that are used in almost every arithmetic operation on # Decimals. This is an internal detail: the as_tuple function # and the Decimal constructor still deal with tuples of # digits. self = object.__new__(cls) # From a string # REs insist on real strings, so we can too. if isinstance(value, basestring): m = _parser(value.strip()) if m is None: if context is None: context = getcontext() return context._raise_error(ConversionSyntax, "Invalid literal for Decimal: %r" % value) if m.group('sign') == "-": self._sign = 1 else: self._sign = 0 intpart = m.group('int') if intpart is not None: # finite number fracpart = m.group('frac') or '' exp = int(m.group('exp') or '0') self._int = str(int(intpart+fracpart)) self._exp = exp - len(fracpart) self._is_special = False else: diag = m.group('diag') if diag is not None: # NaN self._int = str(int(diag or '0')).lstrip('0') if m.group('signal'): self._exp = 'N' else: self._exp = 'n' else: # infinity self._int = '0' self._exp = 'F' self._is_special = True return self # From an integer if isinstance(value, (int,long)): if value >= 0: self._sign = 0 else: self._sign = 1 self._exp = 0 self._int = str(abs(value)) self._is_special = False return self # From another decimal if isinstance(value, Decimal): self._exp = value._exp self._sign = value._sign self._int = value._int self._is_special = value._is_special return self # From an internal working value if isinstance(value, _WorkRep): self._sign = value.sign self._int = str(value.int) self._exp = int(value.exp) self._is_special = False return self # tuple/list conversion (possibly from as_tuple()) if isinstance(value, (list,tuple)): if len(value) != 3: raise ValueError('Invalid tuple size in creation of Decimal ' 'from list or tuple. The list or tuple ' 'should have exactly three elements.') # process sign. The isinstance test rejects floats if not (isinstance(value[0], (int, long)) and value[0] in (0,1)): raise ValueError("Invalid sign. The first value in the tuple " "should be an integer; either 0 for a " "positive number or 1 for a negative number.") self._sign = value[0] if value[2] == 'F': # infinity: value[1] is ignored self._int = '0' self._exp = value[2] self._is_special = True else: # process and validate the digits in value[1] digits = [] for digit in value[1]: if isinstance(digit, (int, long)) and 0 <= digit <= 9: # skip leading zeros if digits or digit != 0: digits.append(digit) else: raise ValueError("The second value in the tuple must " "be composed of integers in the range " "0 through 9.") if value[2] in ('n', 'N'): # NaN: digits form the diagnostic self._int = ''.join(map(str, digits)) self._exp = value[2] self._is_special = True elif isinstance(value[2], (int, long)): # finite number: digits give the coefficient self._int = ''.join(map(str, digits or [0])) self._exp = value[2] self._is_special = False else: raise ValueError("The third value in the tuple must " "be an integer, or one of the " "strings 'F', 'n', 'N'.") return self if isinstance(value, float): value = Decimal.from_float(value) self._exp = value._exp self._sign = value._sign self._int = value._int self._is_special = value._is_special return self raise TypeError("Cannot convert %r to Decimal" % value) # @classmethod, but @decorator is not valid Python 2.3 syntax, so # don't use it (see notes on Py2.3 compatibility at top of file) def from_float(cls, f): """Converts a float to a decimal number, exactly. Note that Decimal.from_float(0.1) is not the same as Decimal('0.1'). Since 0.1 is not exactly representable in binary floating point, the value is stored as the nearest representable value which is 0x1.999999999999ap-4. The exact equivalent of the value in decimal is 0.1000000000000000055511151231257827021181583404541015625. >>> Decimal.from_float(0.1) Decimal('0.1000000000000000055511151231257827021181583404541015625') >>> Decimal.from_float(float('nan')) Decimal('NaN') >>> Decimal.from_float(float('inf')) Decimal('Infinity') >>> Decimal.from_float(-float('inf')) Decimal('-Infinity') >>> Decimal.from_float(-0.0) Decimal('-0') """ if isinstance(f, (int, long)): # handle integer inputs return cls(f) if _math.isinf(f) or _math.isnan(f): # raises TypeError if not a float return cls(repr(f)) if _math.copysign(1.0, f) == 1.0: sign = 0 else: sign = 1 n, d = abs(f).as_integer_ratio() k = d.bit_length() - 1 result = _dec_from_triple(sign, str(n*5**k), -k) if cls is Decimal: return result else: return cls(result) from_float = classmethod(from_float) def _isnan(self): """Returns whether the number is not actually one. 0 if a number 1 if NaN 2 if sNaN """ if self._is_special: exp = self._exp if exp == 'n': return 1 elif exp == 'N': return 2 return 0 def _isinfinity(self): """Returns whether the number is infinite 0 if finite or not a number 1 if +INF -1 if -INF """ if self._exp == 'F': if self._sign: return -1 return 1 return 0 def _check_nans(self, other=None, context=None): """Returns whether the number is not actually one. if self, other are sNaN, signal if self, other are NaN return nan return 0 Done before operations. """ self_is_nan = self._isnan() if other is None: other_is_nan = False else: other_is_nan = other._isnan() if self_is_nan or other_is_nan: if context is None: context = getcontext() if self_is_nan == 2: return context._raise_error(InvalidOperation, 'sNaN', self) if other_is_nan == 2: return context._raise_error(InvalidOperation, 'sNaN', other) if self_is_nan: return self._fix_nan(context) return other._fix_nan(context) return 0 def _compare_check_nans(self, other, context): """Version of _check_nans used for the signaling comparisons compare_signal, __le__, __lt__, __ge__, __gt__. Signal InvalidOperation if either self or other is a (quiet or signaling) NaN. Signaling NaNs take precedence over quiet NaNs. Return 0 if neither operand is a NaN. """ if context is None: context = getcontext() if self._is_special or other._is_special: if self.is_snan(): return context._raise_error(InvalidOperation, 'comparison involving sNaN', self) elif other.is_snan(): return context._raise_error(InvalidOperation, 'comparison involving sNaN', other) elif self.is_qnan(): return context._raise_error(InvalidOperation, 'comparison involving NaN', self) elif other.is_qnan(): return context._raise_error(InvalidOperation, 'comparison involving NaN', other) return 0 def __nonzero__(self): """Return True if self is nonzero; otherwise return False. NaNs and infinities are considered nonzero. """ return self._is_special or self._int != '0' def _cmp(self, other): """Compare the two non-NaN decimal instances self and other. Returns -1 if self < other, 0 if self == other and 1 if self > other. This routine is for internal use only.""" if self._is_special or other._is_special: self_inf = self._isinfinity() other_inf = other._isinfinity() if self_inf == other_inf: return 0 elif self_inf < other_inf: return -1 else: return 1 # check for zeros; Decimal('0') == Decimal('-0') if not self: if not other: return 0 else: return -((-1)**other._sign) if not other: return (-1)**self._sign # If different signs, neg one is less if other._sign < self._sign: return -1 if self._sign < other._sign: return 1 self_adjusted = self.adjusted() other_adjusted = other.adjusted() if self_adjusted == other_adjusted: self_padded = self._int + '0'*(self._exp - other._exp) other_padded = other._int + '0'*(other._exp - self._exp) if self_padded == other_padded: return 0 elif self_padded < other_padded: return -(-1)**self._sign else: return (-1)**self._sign elif self_adjusted > other_adjusted: return (-1)**self._sign else: # self_adjusted < other_adjusted return -((-1)**self._sign) # Note: The Decimal standard doesn't cover rich comparisons for # Decimals. In particular, the specification is silent on the # subject of what should happen for a comparison involving a NaN. # We take the following approach: # # == comparisons involving a quiet NaN always return False # != comparisons involving a quiet NaN always return True # == or != comparisons involving a signaling NaN signal # InvalidOperation, and return False or True as above if the # InvalidOperation is not trapped. # <, >, <= and >= comparisons involving a (quiet or signaling) # NaN signal InvalidOperation, and return False if the # InvalidOperation is not trapped. # # This behavior is designed to conform as closely as possible to # that specified by IEEE 754. def __eq__(self, other, context=None): other = _convert_other(other, allow_float=True) if other is NotImplemented: return other if self._check_nans(other, context): return False return self._cmp(other) == 0 def __ne__(self, other, context=None): other = _convert_other(other, allow_float=True) if other is NotImplemented: return other if self._check_nans(other, context): return True return self._cmp(other) != 0 def __lt__(self, other, context=None): other = _convert_other(other, allow_float=True) if other is NotImplemented: return other ans = self._compare_check_nans(other, context) if ans: return False return self._cmp(other) < 0 def __le__(self, other, context=None): other = _convert_other(other, allow_float=True) if other is NotImplemented: return other ans = self._compare_check_nans(other, context) if ans: return False return self._cmp(other) <= 0 def __gt__(self, other, context=None): other = _convert_other(other, allow_float=True) if other is NotImplemented: return other ans = self._compare_check_nans(other, context) if ans: return False return self._cmp(other) > 0 def __ge__(self, other, context=None): other = _convert_other(other, allow_float=True) if other is NotImplemented: return other ans = self._compare_check_nans(other, context) if ans: return False return self._cmp(other) >= 0 def compare(self, other, context=None): """Compares one to another. -1 => a < b 0 => a = b 1 => a > b NaN => one is NaN Like __cmp__, but returns Decimal instances. """ other = _convert_other(other, raiseit=True) # Compare(NaN, NaN) = NaN if (self._is_special or other and other._is_special): ans = self._check_nans(other, context) if ans: return ans return Decimal(self._cmp(other)) def __hash__(self): """x.__hash__() <==> hash(x)""" # Decimal integers must hash the same as the ints # # The hash of a nonspecial noninteger Decimal must depend only # on the value of that Decimal, and not on its representation. # For example: hash(Decimal('100E-1')) == hash(Decimal('10')). # Equality comparisons involving signaling nans can raise an # exception; since equality checks are implicitly and # unpredictably used when checking set and dict membership, we # prevent signaling nans from being used as set elements or # dict keys by making __hash__ raise an exception. if self._is_special: if self.is_snan(): raise TypeError('Cannot hash a signaling NaN value.') elif self.is_nan(): # 0 to match hash(float('nan')) return 0 else: # values chosen to match hash(float('inf')) and # hash(float('-inf')). if self._sign: return -271828 else: return 314159 # In Python 2.7, we're allowing comparisons (but not # arithmetic operations) between floats and Decimals; so if # a Decimal instance is exactly representable as a float then # its hash should match that of the float. self_as_float = float(self) if Decimal.from_float(self_as_float) == self: return hash(self_as_float) if self._isinteger(): op = _WorkRep(self.to_integral_value()) # to make computation feasible for Decimals with large # exponent, we use the fact that hash(n) == hash(m) for # any two nonzero integers n and m such that (i) n and m # have the same sign, and (ii) n is congruent to m modulo # 2**64-1. So we can replace hash((-1)**s*c*10**e) with # hash((-1)**s*c*pow(10, e, 2**64-1). return hash((-1)**op.sign*op.int*pow(10, op.exp, 2**64-1)) # The value of a nonzero nonspecial Decimal instance is # faithfully represented by the triple consisting of its sign, # its adjusted exponent, and its coefficient with trailing # zeros removed. return hash((self._sign, self._exp+len(self._int), self._int.rstrip('0'))) def as_tuple(self): """Represents the number as a triple tuple. To show the internals exactly as they are. """ return DecimalTuple(self._sign, tuple(map(int, self._int)), self._exp) def __repr__(self): """Represents the number as an instance of Decimal.""" # Invariant: eval(repr(d)) == d return "Decimal('%s')" % str(self) def __str__(self, eng=False, context=None): """Return string representation of the number in scientific notation. Captures all of the information in the underlying representation. """ sign = ['', '-'][self._sign] if self._is_special: if self._exp == 'F': return sign + 'Infinity' elif self._exp == 'n': return sign + 'NaN' + self._int else: # self._exp == 'N' return sign + 'sNaN' + self._int # number of digits of self._int to left of decimal point leftdigits = self._exp + len(self._int) # dotplace is number of digits of self._int to the left of the # decimal point in the mantissa of the output string (that is, # after adjusting the exponent) if self._exp <= 0 and leftdigits > -6: # no exponent required dotplace = leftdigits elif not eng: # usual scientific notation: 1 digit on left of the point dotplace = 1 elif self._int == '0': # engineering notation, zero dotplace = (leftdigits + 1) % 3 - 1 else: # engineering notation, nonzero dotplace = (leftdigits - 1) % 3 + 1 if dotplace <= 0: intpart = '0' fracpart = '.' + '0'*(-dotplace) + self._int elif dotplace >= len(self._int): intpart = self._int+'0'*(dotplace-len(self._int)) fracpart = '' else: intpart = self._int[:dotplace] fracpart = '.' + self._int[dotplace:] if leftdigits == dotplace: exp = '' else: if context is None: context = getcontext() exp = ['e', 'E'][context.capitals] + "%+d" % (leftdigits-dotplace) return sign + intpart + fracpart + exp def to_eng_string(self, context=None): """Convert to engineering-type string. Engineering notation has an exponent which is a multiple of 3, so there are up to 3 digits left of the decimal place. Same rules for when in exponential and when as a value as in __str__. """ return self.__str__(eng=True, context=context) def __neg__(self, context=None): """Returns a copy with the sign switched. Rounds, if it has reason. """ if self._is_special: ans = self._check_nans(context=context) if ans: return ans if context is None: context = getcontext() if not self and context.rounding != ROUND_FLOOR: # -Decimal('0') is Decimal('0'), not Decimal('-0'), except # in ROUND_FLOOR rounding mode. ans = self.copy_abs() else: ans = self.copy_negate() return ans._fix(context) def __pos__(self, context=None): """Returns a copy, unless it is a sNaN. Rounds the number (if more then precision digits) """ if self._is_special: ans = self._check_nans(context=context) if ans: return ans if context is None: context = getcontext() if not self and context.rounding != ROUND_FLOOR: # + (-0) = 0, except in ROUND_FLOOR rounding mode. ans = self.copy_abs() else: ans = Decimal(self) return ans._fix(context) def __abs__(self, round=True, context=None): """Returns the absolute value of self. If the keyword argument 'round' is false, do not round. The expression self.__abs__(round=False) is equivalent to self.copy_abs(). """ if not round: return self.copy_abs() if self._is_special: ans = self._check_nans(context=context) if ans: return ans if self._sign: ans = self.__neg__(context=context) else: ans = self.__pos__(context=context) return ans def __add__(self, other, context=None): """Returns self + other. -INF + INF (or the reverse) cause InvalidOperation errors. """ other = _convert_other(other) if other is NotImplemented: return other if context is None: context = getcontext() if self._is_special or other._is_special: ans = self._check_nans(other, context) if ans: return ans if self._isinfinity(): # If both INF, same sign => same as both, opposite => error. if self._sign != other._sign and other._isinfinity(): return context._raise_error(InvalidOperation, '-INF + INF') return Decimal(self) if other._isinfinity(): return Decimal(other) # Can't both be infinity here exp = min(self._exp, other._exp) negativezero = 0 if context.rounding == ROUND_FLOOR and self._sign != other._sign: # If the answer is 0, the sign should be negative, in this case. negativezero = 1 if not self and not other: sign = min(self._sign, other._sign) if negativezero: sign = 1 ans = _dec_from_triple(sign, '0', exp) ans = ans._fix(context) return ans if not self: exp = max(exp, other._exp - context.prec-1) ans = other._rescale(exp, context.rounding) ans = ans._fix(context) return ans if not other: exp = max(exp, self._exp - context.prec-1) ans = self._rescale(exp, context.rounding) ans = ans._fix(context) return ans op1 = _WorkRep(self) op2 = _WorkRep(other) op1, op2 = _normalize(op1, op2, context.prec) result = _WorkRep() if op1.sign != op2.sign: # Equal and opposite if op1.int == op2.int: ans = _dec_from_triple(negativezero, '0', exp) ans = ans._fix(context) return ans if op1.int < op2.int: op1, op2 = op2, op1 # OK, now abs(op1) > abs(op2) if op1.sign == 1: result.sign = 1 op1.sign, op2.sign = op2.sign, op1.sign else: result.sign = 0 # So we know the sign, and op1 > 0. elif op1.sign == 1: result.sign = 1 op1.sign, op2.sign = (0, 0) else: result.sign = 0 # Now, op1 > abs(op2) > 0 if op2.sign == 0: result.int = op1.int + op2.int else: result.int = op1.int - op2.int result.exp = op1.exp ans = Decimal(result) ans = ans._fix(context) return ans __radd__ = __add__ def __sub__(self, other, context=None): """Return self - other""" other = _convert_other(other) if other is NotImplemented: return other if self._is_special or other._is_special: ans = self._check_nans(other, context=context) if ans: return ans # self - other is computed as self + other.copy_negate() return self.__add__(other.copy_negate(), context=context) def __rsub__(self, other, context=None): """Return other - self""" other = _convert_other(other) if other is NotImplemented: return other return other.__sub__(self, context=context) def __mul__(self, other, context=None): """Return self * other. (+-) INF * 0 (or its reverse) raise InvalidOperation. """ other = _convert_other(other) if other is NotImplemented: return other if context is None: context = getcontext() resultsign = self._sign ^ other._sign if self._is_special or other._is_special: ans = self._check_nans(other, context) if ans: return ans if self._isinfinity(): if not other: return context._raise_error(InvalidOperation, '(+-)INF * 0') return _SignedInfinity[resultsign] if other._isinfinity(): if not self: return context._raise_error(InvalidOperation, '0 * (+-)INF') return _SignedInfinity[resultsign] resultexp = self._exp + other._exp # Special case for multiplying by zero if not self or not other: ans = _dec_from_triple(resultsign, '0', resultexp) # Fixing in case the exponent is out of bounds ans = ans._fix(context) return ans # Special case for multiplying by power of 10 if self._int == '1': ans = _dec_from_triple(resultsign, other._int, resultexp) ans = ans._fix(context) return ans if other._int == '1': ans = _dec_from_triple(resultsign, self._int, resultexp) ans = ans._fix(context) return ans op1 = _WorkRep(self) op2 = _WorkRep(other) ans = _dec_from_triple(resultsign, str(op1.int * op2.int), resultexp) ans = ans._fix(context) return ans __rmul__ = __mul__ def __truediv__(self, other, context=None): """Return self / other.""" other = _convert_other(other) if other is NotImplemented: return NotImplemented if context is None: context = getcontext() sign = self._sign ^ other._sign if self._is_special or other._is_special: ans = self._check_nans(other, context) if ans: return ans if self._isinfinity() and other._isinfinity(): return context._raise_error(InvalidOperation, '(+-)INF/(+-)INF') if self._isinfinity(): return _SignedInfinity[sign] if other._isinfinity(): context._raise_error(Clamped, 'Division by infinity') return _dec_from_triple(sign, '0', context.Etiny()) # Special cases for zeroes if not other: if not self: return context._raise_error(DivisionUndefined, '0 / 0') return context._raise_error(DivisionByZero, 'x / 0', sign) if not self: exp = self._exp - other._exp coeff = 0 else: # OK, so neither = 0, INF or NaN shift = len(other._int) - len(self._int) + context.prec + 1 exp = self._exp - other._exp - shift op1 = _WorkRep(self) op2 = _WorkRep(other) if shift >= 0: coeff, remainder = divmod(op1.int * 10**shift, op2.int) else: coeff, remainder = divmod(op1.int, op2.int * 10**-shift) if remainder: # result is not exact; adjust to ensure correct rounding if coeff % 5 == 0: coeff += 1 else: # result is exact; get as close to ideal exponent as possible ideal_exp = self._exp - other._exp while exp < ideal_exp and coeff % 10 == 0: coeff //= 10 exp += 1 ans = _dec_from_triple(sign, str(coeff), exp) return ans._fix(context) def _divide(self, other, context): """Return (self // other, self % other), to context.prec precision. Assumes that neither self nor other is a NaN, that self is not infinite and that other is nonzero. """ sign = self._sign ^ other._sign if other._isinfinity(): ideal_exp = self._exp else: ideal_exp = min(self._exp, other._exp) expdiff = self.adjusted() - other.adjusted() if not self or other._isinfinity() or expdiff <= -2: return (_dec_from_triple(sign, '0', 0), self._rescale(ideal_exp, context.rounding)) if expdiff <= context.prec: op1 = _WorkRep(self) op2 = _WorkRep(other) if op1.exp >= op2.exp: op1.int *= 10**(op1.exp - op2.exp) else: op2.int *= 10**(op2.exp - op1.exp) q, r = divmod(op1.int, op2.int) if q < 10**context.prec: return (_dec_from_triple(sign, str(q), 0), _dec_from_triple(self._sign, str(r), ideal_exp)) # Here the quotient is too large to be representable ans = context._raise_error(DivisionImpossible, 'quotient too large in //, % or divmod') return ans, ans def __rtruediv__(self, other, context=None): """Swaps self/other and returns __truediv__.""" other = _convert_other(other) if other is NotImplemented: return other return other.__truediv__(self, context=context) __div__ = __truediv__ __rdiv__ = __rtruediv__ def __divmod__(self, other, context=None): """ Return (self // other, self % other) """ other = _convert_other(other) if other is NotImplemented: return other if context is None: context = getcontext() ans = self._check_nans(other, context) if ans: return (ans, ans) sign = self._sign ^ other._sign if self._isinfinity(): if other._isinfinity(): ans = context._raise_error(InvalidOperation, 'divmod(INF, INF)') return ans, ans else: return (_SignedInfinity[sign], context._raise_error(InvalidOperation, 'INF % x')) if not other: if not self: ans = context._raise_error(DivisionUndefined, 'divmod(0, 0)') return ans, ans else: return (context._raise_error(DivisionByZero, 'x // 0', sign), context._raise_error(InvalidOperation, 'x % 0')) quotient, remainder = self._divide(other, context) remainder = remainder._fix(context) return quotient, remainder def __rdivmod__(self, other, context=None): """Swaps self/other and returns __divmod__.""" other = _convert_other(other) if other is NotImplemented: return other return other.__divmod__(self, context=context) def __mod__(self, other, context=None): """ self % other """ other = _convert_other(other) if other is NotImplemented: return other if context is None: context = getcontext() ans = self._check_nans(other, context) if ans: return ans if self._isinfinity(): return context._raise_error(InvalidOperation, 'INF % x') elif not other: if self: return context._raise_error(InvalidOperation, 'x % 0') else: return context._raise_error(DivisionUndefined, '0 % 0') remainder = self._divide(other, context)[1] remainder = remainder._fix(context) return remainder def __rmod__(self, other, context=None): """Swaps self/other and returns __mod__.""" other = _convert_other(other) if other is NotImplemented: return other return other.__mod__(self, context=context) def remainder_near(self, other, context=None): """ Remainder nearest to 0- abs(remainder-near) <= other/2 """ if context is None: context = getcontext() other = _convert_other(other, raiseit=True) ans = self._check_nans(other, context) if ans: return ans # self == +/-infinity -> InvalidOperation if self._isinfinity(): return context._raise_error(InvalidOperation, 'remainder_near(infinity, x)') # other == 0 -> either InvalidOperation or DivisionUndefined if not other: if self: return context._raise_error(InvalidOperation, 'remainder_near(x, 0)') else: return context._raise_error(DivisionUndefined, 'remainder_near(0, 0)') # other = +/-infinity -> remainder = self if other._isinfinity(): ans = Decimal(self) return ans._fix(context) # self = 0 -> remainder = self, with ideal exponent ideal_exponent = min(self._exp, other._exp) if not self: ans = _dec_from_triple(self._sign, '0', ideal_exponent) return ans._fix(context) # catch most cases of large or small quotient expdiff = self.adjusted() - other.adjusted() if expdiff >= context.prec + 1: # expdiff >= prec+1 => abs(self/other) > 10**prec return context._raise_error(DivisionImpossible) if expdiff <= -2: # expdiff <= -2 => abs(self/other) < 0.1 ans = self._rescale(ideal_exponent, context.rounding) return ans._fix(context) # adjust both arguments to have the same exponent, then divide op1 = _WorkRep(self) op2 = _WorkRep(other) if op1.exp >= op2.exp: op1.int *= 10**(op1.exp - op2.exp) else: op2.int *= 10**(op2.exp - op1.exp) q, r = divmod(op1.int, op2.int) # remainder is r*10**ideal_exponent; other is +/-op2.int * # 10**ideal_exponent. Apply correction to ensure that # abs(remainder) <= abs(other)/2 if 2*r + (q&1) > op2.int: r -= op2.int q += 1 if q >= 10**context.prec: return context._raise_error(DivisionImpossible) # result has same sign as self unless r is negative sign = self._sign if r < 0: sign = 1-sign r = -r ans = _dec_from_triple(sign, str(r), ideal_exponent) return ans._fix(context) def __floordiv__(self, other, context=None): """self // other""" other = _convert_other(other) if other is NotImplemented: return other if context is None: context = getcontext() ans = self._check_nans(other, context) if ans: return ans if self._isinfinity(): if other._isinfinity(): return context._raise_error(InvalidOperation, 'INF // INF') else: return _SignedInfinity[self._sign ^ other._sign] if not other: if self: return context._raise_error(DivisionByZero, 'x // 0', self._sign ^ other._sign) else: return context._raise_error(DivisionUndefined, '0 // 0') return self._divide(other, context)[0] def __rfloordiv__(self, other, context=None): """Swaps self/other and returns __floordiv__.""" other = _convert_other(other) if other is NotImplemented: return other return other.__floordiv__(self, context=context) def __float__(self): """Float representation.""" if self._isnan(): if self.is_snan(): raise ValueError("Cannot convert signaling NaN to float") s = "-nan" if self._sign else "nan" else: s = str(self) return float(s) def __int__(self): """Converts self to an int, truncating if necessary.""" if self._is_special: if self._isnan(): raise ValueError("Cannot convert NaN to integer") elif self._isinfinity(): raise OverflowError("Cannot convert infinity to integer") s = (-1)**self._sign if self._exp >= 0: return s*int(self._int)*10**self._exp else: return s*int(self._int[:self._exp] or '0') __trunc__ = __int__ def real(self): return self real = property(real) def imag(self): return Decimal(0) imag = property(imag) def conjugate(self): return self def __complex__(self): return complex(float(self)) def __long__(self): """Converts to a long. Equivalent to long(int(self)) """ return long(self.__int__()) def _fix_nan(self, context): """Decapitate the payload of a NaN to fit the context""" payload = self._int # maximum length of payload is precision if _clamp=0, # precision-1 if _clamp=1. max_payload_len = context.prec - context._clamp if len(payload) > max_payload_len: payload = payload[len(payload)-max_payload_len:].lstrip('0') return _dec_from_triple(self._sign, payload, self._exp, True) return Decimal(self) def _fix(self, context): """Round if it is necessary to keep self within prec precision. Rounds and fixes the exponent. Does not raise on a sNaN. Arguments: self - Decimal instance context - context used. """ if self._is_special: if self._isnan(): # decapitate payload if necessary return self._fix_nan(context) else: # self is +/-Infinity; return unaltered return Decimal(self) # if self is zero then exponent should be between Etiny and # Emax if _clamp==0, and between Etiny and Etop if _clamp==1. Etiny = context.Etiny() Etop = context.Etop() if not self: exp_max = [context.Emax, Etop][context._clamp] new_exp = min(max(self._exp, Etiny), exp_max) if new_exp != self._exp: context._raise_error(Clamped) return _dec_from_triple(self._sign, '0', new_exp) else: return Decimal(self) # exp_min is the smallest allowable exponent of the result, # equal to max(self.adjusted()-context.prec+1, Etiny) exp_min = len(self._int) + self._exp - context.prec if exp_min > Etop: # overflow: exp_min > Etop iff self.adjusted() > Emax ans = context._raise_error(Overflow, 'above Emax', self._sign) context._raise_error(Inexact) context._raise_error(Rounded) return ans self_is_subnormal = exp_min < Etiny if self_is_subnormal: exp_min = Etiny # round if self has too many digits if self._exp < exp_min: digits = len(self._int) + self._exp - exp_min if digits < 0: self = _dec_from_triple(self._sign, '1', exp_min-1) digits = 0 rounding_method = self._pick_rounding_function[context.rounding] changed = rounding_method(self, digits) coeff = self._int[:digits] or '0' if changed > 0: coeff = str(int(coeff)+1) if len(coeff) > context.prec: coeff = coeff[:-1] exp_min += 1 # check whether the rounding pushed the exponent out of range if exp_min > Etop: ans = context._raise_error(Overflow, 'above Emax', self._sign) else: ans = _dec_from_triple(self._sign, coeff, exp_min) # raise the appropriate signals, taking care to respect # the precedence described in the specification if changed and self_is_subnormal: context._raise_error(Underflow) if self_is_subnormal: context._raise_error(Subnormal) if changed: context._raise_error(Inexact) context._raise_error(Rounded) if not ans: # raise Clamped on underflow to 0 context._raise_error(Clamped) return ans if self_is_subnormal: context._raise_error(Subnormal) # fold down if _clamp == 1 and self has too few digits if context._clamp == 1 and self._exp > Etop: context._raise_error(Clamped) self_padded = self._int + '0'*(self._exp - Etop) return _dec_from_triple(self._sign, self_padded, Etop) # here self was representable to begin with; return unchanged return Decimal(self) # for each of the rounding functions below: # self is a finite, nonzero Decimal # prec is an integer satisfying 0 <= prec < len(self._int) # # each function returns either -1, 0, or 1, as follows: # 1 indicates that self should be rounded up (away from zero) # 0 indicates that self should be truncated, and that all the # digits to be truncated are zeros (so the value is unchanged) # -1 indicates that there are nonzero digits to be truncated def _round_down(self, prec): """Also known as round-towards-0, truncate.""" if _all_zeros(self._int, prec): return 0 else: return -1 def _round_up(self, prec): """Rounds away from 0.""" return -self._round_down(prec) def _round_half_up(self, prec): """Rounds 5 up (away from 0)""" if self._int[prec] in '56789': return 1 elif _all_zeros(self._int, prec): return 0 else: return -1 def _round_half_down(self, prec): """Round 5 down""" if _exact_half(self._int, prec): return -1 else: return self._round_half_up(prec) def _round_half_even(self, prec): """Round 5 to even, rest to nearest.""" if _exact_half(self._int, prec) and \ (prec == 0 or self._int[prec-1] in '02468'): return -1 else: return self._round_half_up(prec) def _round_ceiling(self, prec): """Rounds up (not away from 0 if negative.)""" if self._sign: return self._round_down(prec) else: return -self._round_down(prec) def _round_floor(self, prec): """Rounds down (not towards 0 if negative)""" if not self._sign: return self._round_down(prec) else: return -self._round_down(prec) def _round_05up(self, prec): """Round down unless digit prec-1 is 0 or 5.""" if prec and self._int[prec-1] not in '05': return self._round_down(prec) else: return -self._round_down(prec) _pick_rounding_function = dict( ROUND_DOWN = _round_down, ROUND_UP = _round_up, ROUND_HALF_UP = _round_half_up, ROUND_HALF_DOWN = _round_half_down, ROUND_HALF_EVEN = _round_half_even, ROUND_CEILING = _round_ceiling, ROUND_FLOOR = _round_floor, ROUND_05UP = _round_05up, ) def fma(self, other, third, context=None): """Fused multiply-add. Returns self*other+third with no rounding of the intermediate product self*other. self and other are multiplied together, with no rounding of the result. The third operand is then added to the result, and a single final rounding is performed. """ other = _convert_other(other, raiseit=True) # compute product; raise InvalidOperation if either operand is # a signaling NaN or if the product is zero times infinity. if self._is_special or other._is_special: if context is None: context = getcontext() if self._exp == 'N': return context._raise_error(InvalidOperation, 'sNaN', self) if other._exp == 'N': return context._raise_error(InvalidOperation, 'sNaN', other) if self._exp == 'n': product = self elif other._exp == 'n': product = other elif self._exp == 'F': if not other: return context._raise_error(InvalidOperation, 'INF * 0 in fma') product = _SignedInfinity[self._sign ^ other._sign] elif other._exp == 'F': if not self: return context._raise_error(InvalidOperation, '0 * INF in fma') product = _SignedInfinity[self._sign ^ other._sign] else: product = _dec_from_triple(self._sign ^ other._sign, str(int(self._int) * int(other._int)), self._exp + other._exp) third = _convert_other(third, raiseit=True) return product.__add__(third, context) def _power_modulo(self, other, modulo, context=None): """Three argument version of __pow__""" # if can't convert other and modulo to Decimal, raise # TypeError; there's no point returning NotImplemented (no # equivalent of __rpow__ for three argument pow) other = _convert_other(other, raiseit=True) modulo = _convert_other(modulo, raiseit=True) if context is None: context = getcontext() # deal with NaNs: if there are any sNaNs then first one wins, # (i.e. behaviour for NaNs is identical to that of fma) self_is_nan = self._isnan() other_is_nan = other._isnan() modulo_is_nan = modulo._isnan() if self_is_nan or other_is_nan or modulo_is_nan: if self_is_nan == 2: return context._raise_error(InvalidOperation, 'sNaN', self) if other_is_nan == 2: return context._raise_error(InvalidOperation, 'sNaN', other) if modulo_is_nan == 2: return context._raise_error(InvalidOperation, 'sNaN', modulo) if self_is_nan: return self._fix_nan(context) if other_is_nan: return other._fix_nan(context) return modulo._fix_nan(context) # check inputs: we apply same restrictions as Python's pow() if not (self._isinteger() and other._isinteger() and modulo._isinteger()): return context._raise_error(InvalidOperation, 'pow() 3rd argument not allowed ' 'unless all arguments are integers') if other < 0: return context._raise_error(InvalidOperation, 'pow() 2nd argument cannot be ' 'negative when 3rd argument specified') if not modulo: return context._raise_error(InvalidOperation, 'pow() 3rd argument cannot be 0') # additional restriction for decimal: the modulus must be less # than 10**prec in absolute value if modulo.adjusted() >= context.prec: return context._raise_error(InvalidOperation, 'insufficient precision: pow() 3rd ' 'argument must not have more than ' 'precision digits') # define 0**0 == NaN, for consistency with two-argument pow # (even though it hurts!) if not other and not self: return context._raise_error(InvalidOperation, 'at least one of pow() 1st argument ' 'and 2nd argument must be nonzero ;' '0**0 is not defined') # compute sign of result if other._iseven(): sign = 0 else: sign = self._sign # convert modulo to a Python integer, and self and other to # Decimal integers (i.e. force their exponents to be >= 0) modulo = abs(int(modulo)) base = _WorkRep(self.to_integral_value()) exponent = _WorkRep(other.to_integral_value()) # compute result using integer pow() base = (base.int % modulo * pow(10, base.exp, modulo)) % modulo for i in xrange(exponent.exp): base = pow(base, 10, modulo) base = pow(base, exponent.int, modulo) return _dec_from_triple(sign, str(base), 0) def _power_exact(self, other, p): """Attempt to compute self**other exactly. Given Decimals self and other and an integer p, attempt to compute an exact result for the power self**other, with p digits of precision. Return None if self**other is not exactly representable in p digits. Assumes that elimination of special cases has already been performed: self and other must both be nonspecial; self must be positive and not numerically equal to 1; other must be nonzero. For efficiency, other._exp should not be too large, so that 10**abs(other._exp) is a feasible calculation.""" # In the comments below, we write x for the value of self and y for the # value of other. Write x = xc*10**xe and abs(y) = yc*10**ye, with xc # and yc positive integers not divisible by 10. # The main purpose of this method is to identify the *failure* # of x**y to be exactly representable with as little effort as # possible. So we look for cheap and easy tests that # eliminate the possibility of x**y being exact. Only if all # these tests are passed do we go on to actually compute x**y. # Here's the main idea. Express y as a rational number m/n, with m and # n relatively prime and n>0. Then for x**y to be exactly # representable (at *any* precision), xc must be the nth power of a # positive integer and xe must be divisible by n. If y is negative # then additionally xc must be a power of either 2 or 5, hence a power # of 2**n or 5**n. # # There's a limit to how small |y| can be: if y=m/n as above # then: # # (1) if xc != 1 then for the result to be representable we # need xc**(1/n) >= 2, and hence also xc**|y| >= 2. So # if |y| <= 1/nbits(xc) then xc < 2**nbits(xc) <= # 2**(1/|y|), hence xc**|y| < 2 and the result is not # representable. # # (2) if xe != 0, |xe|*(1/n) >= 1, so |xe|*|y| >= 1. Hence if # |y| < 1/|xe| then the result is not representable. # # Note that since x is not equal to 1, at least one of (1) and # (2) must apply. Now |y| < 1/nbits(xc) iff |yc|*nbits(xc) < # 10**-ye iff len(str(|yc|*nbits(xc)) <= -ye. # # There's also a limit to how large y can be, at least if it's # positive: the normalized result will have coefficient xc**y, # so if it's representable then xc**y < 10**p, and y < # p/log10(xc). Hence if y*log10(xc) >= p then the result is # not exactly representable. # if len(str(abs(yc*xe)) <= -ye then abs(yc*xe) < 10**-ye, # so |y| < 1/xe and the result is not representable. # Similarly, len(str(abs(yc)*xc_bits)) <= -ye implies |y| # < 1/nbits(xc). x = _WorkRep(self) xc, xe = x.int, x.exp while xc % 10 == 0: xc //= 10 xe += 1 y = _WorkRep(other) yc, ye = y.int, y.exp while yc % 10 == 0: yc //= 10 ye += 1 # case where xc == 1: result is 10**(xe*y), with xe*y # required to be an integer if xc == 1: xe *= yc # result is now 10**(xe * 10**ye); xe * 10**ye must be integral while xe % 10 == 0: xe //= 10 ye += 1 if ye < 0: return None exponent = xe * 10**ye if y.sign == 1: exponent = -exponent # if other is a nonnegative integer, use ideal exponent if other._isinteger() and other._sign == 0: ideal_exponent = self._exp*int(other) zeros = min(exponent-ideal_exponent, p-1) else: zeros = 0 return _dec_from_triple(0, '1' + '0'*zeros, exponent-zeros) # case where y is negative: xc must be either a power # of 2 or a power of 5. if y.sign == 1: last_digit = xc % 10 if last_digit in (2,4,6,8): # quick test for power of 2 if xc & -xc != xc: return None # now xc is a power of 2; e is its exponent e = _nbits(xc)-1 # We now have: # # x = 2**e * 10**xe, e > 0, and y < 0. # # The exact result is: # # x**y = 5**(-e*y) * 10**(e*y + xe*y) # # provided that both e*y and xe*y are integers. Note that if # 5**(-e*y) >= 10**p, then the result can't be expressed # exactly with p digits of precision. # # Using the above, we can guard against large values of ye. # 93/65 is an upper bound for log(10)/log(5), so if # # ye >= len(str(93*p//65)) # # then # # -e*y >= -y >= 10**ye > 93*p/65 > p*log(10)/log(5), # # so 5**(-e*y) >= 10**p, and the coefficient of the result # can't be expressed in p digits. # emax >= largest e such that 5**e < 10**p. emax = p*93//65 if ye >= len(str(emax)): return None # Find -e*y and -xe*y; both must be integers e = _decimal_lshift_exact(e * yc, ye) xe = _decimal_lshift_exact(xe * yc, ye) if e is None or xe is None: return None if e > emax: return None xc = 5**e elif last_digit == 5: # e >= log_5(xc) if xc is a power of 5; we have # equality all the way up to xc=5**2658 e = _nbits(xc)*28//65 xc, remainder = divmod(5**e, xc) if remainder: return None while xc % 5 == 0: xc //= 5 e -= 1 # Guard against large values of ye, using the same logic as in # the 'xc is a power of 2' branch. 10/3 is an upper bound for # log(10)/log(2). emax = p*10//3 if ye >= len(str(emax)): return None e = _decimal_lshift_exact(e * yc, ye) xe = _decimal_lshift_exact(xe * yc, ye) if e is None or xe is None: return None if e > emax: return None xc = 2**e else: return None if xc >= 10**p: return None xe = -e-xe return _dec_from_triple(0, str(xc), xe) # now y is positive; find m and n such that y = m/n if ye >= 0: m, n = yc*10**ye, 1 else: if xe != 0 and len(str(abs(yc*xe))) <= -ye: return None xc_bits = _nbits(xc) if xc != 1 and len(str(abs(yc)*xc_bits)) <= -ye: return None m, n = yc, 10**(-ye) while m % 2 == n % 2 == 0: m //= 2 n //= 2 while m % 5 == n % 5 == 0: m //= 5 n //= 5 # compute nth root of xc*10**xe if n > 1: # if 1 < xc < 2**n then xc isn't an nth power if xc != 1 and xc_bits <= n: return None xe, rem = divmod(xe, n) if rem != 0: return None # compute nth root of xc using Newton's method a = 1L << -(-_nbits(xc)//n) # initial estimate while True: q, r = divmod(xc, a**(n-1)) if a <= q: break else: a = (a*(n-1) + q)//n if not (a == q and r == 0): return None xc = a # now xc*10**xe is the nth root of the original xc*10**xe # compute mth power of xc*10**xe # if m > p*100//_log10_lb(xc) then m > p/log10(xc), hence xc**m > # 10**p and the result is not representable. if xc > 1 and m > p*100//_log10_lb(xc): return None xc = xc**m xe *= m if xc > 10**p: return None # by this point the result *is* exactly representable # adjust the exponent to get as close as possible to the ideal # exponent, if necessary str_xc = str(xc) if other._isinteger() and other._sign == 0: ideal_exponent = self._exp*int(other) zeros = min(xe-ideal_exponent, p-len(str_xc)) else: zeros = 0 return _dec_from_triple(0, str_xc+'0'*zeros, xe-zeros) def __pow__(self, other, modulo=None, context=None): """Return self ** other [ % modulo]. With two arguments, compute self**other. With three arguments, compute (self**other) % modulo. For the three argument form, the following restrictions on the arguments hold: - all three arguments must be integral - other must be nonnegative - either self or other (or both) must be nonzero - modulo must be nonzero and must have at most p digits, where p is the context precision. If any of these restrictions is violated the InvalidOperation flag is raised. The result of pow(self, other, modulo) is identical to the result that would be obtained by computing (self**other) % modulo with unbounded precision, but is computed more efficiently. It is always exact. """ if modulo is not None: return self._power_modulo(other, modulo, context) other = _convert_other(other) if other is NotImplemented: return other if context is None: context = getcontext() # either argument is a NaN => result is NaN ans = self._check_nans(other, context) if ans: return ans # 0**0 = NaN (!), x**0 = 1 for nonzero x (including +/-Infinity) if not other: if not self: return context._raise_error(InvalidOperation, '0 ** 0') else: return _One # result has sign 1 iff self._sign is 1 and other is an odd integer result_sign = 0 if self._sign == 1: if other._isinteger(): if not other._iseven(): result_sign = 1 else: # -ve**noninteger = NaN # (-0)**noninteger = 0**noninteger if self: return context._raise_error(InvalidOperation, 'x ** y with x negative and y not an integer') # negate self, without doing any unwanted rounding self = self.copy_negate() # 0**(+ve or Inf)= 0; 0**(-ve or -Inf) = Infinity if not self: if other._sign == 0: return _dec_from_triple(result_sign, '0', 0) else: return _SignedInfinity[result_sign] # Inf**(+ve or Inf) = Inf; Inf**(-ve or -Inf) = 0 if self._isinfinity(): if other._sign == 0: return _SignedInfinity[result_sign] else: return _dec_from_triple(result_sign, '0', 0) # 1**other = 1, but the choice of exponent and the flags # depend on the exponent of self, and on whether other is a # positive integer, a negative integer, or neither if self == _One: if other._isinteger(): # exp = max(self._exp*max(int(other), 0), # 1-context.prec) but evaluating int(other) directly # is dangerous until we know other is small (other # could be 1e999999999) if other._sign == 1: multiplier = 0 elif other > context.prec: multiplier = context.prec else: multiplier = int(other) exp = self._exp * multiplier if exp < 1-context.prec: exp = 1-context.prec context._raise_error(Rounded) else: context._raise_error(Inexact) context._raise_error(Rounded) exp = 1-context.prec return _dec_from_triple(result_sign, '1'+'0'*-exp, exp) # compute adjusted exponent of self self_adj = self.adjusted() # self ** infinity is infinity if self > 1, 0 if self < 1 # self ** -infinity is infinity if self < 1, 0 if self > 1 if other._isinfinity(): if (other._sign == 0) == (self_adj < 0): return _dec_from_triple(result_sign, '0', 0) else: return _SignedInfinity[result_sign] # from here on, the result always goes through the call # to _fix at the end of this function. ans = None exact = False # crude test to catch cases of extreme overflow/underflow. If # log10(self)*other >= 10**bound and bound >= len(str(Emax)) # then 10**bound >= 10**len(str(Emax)) >= Emax+1 and hence # self**other >= 10**(Emax+1), so overflow occurs. The test # for underflow is similar. bound = self._log10_exp_bound() + other.adjusted() if (self_adj >= 0) == (other._sign == 0): # self > 1 and other +ve, or self < 1 and other -ve # possibility of overflow if bound >= len(str(context.Emax)): ans = _dec_from_triple(result_sign, '1', context.Emax+1) else: # self > 1 and other -ve, or self < 1 and other +ve # possibility of underflow to 0 Etiny = context.Etiny() if bound >= len(str(-Etiny)): ans = _dec_from_triple(result_sign, '1', Etiny-1) # try for an exact result with precision +1 if ans is None: ans = self._power_exact(other, context.prec + 1) if ans is not None: if result_sign == 1: ans = _dec_from_triple(1, ans._int, ans._exp) exact = True # usual case: inexact result, x**y computed directly as exp(y*log(x)) if ans is None: p = context.prec x = _WorkRep(self) xc, xe = x.int, x.exp y = _WorkRep(other) yc, ye = y.int, y.exp if y.sign == 1: yc = -yc # compute correctly rounded result: start with precision +3, # then increase precision until result is unambiguously roundable extra = 3 while True: coeff, exp = _dpower(xc, xe, yc, ye, p+extra) if coeff % (5*10**(len(str(coeff))-p-1)): break extra += 3 ans = _dec_from_triple(result_sign, str(coeff), exp) # unlike exp, ln and log10, the power function respects the # rounding mode; no need to switch to ROUND_HALF_EVEN here # There's a difficulty here when 'other' is not an integer and # the result is exact. In this case, the specification # requires that the Inexact flag be raised (in spite of # exactness), but since the result is exact _fix won't do this # for us. (Correspondingly, the Underflow signal should also # be raised for subnormal results.) We can't directly raise # these signals either before or after calling _fix, since # that would violate the precedence for signals. So we wrap # the ._fix call in a temporary context, and reraise # afterwards. if exact and not other._isinteger(): # pad with zeros up to length context.prec+1 if necessary; this # ensures that the Rounded signal will be raised. if len(ans._int) <= context.prec: expdiff = context.prec + 1 - len(ans._int) ans = _dec_from_triple(ans._sign, ans._int+'0'*expdiff, ans._exp-expdiff) # create a copy of the current context, with cleared flags/traps newcontext = context.copy() newcontext.clear_flags() for exception in _signals: newcontext.traps[exception] = 0 # round in the new context ans = ans._fix(newcontext) # raise Inexact, and if necessary, Underflow newcontext._raise_error(Inexact) if newcontext.flags[Subnormal]: newcontext._raise_error(Underflow) # propagate signals to the original context; _fix could # have raised any of Overflow, Underflow, Subnormal, # Inexact, Rounded, Clamped. Overflow needs the correct # arguments. Note that the order of the exceptions is # important here. if newcontext.flags[Overflow]: context._raise_error(Overflow, 'above Emax', ans._sign) for exception in Underflow, Subnormal, Inexact, Rounded, Clamped: if newcontext.flags[exception]: context._raise_error(exception) else: ans = ans._fix(context) return ans def __rpow__(self, other, context=None): """Swaps self/other and returns __pow__.""" other = _convert_other(other) if other is NotImplemented: return other return other.__pow__(self, context=context) def normalize(self, context=None): """Normalize- strip trailing 0s, change anything equal to 0 to 0e0""" if context is None: context = getcontext() if self._is_special: ans = self._check_nans(context=context) if ans: return ans dup = self._fix(context) if dup._isinfinity(): return dup if not dup: return _dec_from_triple(dup._sign, '0', 0) exp_max = [context.Emax, context.Etop()][context._clamp] end = len(dup._int) exp = dup._exp while dup._int[end-1] == '0' and exp < exp_max: exp += 1 end -= 1 return _dec_from_triple(dup._sign, dup._int[:end], exp) def quantize(self, exp, rounding=None, context=None, watchexp=True): """Quantize self so its exponent is the same as that of exp. Similar to self._rescale(exp._exp) but with error checking. """ exp = _convert_other(exp, raiseit=True) if context is None: context = getcontext() if rounding is None: rounding = context.rounding if self._is_special or exp._is_special: ans = self._check_nans(exp, context) if ans: return ans if exp._isinfinity() or self._isinfinity(): if exp._isinfinity() and self._isinfinity(): return Decimal(self) # if both are inf, it is OK return context._raise_error(InvalidOperation, 'quantize with one INF') # if we're not watching exponents, do a simple rescale if not watchexp: ans = self._rescale(exp._exp, rounding) # raise Inexact and Rounded where appropriate if ans._exp > self._exp: context._raise_error(Rounded) if ans != self: context._raise_error(Inexact) return ans # exp._exp should be between Etiny and Emax if not (context.Etiny() <= exp._exp <= context.Emax): return context._raise_error(InvalidOperation, 'target exponent out of bounds in quantize') if not self: ans = _dec_from_triple(self._sign, '0', exp._exp) return ans._fix(context) self_adjusted = self.adjusted() if self_adjusted > context.Emax: return context._raise_error(InvalidOperation, 'exponent of quantize result too large for current context') if self_adjusted - exp._exp + 1 > context.prec: return context._raise_error(InvalidOperation, 'quantize result has too many digits for current context') ans = self._rescale(exp._exp, rounding) if ans.adjusted() > context.Emax: return context._raise_error(InvalidOperation, 'exponent of quantize result too large for current context') if len(ans._int) > context.prec: return context._raise_error(InvalidOperation, 'quantize result has too many digits for current context') # raise appropriate flags if ans and ans.adjusted() < context.Emin: context._raise_error(Subnormal) if ans._exp > self._exp: if ans != self: context._raise_error(Inexact) context._raise_error(Rounded) # call to fix takes care of any necessary folddown, and # signals Clamped if necessary ans = ans._fix(context) return ans def same_quantum(self, other): """Return True if self and other have the same exponent; otherwise return False. If either operand is a special value, the following rules are used: * return True if both operands are infinities * return True if both operands are NaNs * otherwise, return False. """ other = _convert_other(other, raiseit=True) if self._is_special or other._is_special: return (self.is_nan() and other.is_nan() or self.is_infinite() and other.is_infinite()) return self._exp == other._exp def _rescale(self, exp, rounding): """Rescale self so that the exponent is exp, either by padding with zeros or by truncating digits, using the given rounding mode. Specials are returned without change. This operation is quiet: it raises no flags, and uses no information from the context. exp = exp to scale to (an integer) rounding = rounding mode """ if self._is_special: return Decimal(self) if not self: return _dec_from_triple(self._sign, '0', exp) if self._exp >= exp: # pad answer with zeros if necessary return _dec_from_triple(self._sign, self._int + '0'*(self._exp - exp), exp) # too many digits; round and lose data. If self.adjusted() < # exp-1, replace self by 10**(exp-1) before rounding digits = len(self._int) + self._exp - exp if digits < 0: self = _dec_from_triple(self._sign, '1', exp-1) digits = 0 this_function = self._pick_rounding_function[rounding] changed = this_function(self, digits) coeff = self._int[:digits] or '0' if changed == 1: coeff = str(int(coeff)+1) return _dec_from_triple(self._sign, coeff, exp) def _round(self, places, rounding): """Round a nonzero, nonspecial Decimal to a fixed number of significant figures, using the given rounding mode. Infinities, NaNs and zeros are returned unaltered. This operation is quiet: it raises no flags, and uses no information from the context. """ if places <= 0: raise ValueError("argument should be at least 1 in _round") if self._is_special or not self: return Decimal(self) ans = self._rescale(self.adjusted()+1-places, rounding) # it can happen that the rescale alters the adjusted exponent; # for example when rounding 99.97 to 3 significant figures. # When this happens we end up with an extra 0 at the end of # the number; a second rescale fixes this. if ans.adjusted() != self.adjusted(): ans = ans._rescale(ans.adjusted()+1-places, rounding) return ans def to_integral_exact(self, rounding=None, context=None): """Rounds to a nearby integer. If no rounding mode is specified, take the rounding mode from the context. This method raises the Rounded and Inexact flags when appropriate. See also: to_integral_value, which does exactly the same as this method except that it doesn't raise Inexact or Rounded. """ if self._is_special: ans = self._check_nans(context=context) if ans: return ans return Decimal(self) if self._exp >= 0: return Decimal(self) if not self: return _dec_from_triple(self._sign, '0', 0) if context is None: context = getcontext() if rounding is None: rounding = context.rounding ans = self._rescale(0, rounding) if ans != self: context._raise_error(Inexact) context._raise_error(Rounded) return ans def to_integral_value(self, rounding=None, context=None): """Rounds to the nearest integer, without raising inexact, rounded.""" if context is None: context = getcontext() if rounding is None: rounding = context.rounding if self._is_special: ans = self._check_nans(context=context) if ans: return ans return Decimal(self) if self._exp >= 0: return Decimal(self) else: return self._rescale(0, rounding) # the method name changed, but we provide also the old one, for compatibility to_integral = to_integral_value def sqrt(self, context=None): """Return the square root of self.""" if context is None: context = getcontext() if self._is_special: ans = self._check_nans(context=context) if ans: return ans if self._isinfinity() and self._sign == 0: return Decimal(self) if not self: # exponent = self._exp // 2. sqrt(-0) = -0 ans = _dec_from_triple(self._sign, '0', self._exp // 2) return ans._fix(context) if self._sign == 1: return context._raise_error(InvalidOperation, 'sqrt(-x), x > 0') # At this point self represents a positive number. Let p be # the desired precision and express self in the form c*100**e # with c a positive real number and e an integer, c and e # being chosen so that 100**(p-1) <= c < 100**p. Then the # (exact) square root of self is sqrt(c)*10**e, and 10**(p-1) # <= sqrt(c) < 10**p, so the closest representable Decimal at # precision p is n*10**e where n = round_half_even(sqrt(c)), # the closest integer to sqrt(c) with the even integer chosen # in the case of a tie. # # To ensure correct rounding in all cases, we use the # following trick: we compute the square root to an extra # place (precision p+1 instead of precision p), rounding down. # Then, if the result is inexact and its last digit is 0 or 5, # we increase the last digit to 1 or 6 respectively; if it's # exact we leave the last digit alone. Now the final round to # p places (or fewer in the case of underflow) will round # correctly and raise the appropriate flags. # use an extra digit of precision prec = context.prec+1 # write argument in the form c*100**e where e = self._exp//2 # is the 'ideal' exponent, to be used if the square root is # exactly representable. l is the number of 'digits' of c in # base 100, so that 100**(l-1) <= c < 100**l. op = _WorkRep(self) e = op.exp >> 1 if op.exp & 1: c = op.int * 10 l = (len(self._int) >> 1) + 1 else: c = op.int l = len(self._int)+1 >> 1 # rescale so that c has exactly prec base 100 'digits' shift = prec-l if shift >= 0: c *= 100**shift exact = True else: c, remainder = divmod(c, 100**-shift) exact = not remainder e -= shift # find n = floor(sqrt(c)) using Newton's method n = 10**prec while True: q = c//n if n <= q: break else: n = n + q >> 1 exact = exact and n*n == c if exact: # result is exact; rescale to use ideal exponent e if shift >= 0: # assert n % 10**shift == 0 n //= 10**shift else: n *= 10**-shift e += shift else: # result is not exact; fix last digit as described above if n % 5 == 0: n += 1 ans = _dec_from_triple(0, str(n), e) # round, and fit to current context context = context._shallow_copy() rounding = context._set_rounding(ROUND_HALF_EVEN) ans = ans._fix(context) context.rounding = rounding return ans def max(self, other, context=None): """Returns the larger value. Like max(self, other) except if one is not a number, returns NaN (and signals if one is sNaN). Also rounds. """ other = _convert_other(other, raiseit=True) if context is None: context = getcontext() if self._is_special or other._is_special: # If one operand is a quiet NaN and the other is number, then the # number is always returned sn = self._isnan() on = other._isnan() if sn or on: if on == 1 and sn == 0: return self._fix(context) if sn == 1 and on == 0: return other._fix(context) return self._check_nans(other, context) c = self._cmp(other) if c == 0: # If both operands are finite and equal in numerical value # then an ordering is applied: # # If the signs differ then max returns the operand with the # positive sign and min returns the operand with the negative sign # # If the signs are the same then the exponent is used to select # the result. This is exactly the ordering used in compare_total. c = self.compare_total(other) if c == -1: ans = other else: ans = self return ans._fix(context) def min(self, other, context=None): """Returns the smaller value. Like min(self, other) except if one is not a number, returns NaN (and signals if one is sNaN). Also rounds. """ other = _convert_other(other, raiseit=True) if context is None: context = getcontext() if self._is_special or other._is_special: # If one operand is a quiet NaN and the other is number, then the # number is always returned sn = self._isnan() on = other._isnan() if sn or on: if on == 1 and sn == 0: return self._fix(context) if sn == 1 and on == 0: return other._fix(context) return self._check_nans(other, context) c = self._cmp(other) if c == 0: c = self.compare_total(other) if c == -1: ans = self else: ans = other return ans._fix(context) def _isinteger(self): """Returns whether self is an integer""" if self._is_special: return False if self._exp >= 0: return True rest = self._int[self._exp:] return rest == '0'*len(rest) def _iseven(self): """Returns True if self is even. Assumes self is an integer.""" if not self or self._exp > 0: return True return self._int[-1+self._exp] in '02468' def adjusted(self): """Return the adjusted exponent of self""" try: return self._exp + len(self._int) - 1 # If NaN or Infinity, self._exp is string except TypeError: return 0 def canonical(self, context=None): """Returns the same Decimal object. As we do not have different encodings for the same number, the received object already is in its canonical form. """ return self def compare_signal(self, other, context=None): """Compares self to the other operand numerically. It's pretty much like compare(), but all NaNs signal, with signaling NaNs taking precedence over quiet NaNs. """ other = _convert_other(other, raiseit = True) ans = self._compare_check_nans(other, context) if ans: return ans return self.compare(other, context=context) def compare_total(self, other): """Compares self to other using the abstract representations. This is not like the standard compare, which use their numerical value. Note that a total ordering is defined for all possible abstract representations. """ other = _convert_other(other, raiseit=True) # if one is negative and the other is positive, it's easy if self._sign and not other._sign: return _NegativeOne if not self._sign and other._sign: return _One sign = self._sign # let's handle both NaN types self_nan = self._isnan() other_nan = other._isnan() if self_nan or other_nan: if self_nan == other_nan: # compare payloads as though they're integers self_key = len(self._int), self._int other_key = len(other._int), other._int if self_key < other_key: if sign: return _One else: return _NegativeOne if self_key > other_key: if sign: return _NegativeOne else: return _One return _Zero if sign: if self_nan == 1: return _NegativeOne if other_nan == 1: return _One if self_nan == 2: return _NegativeOne if other_nan == 2: return _One else: if self_nan == 1: return _One if other_nan == 1: return _NegativeOne if self_nan == 2: return _One if other_nan == 2: return _NegativeOne if self < other: return _NegativeOne if self > other: return _One if self._exp < other._exp: if sign: return _One else: return _NegativeOne if self._exp > other._exp: if sign: return _NegativeOne else: return _One return _Zero def compare_total_mag(self, other): """Compares self to other using abstract repr., ignoring sign. Like compare_total, but with operand's sign ignored and assumed to be 0. """ other = _convert_other(other, raiseit=True) s = self.copy_abs() o = other.copy_abs() return s.compare_total(o) def copy_abs(self): """Returns a copy with the sign set to 0. """ return _dec_from_triple(0, self._int, self._exp, self._is_special) def copy_negate(self): """Returns a copy with the sign inverted.""" if self._sign: return _dec_from_triple(0, self._int, self._exp, self._is_special) else: return _dec_from_triple(1, self._int, self._exp, self._is_special) def copy_sign(self, other): """Returns self with the sign of other.""" other = _convert_other(other, raiseit=True) return _dec_from_triple(other._sign, self._int, self._exp, self._is_special) def exp(self, context=None): """Returns e ** self.""" if context is None: context = getcontext() # exp(NaN) = NaN ans = self._check_nans(context=context) if ans: return ans # exp(-Infinity) = 0 if self._isinfinity() == -1: return _Zero # exp(0) = 1 if not self: return _One # exp(Infinity) = Infinity if self._isinfinity() == 1: return Decimal(self) # the result is now guaranteed to be inexact (the true # mathematical result is transcendental). There's no need to # raise Rounded and Inexact here---they'll always be raised as # a result of the call to _fix. p = context.prec adj = self.adjusted() # we only need to do any computation for quite a small range # of adjusted exponents---for example, -29 <= adj <= 10 for # the default context. For smaller exponent the result is # indistinguishable from 1 at the given precision, while for # larger exponent the result either overflows or underflows. if self._sign == 0 and adj > len(str((context.Emax+1)*3)): # overflow ans = _dec_from_triple(0, '1', context.Emax+1) elif self._sign == 1 and adj > len(str((-context.Etiny()+1)*3)): # underflow to 0 ans = _dec_from_triple(0, '1', context.Etiny()-1) elif self._sign == 0 and adj < -p: # p+1 digits; final round will raise correct flags ans = _dec_from_triple(0, '1' + '0'*(p-1) + '1', -p) elif self._sign == 1 and adj < -p-1: # p+1 digits; final round will raise correct flags ans = _dec_from_triple(0, '9'*(p+1), -p-1) # general case else: op = _WorkRep(self) c, e = op.int, op.exp if op.sign == 1: c = -c # compute correctly rounded result: increase precision by # 3 digits at a time until we get an unambiguously # roundable result extra = 3 while True: coeff, exp = _dexp(c, e, p+extra) if coeff % (5*10**(len(str(coeff))-p-1)): break extra += 3 ans = _dec_from_triple(0, str(coeff), exp) # at this stage, ans should round correctly with *any* # rounding mode, not just with ROUND_HALF_EVEN context = context._shallow_copy() rounding = context._set_rounding(ROUND_HALF_EVEN) ans = ans._fix(context) context.rounding = rounding return ans def is_canonical(self): """Return True if self is canonical; otherwise return False. Currently, the encoding of a Decimal instance is always canonical, so this method returns True for any Decimal. """ return True def is_finite(self): """Return True if self is finite; otherwise return False. A Decimal instance is considered finite if it is neither infinite nor a NaN. """ return not self._is_special def is_infinite(self): """Return True if self is infinite; otherwise return False.""" return self._exp == 'F' def is_nan(self): """Return True if self is a qNaN or sNaN; otherwise return False.""" return self._exp in ('n', 'N') def is_normal(self, context=None): """Return True if self is a normal number; otherwise return False.""" if self._is_special or not self: return False if context is None: context = getcontext() return context.Emin <= self.adjusted() def is_qnan(self): """Return True if self is a quiet NaN; otherwise return False.""" return self._exp == 'n' def is_signed(self): """Return True if self is negative; otherwise return False.""" return self._sign == 1 def is_snan(self): """Return True if self is a signaling NaN; otherwise return False.""" return self._exp == 'N' def is_subnormal(self, context=None): """Return True if self is subnormal; otherwise return False.""" if self._is_special or not self: return False if context is None: context = getcontext() return self.adjusted() < context.Emin def is_zero(self): """Return True if self is a zero; otherwise return False.""" return not self._is_special and self._int == '0' def _ln_exp_bound(self): """Compute a lower bound for the adjusted exponent of self.ln(). In other words, compute r such that self.ln() >= 10**r. Assumes that self is finite and positive and that self != 1. """ # for 0.1 <= x <= 10 we use the inequalities 1-1/x <= ln(x) <= x-1 adj = self._exp + len(self._int) - 1 if adj >= 1: # argument >= 10; we use 23/10 = 2.3 as a lower bound for ln(10) return len(str(adj*23//10)) - 1 if adj <= -2: # argument <= 0.1 return len(str((-1-adj)*23//10)) - 1 op = _WorkRep(self) c, e = op.int, op.exp if adj == 0: # 1 < self < 10 num = str(c-10**-e) den = str(c) return len(num) - len(den) - (num < den) # adj == -1, 0.1 <= self < 1 return e + len(str(10**-e - c)) - 1 def ln(self, context=None): """Returns the natural (base e) logarithm of self.""" if context is None: context = getcontext() # ln(NaN) = NaN ans = self._check_nans(context=context) if ans: return ans # ln(0.0) == -Infinity if not self: return _NegativeInfinity # ln(Infinity) = Infinity if self._isinfinity() == 1: return _Infinity # ln(1.0) == 0.0 if self == _One: return _Zero # ln(negative) raises InvalidOperation if self._sign == 1: return context._raise_error(InvalidOperation, 'ln of a negative value') # result is irrational, so necessarily inexact op = _WorkRep(self) c, e = op.int, op.exp p = context.prec # correctly rounded result: repeatedly increase precision by 3 # until we get an unambiguously roundable result places = p - self._ln_exp_bound() + 2 # at least p+3 places while True: coeff = _dlog(c, e, places) # assert len(str(abs(coeff)))-p >= 1 if coeff % (5*10**(len(str(abs(coeff)))-p-1)): break places += 3 ans = _dec_from_triple(int(coeff<0), str(abs(coeff)), -places) context = context._shallow_copy() rounding = context._set_rounding(ROUND_HALF_EVEN) ans = ans._fix(context) context.rounding = rounding return ans def _log10_exp_bound(self): """Compute a lower bound for the adjusted exponent of self.log10(). In other words, find r such that self.log10() >= 10**r. Assumes that self is finite and positive and that self != 1. """ # For x >= 10 or x < 0.1 we only need a bound on the integer # part of log10(self), and this comes directly from the # exponent of x. For 0.1 <= x <= 10 we use the inequalities # 1-1/x <= log(x) <= x-1. If x > 1 we have |log10(x)| > # (1-1/x)/2.31 > 0. If x < 1 then |log10(x)| > (1-x)/2.31 > 0 adj = self._exp + len(self._int) - 1 if adj >= 1: # self >= 10 return len(str(adj))-1 if adj <= -2: # self < 0.1 return len(str(-1-adj))-1 op = _WorkRep(self) c, e = op.int, op.exp if adj == 0: # 1 < self < 10 num = str(c-10**-e) den = str(231*c) return len(num) - len(den) - (num < den) + 2 # adj == -1, 0.1 <= self < 1 num = str(10**-e-c) return len(num) + e - (num < "231") - 1 def log10(self, context=None): """Returns the base 10 logarithm of self.""" if context is None: context = getcontext() # log10(NaN) = NaN ans = self._check_nans(context=context) if ans: return ans # log10(0.0) == -Infinity if not self: return _NegativeInfinity # log10(Infinity) = Infinity if self._isinfinity() == 1: return _Infinity # log10(negative or -Infinity) raises InvalidOperation if self._sign == 1: return context._raise_error(InvalidOperation, 'log10 of a negative value') # log10(10**n) = n if self._int[0] == '1' and self._int[1:] == '0'*(len(self._int) - 1): # answer may need rounding ans = Decimal(self._exp + len(self._int) - 1) else: # result is irrational, so necessarily inexact op = _WorkRep(self) c, e = op.int, op.exp p = context.prec # correctly rounded result: repeatedly increase precision # until result is unambiguously roundable places = p-self._log10_exp_bound()+2 while True: coeff = _dlog10(c, e, places) # assert len(str(abs(coeff)))-p >= 1 if coeff % (5*10**(len(str(abs(coeff)))-p-1)): break places += 3 ans = _dec_from_triple(int(coeff<0), str(abs(coeff)), -places) context = context._shallow_copy() rounding = context._set_rounding(ROUND_HALF_EVEN) ans = ans._fix(context) context.rounding = rounding return ans def logb(self, context=None): """ Returns the exponent of the magnitude of self's MSD. The result is the integer which is the exponent of the magnitude of the most significant digit of self (as though it were truncated to a single digit while maintaining the value of that digit and without limiting the resulting exponent). """ # logb(NaN) = NaN ans = self._check_nans(context=context) if ans: return ans if context is None: context = getcontext() # logb(+/-Inf) = +Inf if self._isinfinity(): return _Infinity # logb(0) = -Inf, DivisionByZero if not self: return context._raise_error(DivisionByZero, 'logb(0)', 1) # otherwise, simply return the adjusted exponent of self, as a # Decimal. Note that no attempt is made to fit the result # into the current context. ans = Decimal(self.adjusted()) return ans._fix(context) def _islogical(self): """Return True if self is a logical operand. For being logical, it must be a finite number with a sign of 0, an exponent of 0, and a coefficient whose digits must all be either 0 or 1. """ if self._sign != 0 or self._exp != 0: return False for dig in self._int: if dig not in '01': return False return True def _fill_logical(self, context, opa, opb): dif = context.prec - len(opa) if dif > 0: opa = '0'*dif + opa elif dif < 0: opa = opa[-context.prec:] dif = context.prec - len(opb) if dif > 0: opb = '0'*dif + opb elif dif < 0: opb = opb[-context.prec:] return opa, opb def logical_and(self, other, context=None): """Applies an 'and' operation between self and other's digits.""" if context is None: context = getcontext() other = _convert_other(other, raiseit=True) if not self._islogical() or not other._islogical(): return context._raise_error(InvalidOperation) # fill to context.prec (opa, opb) = self._fill_logical(context, self._int, other._int) # make the operation, and clean starting zeroes result = "".join([str(int(a)&int(b)) for a,b in zip(opa,opb)]) return _dec_from_triple(0, result.lstrip('0') or '0', 0) def logical_invert(self, context=None): """Invert all its digits.""" if context is None: context = getcontext() return self.logical_xor(_dec_from_triple(0,'1'*context.prec,0), context) def logical_or(self, other, context=None): """Applies an 'or' operation between self and other's digits.""" if context is None: context = getcontext() other = _convert_other(other, raiseit=True) if not self._islogical() or not other._islogical(): return context._raise_error(InvalidOperation) # fill to context.prec (opa, opb) = self._fill_logical(context, self._int, other._int) # make the operation, and clean starting zeroes result = "".join([str(int(a)|int(b)) for a,b in zip(opa,opb)]) return _dec_from_triple(0, result.lstrip('0') or '0', 0) def logical_xor(self, other, context=None): """Applies an 'xor' operation between self and other's digits.""" if context is None: context = getcontext() other = _convert_other(other, raiseit=True) if not self._islogical() or not other._islogical(): return context._raise_error(InvalidOperation) # fill to context.prec (opa, opb) = self._fill_logical(context, self._int, other._int) # make the operation, and clean starting zeroes result = "".join([str(int(a)^int(b)) for a,b in zip(opa,opb)]) return _dec_from_triple(0, result.lstrip('0') or '0', 0) def max_mag(self, other, context=None): """Compares the values numerically with their sign ignored.""" other = _convert_other(other, raiseit=True) if context is None: context = getcontext() if self._is_special or other._is_special: # If one operand is a quiet NaN and the other is number, then the # number is always returned sn = self._isnan() on = other._isnan() if sn or on: if on == 1 and sn == 0: return self._fix(context) if sn == 1 and on == 0: return other._fix(context) return self._check_nans(other, context) c = self.copy_abs()._cmp(other.copy_abs()) if c == 0: c = self.compare_total(other) if c == -1: ans = other else: ans = self return ans._fix(context) def min_mag(self, other, context=None): """Compares the values numerically with their sign ignored.""" other = _convert_other(other, raiseit=True) if context is None: context = getcontext() if self._is_special or other._is_special: # If one operand is a quiet NaN and the other is number, then the # number is always returned sn = self._isnan() on = other._isnan() if sn or on: if on == 1 and sn == 0: return self._fix(context) if sn == 1 and on == 0: return other._fix(context) return self._check_nans(other, context) c = self.copy_abs()._cmp(other.copy_abs()) if c == 0: c = self.compare_total(other) if c == -1: ans = self else: ans = other return ans._fix(context) def next_minus(self, context=None): """Returns the largest representable number smaller than itself.""" if context is None: context = getcontext() ans = self._check_nans(context=context) if ans: return ans if self._isinfinity() == -1: return _NegativeInfinity if self._isinfinity() == 1: return _dec_from_triple(0, '9'*context.prec, context.Etop()) context = context.copy() context._set_rounding(ROUND_FLOOR) context._ignore_all_flags() new_self = self._fix(context) if new_self != self: return new_self return self.__sub__(_dec_from_triple(0, '1', context.Etiny()-1), context) def next_plus(self, context=None): """Returns the smallest representable number larger than itself.""" if context is None: context = getcontext() ans = self._check_nans(context=context) if ans: return ans if self._isinfinity() == 1: return _Infinity if self._isinfinity() == -1: return _dec_from_triple(1, '9'*context.prec, context.Etop()) context = context.copy() context._set_rounding(ROUND_CEILING) context._ignore_all_flags() new_self = self._fix(context) if new_self != self: return new_self return self.__add__(_dec_from_triple(0, '1', context.Etiny()-1), context) def next_toward(self, other, context=None): """Returns the number closest to self, in the direction towards other. The result is the closest representable number to self (excluding self) that is in the direction towards other, unless both have the same value. If the two operands are numerically equal, then the result is a copy of self with the sign set to be the same as the sign of other. """ other = _convert_other(other, raiseit=True) if context is None: context = getcontext() ans = self._check_nans(other, context) if ans: return ans comparison = self._cmp(other) if comparison == 0: return self.copy_sign(other) if comparison == -1: ans = self.next_plus(context) else: # comparison == 1 ans = self.next_minus(context) # decide which flags to raise using value of ans if ans._isinfinity(): context._raise_error(Overflow, 'Infinite result from next_toward', ans._sign) context._raise_error(Inexact) context._raise_error(Rounded) elif ans.adjusted() < context.Emin: context._raise_error(Underflow) context._raise_error(Subnormal) context._raise_error(Inexact) context._raise_error(Rounded) # if precision == 1 then we don't raise Clamped for a # result 0E-Etiny. if not ans: context._raise_error(Clamped) return ans def number_class(self, context=None): """Returns an indication of the class of self. The class is one of the following strings: sNaN NaN -Infinity -Normal -Subnormal -Zero +Zero +Subnormal +Normal +Infinity """ if self.is_snan(): return "sNaN" if self.is_qnan(): return "NaN" inf = self._isinfinity() if inf == 1: return "+Infinity" if inf == -1: return "-Infinity" if self.is_zero(): if self._sign: return "-Zero" else: return "+Zero" if context is None: context = getcontext() if self.is_subnormal(context=context): if self._sign: return "-Subnormal" else: return "+Subnormal" # just a normal, regular, boring number, :) if self._sign: return "-Normal" else: return "+Normal" def radix(self): """Just returns 10, as this is Decimal, :)""" return Decimal(10) def rotate(self, other, context=None): """Returns a rotated copy of self, value-of-other times.""" if context is None: context = getcontext() other = _convert_other(other, raiseit=True) ans = self._check_nans(other, context) if ans: return ans if other._exp != 0: return context._raise_error(InvalidOperation) if not (-context.prec <= int(other) <= context.prec): return context._raise_error(InvalidOperation) if self._isinfinity(): return Decimal(self) # get values, pad if necessary torot = int(other) rotdig = self._int topad = context.prec - len(rotdig) if topad > 0: rotdig = '0'*topad + rotdig elif topad < 0: rotdig = rotdig[-topad:] # let's rotate! rotated = rotdig[torot:] + rotdig[:torot] return _dec_from_triple(self._sign, rotated.lstrip('0') or '0', self._exp) def scaleb(self, other, context=None): """Returns self operand after adding the second value to its exp.""" if context is None: context = getcontext() other = _convert_other(other, raiseit=True) ans = self._check_nans(other, context) if ans: return ans if other._exp != 0: return context._raise_error(InvalidOperation) liminf = -2 * (context.Emax + context.prec) limsup = 2 * (context.Emax + context.prec) if not (liminf <= int(other) <= limsup): return context._raise_error(InvalidOperation) if self._isinfinity(): return Decimal(self) d = _dec_from_triple(self._sign, self._int, self._exp + int(other)) d = d._fix(context) return d def shift(self, other, context=None): """Returns a shifted copy of self, value-of-other times.""" if context is None: context = getcontext() other = _convert_other(other, raiseit=True) ans = self._check_nans(other, context) if ans: return ans if other._exp != 0: return context._raise_error(InvalidOperation) if not (-context.prec <= int(other) <= context.prec): return context._raise_error(InvalidOperation) if self._isinfinity(): return Decimal(self) # get values, pad if necessary torot = int(other) rotdig = self._int topad = context.prec - len(rotdig) if topad > 0: rotdig = '0'*topad + rotdig elif topad < 0: rotdig = rotdig[-topad:] # let's shift! if torot < 0: shifted = rotdig[:torot] else: shifted = rotdig + '0'*torot shifted = shifted[-context.prec:] return _dec_from_triple(self._sign, shifted.lstrip('0') or '0', self._exp) # Support for pickling, copy, and deepcopy def __reduce__(self): return (self.__class__, (str(self),)) def __copy__(self): if type(self) is Decimal: return self # I'm immutable; therefore I am my own clone return self.__class__(str(self)) def __deepcopy__(self, memo): if type(self) is Decimal: return self # My components are also immutable return self.__class__(str(self)) # PEP 3101 support. the _localeconv keyword argument should be # considered private: it's provided for ease of testing only. def __format__(self, specifier, context=None, _localeconv=None): """Format a Decimal instance according to the given specifier. The specifier should be a standard format specifier, with the form described in PEP 3101. Formatting types 'e', 'E', 'f', 'F', 'g', 'G', 'n' and '%' are supported. If the formatting type is omitted it defaults to 'g' or 'G', depending on the value of context.capitals. """ # Note: PEP 3101 says that if the type is not present then # there should be at least one digit after the decimal point. # We take the liberty of ignoring this requirement for # Decimal---it's presumably there to make sure that # format(float, '') behaves similarly to str(float). if context is None: context = getcontext() spec = _parse_format_specifier(specifier, _localeconv=_localeconv) # special values don't care about the type or precision if self._is_special: sign = _format_sign(self._sign, spec) body = str(self.copy_abs()) if spec['type'] == '%': body += '%' return _format_align(sign, body, spec) # a type of None defaults to 'g' or 'G', depending on context if spec['type'] is None: spec['type'] = ['g', 'G'][context.capitals] # if type is '%', adjust exponent of self accordingly if spec['type'] == '%': self = _dec_from_triple(self._sign, self._int, self._exp+2) # round if necessary, taking rounding mode from the context rounding = context.rounding precision = spec['precision'] if precision is not None: if spec['type'] in 'eE': self = self._round(precision+1, rounding) elif spec['type'] in 'fF%': self = self._rescale(-precision, rounding) elif spec['type'] in 'gG' and len(self._int) > precision: self = self._round(precision, rounding) # special case: zeros with a positive exponent can't be # represented in fixed point; rescale them to 0e0. if not self and self._exp > 0 and spec['type'] in 'fF%': self = self._rescale(0, rounding) # figure out placement of the decimal point leftdigits = self._exp + len(self._int) if spec['type'] in 'eE': if not self and precision is not None: dotplace = 1 - precision else: dotplace = 1 elif spec['type'] in 'fF%': dotplace = leftdigits elif spec['type'] in 'gG': if self._exp <= 0 and leftdigits > -6: dotplace = leftdigits else: dotplace = 1 # find digits before and after decimal point, and get exponent if dotplace < 0: intpart = '0' fracpart = '0'*(-dotplace) + self._int elif dotplace > len(self._int): intpart = self._int + '0'*(dotplace-len(self._int)) fracpart = '' else: intpart = self._int[:dotplace] or '0' fracpart = self._int[dotplace:] exp = leftdigits-dotplace # done with the decimal-specific stuff; hand over the rest # of the formatting to the _format_number function return _format_number(self._sign, intpart, fracpart, exp, spec) def _dec_from_triple(sign, coefficient, exponent, special=False): """Create a decimal instance directly, without any validation, normalization (e.g. removal of leading zeros) or argument conversion. This function is for *internal use only*. """ self = object.__new__(Decimal) self._sign = sign self._int = coefficient self._exp = exponent self._is_special = special return self # Register Decimal as a kind of Number (an abstract base class). # However, do not register it as Real (because Decimals are not # interoperable with floats). _numbers.Number.register(Decimal) ##### Context class ####################################################### class _ContextManager(object): """Context manager class to support localcontext(). Sets a copy of the supplied context in __enter__() and restores the previous decimal context in __exit__() """ def __init__(self, new_context): self.new_context = new_context.copy() def __enter__(self): self.saved_context = getcontext() setcontext(self.new_context) return self.new_context def __exit__(self, t, v, tb): setcontext(self.saved_context) class Context(object): """Contains the context for a Decimal instance. Contains: prec - precision (for use in rounding, division, square roots..) rounding - rounding type (how you round) traps - If traps[exception] = 1, then the exception is raised when it is caused. Otherwise, a value is substituted in. flags - When an exception is caused, flags[exception] is set. (Whether or not the trap_enabler is set) Should be reset by user of Decimal instance. Emin - Minimum exponent Emax - Maximum exponent capitals - If 1, 1*10^1 is printed as 1E+1. If 0, printed as 1e1 _clamp - If 1, change exponents if too high (Default 0) """ def __init__(self, prec=None, rounding=None, traps=None, flags=None, Emin=None, Emax=None, capitals=None, _clamp=0, _ignored_flags=None): # Set defaults; for everything except flags and _ignored_flags, # inherit from DefaultContext. try: dc = DefaultContext except NameError: pass self.prec = prec if prec is not None else dc.prec self.rounding = rounding if rounding is not None else dc.rounding self.Emin = Emin if Emin is not None else dc.Emin self.Emax = Emax if Emax is not None else dc.Emax self.capitals = capitals if capitals is not None else dc.capitals self._clamp = _clamp if _clamp is not None else dc._clamp if _ignored_flags is None: self._ignored_flags = [] else: self._ignored_flags = _ignored_flags if traps is None: self.traps = dc.traps.copy() elif not isinstance(traps, dict): self.traps = dict((s, int(s in traps)) for s in _signals) else: self.traps = traps if flags is None: self.flags = dict.fromkeys(_signals, 0) elif not isinstance(flags, dict): self.flags = dict((s, int(s in flags)) for s in _signals) else: self.flags = flags def __repr__(self): """Show the current context.""" s = [] s.append('Context(prec=%(prec)d, rounding=%(rounding)s, ' 'Emin=%(Emin)d, Emax=%(Emax)d, capitals=%(capitals)d' % vars(self)) names = [f.__name__ for f, v in self.flags.items() if v] s.append('flags=[' + ', '.join(names) + ']') names = [t.__name__ for t, v in self.traps.items() if v] s.append('traps=[' + ', '.join(names) + ']') return ', '.join(s) + ')' def clear_flags(self): """Reset all flags to zero""" for flag in self.flags: self.flags[flag] = 0 def _shallow_copy(self): """Returns a shallow copy from self.""" nc = Context(self.prec, self.rounding, self.traps, self.flags, self.Emin, self.Emax, self.capitals, self._clamp, self._ignored_flags) return nc def copy(self): """Returns a deep copy from self.""" nc = Context(self.prec, self.rounding, self.traps.copy(), self.flags.copy(), self.Emin, self.Emax, self.capitals, self._clamp, self._ignored_flags) return nc __copy__ = copy def _raise_error(self, condition, explanation = None, *args): """Handles an error If the flag is in _ignored_flags, returns the default response. Otherwise, it sets the flag, then, if the corresponding trap_enabler is set, it reraises the exception. Otherwise, it returns the default value after setting the flag. """ error = _condition_map.get(condition, condition) if error in self._ignored_flags: # Don't touch the flag return error().handle(self, *args) self.flags[error] = 1 if not self.traps[error]: # The errors define how to handle themselves. return condition().handle(self, *args) # Errors should only be risked on copies of the context # self._ignored_flags = [] raise error(explanation) def _ignore_all_flags(self): """Ignore all flags, if they are raised""" return self._ignore_flags(*_signals) def _ignore_flags(self, *flags): """Ignore the flags, if they are raised""" # Do not mutate-- This way, copies of a context leave the original # alone. self._ignored_flags = (self._ignored_flags + list(flags)) return list(flags) def _regard_flags(self, *flags): """Stop ignoring the flags, if they are raised""" if flags and isinstance(flags[0], (tuple,list)): flags = flags[0] for flag in flags: self._ignored_flags.remove(flag) # We inherit object.__hash__, so we must deny this explicitly __hash__ = None def Etiny(self): """Returns Etiny (= Emin - prec + 1)""" return int(self.Emin - self.prec + 1) def Etop(self): """Returns maximum exponent (= Emax - prec + 1)""" return int(self.Emax - self.prec + 1) def _set_rounding(self, type): """Sets the rounding type. Sets the rounding type, and returns the current (previous) rounding type. Often used like: context = context.copy() # so you don't change the calling context # if an error occurs in the middle. rounding = context._set_rounding(ROUND_UP) val = self.__sub__(other, context=context) context._set_rounding(rounding) This will make it round up for that operation. """ rounding = self.rounding self.rounding= type return rounding def create_decimal(self, num='0'): """Creates a new Decimal instance but using self as context. This method implements the to-number operation of the IBM Decimal specification.""" if isinstance(num, basestring) and num != num.strip(): return self._raise_error(ConversionSyntax, "no trailing or leading whitespace is " "permitted.") d = Decimal(num, context=self) if d._isnan() and len(d._int) > self.prec - self._clamp: return self._raise_error(ConversionSyntax, "diagnostic info too long in NaN") return d._fix(self) def create_decimal_from_float(self, f): """Creates a new Decimal instance from a float but rounding using self as the context. >>> context = Context(prec=5, rounding=ROUND_DOWN) >>> context.create_decimal_from_float(3.1415926535897932) Decimal('3.1415') >>> context = Context(prec=5, traps=[Inexact]) >>> context.create_decimal_from_float(3.1415926535897932) Traceback (most recent call last): ... Inexact: None """ d = Decimal.from_float(f) # An exact conversion return d._fix(self) # Apply the context rounding # Methods def abs(self, a): """Returns the absolute value of the operand. If the operand is negative, the result is the same as using the minus operation on the operand. Otherwise, the result is the same as using the plus operation on the operand. >>> ExtendedContext.abs(Decimal('2.1')) Decimal('2.1') >>> ExtendedContext.abs(Decimal('-100')) Decimal('100') >>> ExtendedContext.abs(Decimal('101.5')) Decimal('101.5') >>> ExtendedContext.abs(Decimal('-101.5')) Decimal('101.5') >>> ExtendedContext.abs(-1) Decimal('1') """ a = _convert_other(a, raiseit=True) return a.__abs__(context=self) def add(self, a, b): """Return the sum of the two operands. >>> ExtendedContext.add(Decimal('12'), Decimal('7.00')) Decimal('19.00') >>> ExtendedContext.add(Decimal('1E+2'), Decimal('1.01E+4')) Decimal('1.02E+4') >>> ExtendedContext.add(1, Decimal(2)) Decimal('3') >>> ExtendedContext.add(Decimal(8), 5) Decimal('13') >>> ExtendedContext.add(5, 5) Decimal('10') """ a = _convert_other(a, raiseit=True) r = a.__add__(b, context=self) if r is NotImplemented: raise TypeError("Unable to convert %s to Decimal" % b) else: return r def _apply(self, a): return str(a._fix(self)) def canonical(self, a): """Returns the same Decimal object. As we do not have different encodings for the same number, the received object already is in its canonical form. >>> ExtendedContext.canonical(Decimal('2.50')) Decimal('2.50') """ return a.canonical(context=self) def compare(self, a, b): """Compares values numerically. If the signs of the operands differ, a value representing each operand ('-1' if the operand is less than zero, '0' if the operand is zero or negative zero, or '1' if the operand is greater than zero) is used in place of that operand for the comparison instead of the actual operand. The comparison is then effected by subtracting the second operand from the first and then returning a value according to the result of the subtraction: '-1' if the result is less than zero, '0' if the result is zero or negative zero, or '1' if the result is greater than zero. >>> ExtendedContext.compare(Decimal('2.1'), Decimal('3')) Decimal('-1') >>> ExtendedContext.compare(Decimal('2.1'), Decimal('2.1')) Decimal('0') >>> ExtendedContext.compare(Decimal('2.1'), Decimal('2.10')) Decimal('0') >>> ExtendedContext.compare(Decimal('3'), Decimal('2.1')) Decimal('1') >>> ExtendedContext.compare(Decimal('2.1'), Decimal('-3')) Decimal('1') >>> ExtendedContext.compare(Decimal('-3'), Decimal('2.1')) Decimal('-1') >>> ExtendedContext.compare(1, 2) Decimal('-1') >>> ExtendedContext.compare(Decimal(1), 2) Decimal('-1') >>> ExtendedContext.compare(1, Decimal(2)) Decimal('-1') """ a = _convert_other(a, raiseit=True) return a.compare(b, context=self) def compare_signal(self, a, b): """Compares the values of the two operands numerically. It's pretty much like compare(), but all NaNs signal, with signaling NaNs taking precedence over quiet NaNs. >>> c = ExtendedContext >>> c.compare_signal(Decimal('2.1'), Decimal('3')) Decimal('-1') >>> c.compare_signal(Decimal('2.1'), Decimal('2.1')) Decimal('0') >>> c.flags[InvalidOperation] = 0 >>> print c.flags[InvalidOperation] 0 >>> c.compare_signal(Decimal('NaN'), Decimal('2.1')) Decimal('NaN') >>> print c.flags[InvalidOperation] 1 >>> c.flags[InvalidOperation] = 0 >>> print c.flags[InvalidOperation] 0 >>> c.compare_signal(Decimal('sNaN'), Decimal('2.1')) Decimal('NaN') >>> print c.flags[InvalidOperation] 1 >>> c.compare_signal(-1, 2) Decimal('-1') >>> c.compare_signal(Decimal(-1), 2) Decimal('-1') >>> c.compare_signal(-1, Decimal(2)) Decimal('-1') """ a = _convert_other(a, raiseit=True) return a.compare_signal(b, context=self) def compare_total(self, a, b): """Compares two operands using their abstract representation. This is not like the standard compare, which use their numerical value. Note that a total ordering is defined for all possible abstract representations. >>> ExtendedContext.compare_total(Decimal('12.73'), Decimal('127.9')) Decimal('-1') >>> ExtendedContext.compare_total(Decimal('-127'), Decimal('12')) Decimal('-1') >>> ExtendedContext.compare_total(Decimal('12.30'), Decimal('12.3')) Decimal('-1') >>> ExtendedContext.compare_total(Decimal('12.30'), Decimal('12.30')) Decimal('0') >>> ExtendedContext.compare_total(Decimal('12.3'), Decimal('12.300')) Decimal('1') >>> ExtendedContext.compare_total(Decimal('12.3'), Decimal('NaN')) Decimal('-1') >>> ExtendedContext.compare_total(1, 2) Decimal('-1') >>> ExtendedContext.compare_total(Decimal(1), 2) Decimal('-1') >>> ExtendedContext.compare_total(1, Decimal(2)) Decimal('-1') """ a = _convert_other(a, raiseit=True) return a.compare_total(b) def compare_total_mag(self, a, b): """Compares two operands using their abstract representation ignoring sign. Like compare_total, but with operand's sign ignored and assumed to be 0. """ a = _convert_other(a, raiseit=True) return a.compare_total_mag(b) def copy_abs(self, a): """Returns a copy of the operand with the sign set to 0. >>> ExtendedContext.copy_abs(Decimal('2.1')) Decimal('2.1') >>> ExtendedContext.copy_abs(Decimal('-100')) Decimal('100') >>> ExtendedContext.copy_abs(-1) Decimal('1') """ a = _convert_other(a, raiseit=True) return a.copy_abs() def copy_decimal(self, a): """Returns a copy of the decimal object. >>> ExtendedContext.copy_decimal(Decimal('2.1')) Decimal('2.1') >>> ExtendedContext.copy_decimal(Decimal('-1.00')) Decimal('-1.00') >>> ExtendedContext.copy_decimal(1) Decimal('1') """ a = _convert_other(a, raiseit=True) return Decimal(a) def copy_negate(self, a): """Returns a copy of the operand with the sign inverted. >>> ExtendedContext.copy_negate(Decimal('101.5')) Decimal('-101.5') >>> ExtendedContext.copy_negate(Decimal('-101.5')) Decimal('101.5') >>> ExtendedContext.copy_negate(1) Decimal('-1') """ a = _convert_other(a, raiseit=True) return a.copy_negate() def copy_sign(self, a, b): """Copies the second operand's sign to the first one. In detail, it returns a copy of the first operand with the sign equal to the sign of the second operand. >>> ExtendedContext.copy_sign(Decimal( '1.50'), Decimal('7.33')) Decimal('1.50') >>> ExtendedContext.copy_sign(Decimal('-1.50'), Decimal('7.33')) Decimal('1.50') >>> ExtendedContext.copy_sign(Decimal( '1.50'), Decimal('-7.33')) Decimal('-1.50') >>> ExtendedContext.copy_sign(Decimal('-1.50'), Decimal('-7.33')) Decimal('-1.50') >>> ExtendedContext.copy_sign(1, -2) Decimal('-1') >>> ExtendedContext.copy_sign(Decimal(1), -2) Decimal('-1') >>> ExtendedContext.copy_sign(1, Decimal(-2)) Decimal('-1') """ a = _convert_other(a, raiseit=True) return a.copy_sign(b) def divide(self, a, b): """Decimal division in a specified context. >>> ExtendedContext.divide(Decimal('1'), Decimal('3')) Decimal('0.333333333') >>> ExtendedContext.divide(Decimal('2'), Decimal('3')) Decimal('0.666666667') >>> ExtendedContext.divide(Decimal('5'), Decimal('2')) Decimal('2.5') >>> ExtendedContext.divide(Decimal('1'), Decimal('10')) Decimal('0.1') >>> ExtendedContext.divide(Decimal('12'), Decimal('12')) Decimal('1') >>> ExtendedContext.divide(Decimal('8.00'), Decimal('2')) Decimal('4.00') >>> ExtendedContext.divide(Decimal('2.400'), Decimal('2.0')) Decimal('1.20') >>> ExtendedContext.divide(Decimal('1000'), Decimal('100')) Decimal('10') >>> ExtendedContext.divide(Decimal('1000'), Decimal('1')) Decimal('1000') >>> ExtendedContext.divide(Decimal('2.40E+6'), Decimal('2')) Decimal('1.20E+6') >>> ExtendedContext.divide(5, 5) Decimal('1') >>> ExtendedContext.divide(Decimal(5), 5) Decimal('1') >>> ExtendedContext.divide(5, Decimal(5)) Decimal('1') """ a = _convert_other(a, raiseit=True) r = a.__div__(b, context=self) if r is NotImplemented: raise TypeError("Unable to convert %s to Decimal" % b) else: return r def divide_int(self, a, b): """Divides two numbers and returns the integer part of the result. >>> ExtendedContext.divide_int(Decimal('2'), Decimal('3')) Decimal('0') >>> ExtendedContext.divide_int(Decimal('10'), Decimal('3')) Decimal('3') >>> ExtendedContext.divide_int(Decimal('1'), Decimal('0.3')) Decimal('3') >>> ExtendedContext.divide_int(10, 3) Decimal('3') >>> ExtendedContext.divide_int(Decimal(10), 3) Decimal('3') >>> ExtendedContext.divide_int(10, Decimal(3)) Decimal('3') """ a = _convert_other(a, raiseit=True) r = a.__floordiv__(b, context=self) if r is NotImplemented: raise TypeError("Unable to convert %s to Decimal" % b) else: return r def divmod(self, a, b): """Return (a // b, a % b). >>> ExtendedContext.divmod(Decimal(8), Decimal(3)) (Decimal('2'), Decimal('2')) >>> ExtendedContext.divmod(Decimal(8), Decimal(4)) (Decimal('2'), Decimal('0')) >>> ExtendedContext.divmod(8, 4) (Decimal('2'), Decimal('0')) >>> ExtendedContext.divmod(Decimal(8), 4) (Decimal('2'), Decimal('0')) >>> ExtendedContext.divmod(8, Decimal(4)) (Decimal('2'), Decimal('0')) """ a = _convert_other(a, raiseit=True) r = a.__divmod__(b, context=self) if r is NotImplemented: raise TypeError("Unable to convert %s to Decimal" % b) else: return r def exp(self, a): """Returns e ** a. >>> c = ExtendedContext.copy() >>> c.Emin = -999 >>> c.Emax = 999 >>> c.exp(Decimal('-Infinity')) Decimal('0') >>> c.exp(Decimal('-1')) Decimal('0.367879441') >>> c.exp(Decimal('0')) Decimal('1') >>> c.exp(Decimal('1')) Decimal('2.71828183') >>> c.exp(Decimal('0.693147181')) Decimal('2.00000000') >>> c.exp(Decimal('+Infinity')) Decimal('Infinity') >>> c.exp(10) Decimal('22026.4658') """ a =_convert_other(a, raiseit=True) return a.exp(context=self) def fma(self, a, b, c): """Returns a multiplied by b, plus c. The first two operands are multiplied together, using multiply, the third operand is then added to the result of that multiplication, using add, all with only one final rounding. >>> ExtendedContext.fma(Decimal('3'), Decimal('5'), Decimal('7')) Decimal('22') >>> ExtendedContext.fma(Decimal('3'), Decimal('-5'), Decimal('7')) Decimal('-8') >>> ExtendedContext.fma(Decimal('888565290'), Decimal('1557.96930'), Decimal('-86087.7578')) Decimal('1.38435736E+12') >>> ExtendedContext.fma(1, 3, 4) Decimal('7') >>> ExtendedContext.fma(1, Decimal(3), 4) Decimal('7') >>> ExtendedContext.fma(1, 3, Decimal(4)) Decimal('7') """ a = _convert_other(a, raiseit=True) return a.fma(b, c, context=self) def is_canonical(self, a): """Return True if the operand is canonical; otherwise return False. Currently, the encoding of a Decimal instance is always canonical, so this method returns True for any Decimal. >>> ExtendedContext.is_canonical(Decimal('2.50')) True """ return a.is_canonical() def is_finite(self, a): """Return True if the operand is finite; otherwise return False. A Decimal instance is considered finite if it is neither infinite nor a NaN. >>> ExtendedContext.is_finite(Decimal('2.50')) True >>> ExtendedContext.is_finite(Decimal('-0.3')) True >>> ExtendedContext.is_finite(Decimal('0')) True >>> ExtendedContext.is_finite(Decimal('Inf')) False >>> ExtendedContext.is_finite(Decimal('NaN')) False >>> ExtendedContext.is_finite(1) True """ a = _convert_other(a, raiseit=True) return a.is_finite() def is_infinite(self, a): """Return True if the operand is infinite; otherwise return False. >>> ExtendedContext.is_infinite(Decimal('2.50')) False >>> ExtendedContext.is_infinite(Decimal('-Inf')) True >>> ExtendedContext.is_infinite(Decimal('NaN')) False >>> ExtendedContext.is_infinite(1) False """ a = _convert_other(a, raiseit=True) return a.is_infinite() def is_nan(self, a): """Return True if the operand is a qNaN or sNaN; otherwise return False. >>> ExtendedContext.is_nan(Decimal('2.50')) False >>> ExtendedContext.is_nan(Decimal('NaN')) True >>> ExtendedContext.is_nan(Decimal('-sNaN')) True >>> ExtendedContext.is_nan(1) False """ a = _convert_other(a, raiseit=True) return a.is_nan() def is_normal(self, a): """Return True if the operand is a normal number; otherwise return False. >>> c = ExtendedContext.copy() >>> c.Emin = -999 >>> c.Emax = 999 >>> c.is_normal(Decimal('2.50')) True >>> c.is_normal(Decimal('0.1E-999')) False >>> c.is_normal(Decimal('0.00')) False >>> c.is_normal(Decimal('-Inf')) False >>> c.is_normal(Decimal('NaN')) False >>> c.is_normal(1) True """ a = _convert_other(a, raiseit=True) return a.is_normal(context=self) def is_qnan(self, a): """Return True if the operand is a quiet NaN; otherwise return False. >>> ExtendedContext.is_qnan(Decimal('2.50')) False >>> ExtendedContext.is_qnan(Decimal('NaN')) True >>> ExtendedContext.is_qnan(Decimal('sNaN')) False >>> ExtendedContext.is_qnan(1) False """ a = _convert_other(a, raiseit=True) return a.is_qnan() def is_signed(self, a): """Return True if the operand is negative; otherwise return False. >>> ExtendedContext.is_signed(Decimal('2.50')) False >>> ExtendedContext.is_signed(Decimal('-12')) True >>> ExtendedContext.is_signed(Decimal('-0')) True >>> ExtendedContext.is_signed(8) False >>> ExtendedContext.is_signed(-8) True """ a = _convert_other(a, raiseit=True) return a.is_signed() def is_snan(self, a): """Return True if the operand is a signaling NaN; otherwise return False. >>> ExtendedContext.is_snan(Decimal('2.50')) False >>> ExtendedContext.is_snan(Decimal('NaN')) False >>> ExtendedContext.is_snan(Decimal('sNaN')) True >>> ExtendedContext.is_snan(1) False """ a = _convert_other(a, raiseit=True) return a.is_snan() def is_subnormal(self, a): """Return True if the operand is subnormal; otherwise return False. >>> c = ExtendedContext.copy() >>> c.Emin = -999 >>> c.Emax = 999 >>> c.is_subnormal(Decimal('2.50')) False >>> c.is_subnormal(Decimal('0.1E-999')) True >>> c.is_subnormal(Decimal('0.00')) False >>> c.is_subnormal(Decimal('-Inf')) False >>> c.is_subnormal(Decimal('NaN')) False >>> c.is_subnormal(1) False """ a = _convert_other(a, raiseit=True) return a.is_subnormal(context=self) def is_zero(self, a): """Return True if the operand is a zero; otherwise return False. >>> ExtendedContext.is_zero(Decimal('0')) True >>> ExtendedContext.is_zero(Decimal('2.50')) False >>> ExtendedContext.is_zero(Decimal('-0E+2')) True >>> ExtendedContext.is_zero(1) False >>> ExtendedContext.is_zero(0) True """ a = _convert_other(a, raiseit=True) return a.is_zero() def ln(self, a): """Returns the natural (base e) logarithm of the operand. >>> c = ExtendedContext.copy() >>> c.Emin = -999 >>> c.Emax = 999 >>> c.ln(Decimal('0')) Decimal('-Infinity') >>> c.ln(Decimal('1.000')) Decimal('0') >>> c.ln(Decimal('2.71828183')) Decimal('1.00000000') >>> c.ln(Decimal('10')) Decimal('2.30258509') >>> c.ln(Decimal('+Infinity')) Decimal('Infinity') >>> c.ln(1) Decimal('0') """ a = _convert_other(a, raiseit=True) return a.ln(context=self) def log10(self, a): """Returns the base 10 logarithm of the operand. >>> c = ExtendedContext.copy() >>> c.Emin = -999 >>> c.Emax = 999 >>> c.log10(Decimal('0')) Decimal('-Infinity') >>> c.log10(Decimal('0.001')) Decimal('-3') >>> c.log10(Decimal('1.000')) Decimal('0') >>> c.log10(Decimal('2')) Decimal('0.301029996') >>> c.log10(Decimal('10')) Decimal('1') >>> c.log10(Decimal('70')) Decimal('1.84509804') >>> c.log10(Decimal('+Infinity')) Decimal('Infinity') >>> c.log10(0) Decimal('-Infinity') >>> c.log10(1) Decimal('0') """ a = _convert_other(a, raiseit=True) return a.log10(context=self) def logb(self, a): """ Returns the exponent of the magnitude of the operand's MSD. The result is the integer which is the exponent of the magnitude of the most significant digit of the operand (as though the operand were truncated to a single digit while maintaining the value of that digit and without limiting the resulting exponent). >>> ExtendedContext.logb(Decimal('250')) Decimal('2') >>> ExtendedContext.logb(Decimal('2.50')) Decimal('0') >>> ExtendedContext.logb(Decimal('0.03')) Decimal('-2') >>> ExtendedContext.logb(Decimal('0')) Decimal('-Infinity') >>> ExtendedContext.logb(1) Decimal('0') >>> ExtendedContext.logb(10) Decimal('1') >>> ExtendedContext.logb(100) Decimal('2') """ a = _convert_other(a, raiseit=True) return a.logb(context=self) def logical_and(self, a, b): """Applies the logical operation 'and' between each operand's digits. The operands must be both logical numbers. >>> ExtendedContext.logical_and(Decimal('0'), Decimal('0')) Decimal('0') >>> ExtendedContext.logical_and(Decimal('0'), Decimal('1')) Decimal('0') >>> ExtendedContext.logical_and(Decimal('1'), Decimal('0')) Decimal('0') >>> ExtendedContext.logical_and(Decimal('1'), Decimal('1')) Decimal('1') >>> ExtendedContext.logical_and(Decimal('1100'), Decimal('1010')) Decimal('1000') >>> ExtendedContext.logical_and(Decimal('1111'), Decimal('10')) Decimal('10') >>> ExtendedContext.logical_and(110, 1101) Decimal('100') >>> ExtendedContext.logical_and(Decimal(110), 1101) Decimal('100') >>> ExtendedContext.logical_and(110, Decimal(1101)) Decimal('100') """ a = _convert_other(a, raiseit=True) return a.logical_and(b, context=self) def logical_invert(self, a): """Invert all the digits in the operand. The operand must be a logical number. >>> ExtendedContext.logical_invert(Decimal('0')) Decimal('111111111') >>> ExtendedContext.logical_invert(Decimal('1')) Decimal('111111110') >>> ExtendedContext.logical_invert(Decimal('111111111')) Decimal('0') >>> ExtendedContext.logical_invert(Decimal('101010101')) Decimal('10101010') >>> ExtendedContext.logical_invert(1101) Decimal('111110010') """ a = _convert_other(a, raiseit=True) return a.logical_invert(context=self) def logical_or(self, a, b): """Applies the logical operation 'or' between each operand's digits. The operands must be both logical numbers. >>> ExtendedContext.logical_or(Decimal('0'), Decimal('0')) Decimal('0') >>> ExtendedContext.logical_or(Decimal('0'), Decimal('1')) Decimal('1') >>> ExtendedContext.logical_or(Decimal('1'), Decimal('0')) Decimal('1') >>> ExtendedContext.logical_or(Decimal('1'), Decimal('1')) Decimal('1') >>> ExtendedContext.logical_or(Decimal('1100'), Decimal('1010')) Decimal('1110') >>> ExtendedContext.logical_or(Decimal('1110'), Decimal('10')) Decimal('1110') >>> ExtendedContext.logical_or(110, 1101) Decimal('1111') >>> ExtendedContext.logical_or(Decimal(110), 1101) Decimal('1111') >>> ExtendedContext.logical_or(110, Decimal(1101)) Decimal('1111') """ a = _convert_other(a, raiseit=True) return a.logical_or(b, context=self) def logical_xor(self, a, b): """Applies the logical operation 'xor' between each operand's digits. The operands must be both logical numbers. >>> ExtendedContext.logical_xor(Decimal('0'), Decimal('0')) Decimal('0') >>> ExtendedContext.logical_xor(Decimal('0'), Decimal('1')) Decimal('1') >>> ExtendedContext.logical_xor(Decimal('1'), Decimal('0')) Decimal('1') >>> ExtendedContext.logical_xor(Decimal('1'), Decimal('1')) Decimal('0') >>> ExtendedContext.logical_xor(Decimal('1100'), Decimal('1010')) Decimal('110') >>> ExtendedContext.logical_xor(Decimal('1111'), Decimal('10')) Decimal('1101') >>> ExtendedContext.logical_xor(110, 1101) Decimal('1011') >>> ExtendedContext.logical_xor(Decimal(110), 1101) Decimal('1011') >>> ExtendedContext.logical_xor(110, Decimal(1101)) Decimal('1011') """ a = _convert_other(a, raiseit=True) return a.logical_xor(b, context=self) def max(self, a, b): """max compares two values numerically and returns the maximum. If either operand is a NaN then the general rules apply. Otherwise, the operands are compared as though by the compare operation. If they are numerically equal then the left-hand operand is chosen as the result. Otherwise the maximum (closer to positive infinity) of the two operands is chosen as the result. >>> ExtendedContext.max(Decimal('3'), Decimal('2')) Decimal('3') >>> ExtendedContext.max(Decimal('-10'), Decimal('3')) Decimal('3') >>> ExtendedContext.max(Decimal('1.0'), Decimal('1')) Decimal('1') >>> ExtendedContext.max(Decimal('7'), Decimal('NaN')) Decimal('7') >>> ExtendedContext.max(1, 2) Decimal('2') >>> ExtendedContext.max(Decimal(1), 2) Decimal('2') >>> ExtendedContext.max(1, Decimal(2)) Decimal('2') """ a = _convert_other(a, raiseit=True) return a.max(b, context=self) def max_mag(self, a, b): """Compares the values numerically with their sign ignored. >>> ExtendedContext.max_mag(Decimal('7'), Decimal('NaN')) Decimal('7') >>> ExtendedContext.max_mag(Decimal('7'), Decimal('-10')) Decimal('-10') >>> ExtendedContext.max_mag(1, -2) Decimal('-2') >>> ExtendedContext.max_mag(Decimal(1), -2) Decimal('-2') >>> ExtendedContext.max_mag(1, Decimal(-2)) Decimal('-2') """ a = _convert_other(a, raiseit=True) return a.max_mag(b, context=self) def min(self, a, b): """min compares two values numerically and returns the minimum. If either operand is a NaN then the general rules apply. Otherwise, the operands are compared as though by the compare operation. If they are numerically equal then the left-hand operand is chosen as the result. Otherwise the minimum (closer to negative infinity) of the two operands is chosen as the result. >>> ExtendedContext.min(Decimal('3'), Decimal('2')) Decimal('2') >>> ExtendedContext.min(Decimal('-10'), Decimal('3')) Decimal('-10') >>> ExtendedContext.min(Decimal('1.0'), Decimal('1')) Decimal('1.0') >>> ExtendedContext.min(Decimal('7'), Decimal('NaN')) Decimal('7') >>> ExtendedContext.min(1, 2) Decimal('1') >>> ExtendedContext.min(Decimal(1), 2) Decimal('1') >>> ExtendedContext.min(1, Decimal(29)) Decimal('1') """ a = _convert_other(a, raiseit=True) return a.min(b, context=self) def min_mag(self, a, b): """Compares the values numerically with their sign ignored. >>> ExtendedContext.min_mag(Decimal('3'), Decimal('-2')) Decimal('-2') >>> ExtendedContext.min_mag(Decimal('-3'), Decimal('NaN')) Decimal('-3') >>> ExtendedContext.min_mag(1, -2) Decimal('1') >>> ExtendedContext.min_mag(Decimal(1), -2) Decimal('1') >>> ExtendedContext.min_mag(1, Decimal(-2)) Decimal('1') """ a = _convert_other(a, raiseit=True) return a.min_mag(b, context=self) def minus(self, a): """Minus corresponds to unary prefix minus in Python. The operation is evaluated using the same rules as subtract; the operation minus(a) is calculated as subtract('0', a) where the '0' has the same exponent as the operand. >>> ExtendedContext.minus(Decimal('1.3')) Decimal('-1.3') >>> ExtendedContext.minus(Decimal('-1.3')) Decimal('1.3') >>> ExtendedContext.minus(1) Decimal('-1') """ a = _convert_other(a, raiseit=True) return a.__neg__(context=self) def multiply(self, a, b): """multiply multiplies two operands. If either operand is a special value then the general rules apply. Otherwise, the operands are multiplied together ('long multiplication'), resulting in a number which may be as long as the sum of the lengths of the two operands. >>> ExtendedContext.multiply(Decimal('1.20'), Decimal('3')) Decimal('3.60') >>> ExtendedContext.multiply(Decimal('7'), Decimal('3')) Decimal('21') >>> ExtendedContext.multiply(Decimal('0.9'), Decimal('0.8')) Decimal('0.72') >>> ExtendedContext.multiply(Decimal('0.9'), Decimal('-0')) Decimal('-0.0') >>> ExtendedContext.multiply(Decimal('654321'), Decimal('654321')) Decimal('4.28135971E+11') >>> ExtendedContext.multiply(7, 7) Decimal('49') >>> ExtendedContext.multiply(Decimal(7), 7) Decimal('49') >>> ExtendedContext.multiply(7, Decimal(7)) Decimal('49') """ a = _convert_other(a, raiseit=True) r = a.__mul__(b, context=self) if r is NotImplemented: raise TypeError("Unable to convert %s to Decimal" % b) else: return r def next_minus(self, a): """Returns the largest representable number smaller than a. >>> c = ExtendedContext.copy() >>> c.Emin = -999 >>> c.Emax = 999 >>> ExtendedContext.next_minus(Decimal('1')) Decimal('0.999999999') >>> c.next_minus(Decimal('1E-1007')) Decimal('0E-1007') >>> ExtendedContext.next_minus(Decimal('-1.00000003')) Decimal('-1.00000004') >>> c.next_minus(Decimal('Infinity')) Decimal('9.99999999E+999') >>> c.next_minus(1) Decimal('0.999999999') """ a = _convert_other(a, raiseit=True) return a.next_minus(context=self) def next_plus(self, a): """Returns the smallest representable number larger than a. >>> c = ExtendedContext.copy() >>> c.Emin = -999 >>> c.Emax = 999 >>> ExtendedContext.next_plus(Decimal('1')) Decimal('1.00000001') >>> c.next_plus(Decimal('-1E-1007')) Decimal('-0E-1007') >>> ExtendedContext.next_plus(Decimal('-1.00000003')) Decimal('-1.00000002') >>> c.next_plus(Decimal('-Infinity')) Decimal('-9.99999999E+999') >>> c.next_plus(1) Decimal('1.00000001') """ a = _convert_other(a, raiseit=True) return a.next_plus(context=self) def next_toward(self, a, b): """Returns the number closest to a, in direction towards b. The result is the closest representable number from the first operand (but not the first operand) that is in the direction towards the second operand, unless the operands have the same value. >>> c = ExtendedContext.copy() >>> c.Emin = -999 >>> c.Emax = 999 >>> c.next_toward(Decimal('1'), Decimal('2')) Decimal('1.00000001') >>> c.next_toward(Decimal('-1E-1007'), Decimal('1')) Decimal('-0E-1007') >>> c.next_toward(Decimal('-1.00000003'), Decimal('0')) Decimal('-1.00000002') >>> c.next_toward(Decimal('1'), Decimal('0')) Decimal('0.999999999') >>> c.next_toward(Decimal('1E-1007'), Decimal('-100')) Decimal('0E-1007') >>> c.next_toward(Decimal('-1.00000003'), Decimal('-10')) Decimal('-1.00000004') >>> c.next_toward(Decimal('0.00'), Decimal('-0.0000')) Decimal('-0.00') >>> c.next_toward(0, 1) Decimal('1E-1007') >>> c.next_toward(Decimal(0), 1) Decimal('1E-1007') >>> c.next_toward(0, Decimal(1)) Decimal('1E-1007') """ a = _convert_other(a, raiseit=True) return a.next_toward(b, context=self) def normalize(self, a): """normalize reduces an operand to its simplest form. Essentially a plus operation with all trailing zeros removed from the result. >>> ExtendedContext.normalize(Decimal('2.1')) Decimal('2.1') >>> ExtendedContext.normalize(Decimal('-2.0')) Decimal('-2') >>> ExtendedContext.normalize(Decimal('1.200')) Decimal('1.2') >>> ExtendedContext.normalize(Decimal('-120')) Decimal('-1.2E+2') >>> ExtendedContext.normalize(Decimal('120.00')) Decimal('1.2E+2') >>> ExtendedContext.normalize(Decimal('0.00')) Decimal('0') >>> ExtendedContext.normalize(6) Decimal('6') """ a = _convert_other(a, raiseit=True) return a.normalize(context=self) def number_class(self, a): """Returns an indication of the class of the operand. The class is one of the following strings: -sNaN -NaN -Infinity -Normal -Subnormal -Zero +Zero +Subnormal +Normal +Infinity >>> c = Context(ExtendedContext) >>> c.Emin = -999 >>> c.Emax = 999 >>> c.number_class(Decimal('Infinity')) '+Infinity' >>> c.number_class(Decimal('1E-10')) '+Normal' >>> c.number_class(Decimal('2.50')) '+Normal' >>> c.number_class(Decimal('0.1E-999')) '+Subnormal' >>> c.number_class(Decimal('0')) '+Zero' >>> c.number_class(Decimal('-0')) '-Zero' >>> c.number_class(Decimal('-0.1E-999')) '-Subnormal' >>> c.number_class(Decimal('-1E-10')) '-Normal' >>> c.number_class(Decimal('-2.50')) '-Normal' >>> c.number_class(Decimal('-Infinity')) '-Infinity' >>> c.number_class(Decimal('NaN')) 'NaN' >>> c.number_class(Decimal('-NaN')) 'NaN' >>> c.number_class(Decimal('sNaN')) 'sNaN' >>> c.number_class(123) '+Normal' """ a = _convert_other(a, raiseit=True) return a.number_class(context=self) def plus(self, a): """Plus corresponds to unary prefix plus in Python. The operation is evaluated using the same rules as add; the operation plus(a) is calculated as add('0', a) where the '0' has the same exponent as the operand. >>> ExtendedContext.plus(Decimal('1.3')) Decimal('1.3') >>> ExtendedContext.plus(Decimal('-1.3')) Decimal('-1.3') >>> ExtendedContext.plus(-1) Decimal('-1') """ a = _convert_other(a, raiseit=True) return a.__pos__(context=self) def power(self, a, b, modulo=None): """Raises a to the power of b, to modulo if given. With two arguments, compute a**b. If a is negative then b must be integral. The result will be inexact unless b is integral and the result is finite and can be expressed exactly in 'precision' digits. With three arguments, compute (a**b) % modulo. For the three argument form, the following restrictions on the arguments hold: - all three arguments must be integral - b must be nonnegative - at least one of a or b must be nonzero - modulo must be nonzero and have at most 'precision' digits The result of pow(a, b, modulo) is identical to the result that would be obtained by computing (a**b) % modulo with unbounded precision, but is computed more efficiently. It is always exact. >>> c = ExtendedContext.copy() >>> c.Emin = -999 >>> c.Emax = 999 >>> c.power(Decimal('2'), Decimal('3')) Decimal('8') >>> c.power(Decimal('-2'), Decimal('3')) Decimal('-8') >>> c.power(Decimal('2'), Decimal('-3')) Decimal('0.125') >>> c.power(Decimal('1.7'), Decimal('8')) Decimal('69.7575744') >>> c.power(Decimal('10'), Decimal('0.301029996')) Decimal('2.00000000') >>> c.power(Decimal('Infinity'), Decimal('-1')) Decimal('0') >>> c.power(Decimal('Infinity'), Decimal('0')) Decimal('1') >>> c.power(Decimal('Infinity'), Decimal('1')) Decimal('Infinity') >>> c.power(Decimal('-Infinity'), Decimal('-1')) Decimal('-0') >>> c.power(Decimal('-Infinity'), Decimal('0')) Decimal('1') >>> c.power(Decimal('-Infinity'), Decimal('1')) Decimal('-Infinity') >>> c.power(Decimal('-Infinity'), Decimal('2')) Decimal('Infinity') >>> c.power(Decimal('0'), Decimal('0')) Decimal('NaN') >>> c.power(Decimal('3'), Decimal('7'), Decimal('16')) Decimal('11') >>> c.power(Decimal('-3'), Decimal('7'), Decimal('16')) Decimal('-11') >>> c.power(Decimal('-3'), Decimal('8'), Decimal('16')) Decimal('1') >>> c.power(Decimal('3'), Decimal('7'), Decimal('-16')) Decimal('11') >>> c.power(Decimal('23E12345'), Decimal('67E189'), Decimal('123456789')) Decimal('11729830') >>> c.power(Decimal('-0'), Decimal('17'), Decimal('1729')) Decimal('-0') >>> c.power(Decimal('-23'), Decimal('0'), Decimal('65537')) Decimal('1') >>> ExtendedContext.power(7, 7) Decimal('823543') >>> ExtendedContext.power(Decimal(7), 7) Decimal('823543') >>> ExtendedContext.power(7, Decimal(7), 2) Decimal('1') """ a = _convert_other(a, raiseit=True) r = a.__pow__(b, modulo, context=self) if r is NotImplemented: raise TypeError("Unable to convert %s to Decimal" % b) else: return r def quantize(self, a, b): """Returns a value equal to 'a' (rounded), having the exponent of 'b'. The coefficient of the result is derived from that of the left-hand operand. It may be rounded using the current rounding setting (if the exponent is being increased), multiplied by a positive power of ten (if the exponent is being decreased), or is unchanged (if the exponent is already equal to that of the right-hand operand). Unlike other operations, if the length of the coefficient after the quantize operation would be greater than precision then an Invalid operation condition is raised. This guarantees that, unless there is an error condition, the exponent of the result of a quantize is always equal to that of the right-hand operand. Also unlike other operations, quantize will never raise Underflow, even if the result is subnormal and inexact. >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('0.001')) Decimal('2.170') >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('0.01')) Decimal('2.17') >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('0.1')) Decimal('2.2') >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('1e+0')) Decimal('2') >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('1e+1')) Decimal('0E+1') >>> ExtendedContext.quantize(Decimal('-Inf'), Decimal('Infinity')) Decimal('-Infinity') >>> ExtendedContext.quantize(Decimal('2'), Decimal('Infinity')) Decimal('NaN') >>> ExtendedContext.quantize(Decimal('-0.1'), Decimal('1')) Decimal('-0') >>> ExtendedContext.quantize(Decimal('-0'), Decimal('1e+5')) Decimal('-0E+5') >>> ExtendedContext.quantize(Decimal('+35236450.6'), Decimal('1e-2')) Decimal('NaN') >>> ExtendedContext.quantize(Decimal('-35236450.6'), Decimal('1e-2')) Decimal('NaN') >>> ExtendedContext.quantize(Decimal('217'), Decimal('1e-1')) Decimal('217.0') >>> ExtendedContext.quantize(Decimal('217'), Decimal('1e-0')) Decimal('217') >>> ExtendedContext.quantize(Decimal('217'), Decimal('1e+1')) Decimal('2.2E+2') >>> ExtendedContext.quantize(Decimal('217'), Decimal('1e+2')) Decimal('2E+2') >>> ExtendedContext.quantize(1, 2) Decimal('1') >>> ExtendedContext.quantize(Decimal(1), 2) Decimal('1') >>> ExtendedContext.quantize(1, Decimal(2)) Decimal('1') """ a = _convert_other(a, raiseit=True) return a.quantize(b, context=self) def radix(self): """Just returns 10, as this is Decimal, :) >>> ExtendedContext.radix() Decimal('10') """ return Decimal(10) def remainder(self, a, b): """Returns the remainder from integer division. The result is the residue of the dividend after the operation of calculating integer division as described for divide-integer, rounded to precision digits if necessary. The sign of the result, if non-zero, is the same as that of the original dividend. This operation will fail under the same conditions as integer division (that is, if integer division on the same two operands would fail, the remainder cannot be calculated). >>> ExtendedContext.remainder(Decimal('2.1'), Decimal('3')) Decimal('2.1') >>> ExtendedContext.remainder(Decimal('10'), Decimal('3')) Decimal('1') >>> ExtendedContext.remainder(Decimal('-10'), Decimal('3')) Decimal('-1') >>> ExtendedContext.remainder(Decimal('10.2'), Decimal('1')) Decimal('0.2') >>> ExtendedContext.remainder(Decimal('10'), Decimal('0.3')) Decimal('0.1') >>> ExtendedContext.remainder(Decimal('3.6'), Decimal('1.3')) Decimal('1.0') >>> ExtendedContext.remainder(22, 6) Decimal('4') >>> ExtendedContext.remainder(Decimal(22), 6) Decimal('4') >>> ExtendedContext.remainder(22, Decimal(6)) Decimal('4') """ a = _convert_other(a, raiseit=True) r = a.__mod__(b, context=self) if r is NotImplemented: raise TypeError("Unable to convert %s to Decimal" % b) else: return r def remainder_near(self, a, b): """Returns to be "a - b * n", where n is the integer nearest the exact value of "x / b" (if two integers are equally near then the even one is chosen). If the result is equal to 0 then its sign will be the sign of a. This operation will fail under the same conditions as integer division (that is, if integer division on the same two operands would fail, the remainder cannot be calculated). >>> ExtendedContext.remainder_near(Decimal('2.1'), Decimal('3')) Decimal('-0.9') >>> ExtendedContext.remainder_near(Decimal('10'), Decimal('6')) Decimal('-2') >>> ExtendedContext.remainder_near(Decimal('10'), Decimal('3')) Decimal('1') >>> ExtendedContext.remainder_near(Decimal('-10'), Decimal('3')) Decimal('-1') >>> ExtendedContext.remainder_near(Decimal('10.2'), Decimal('1')) Decimal('0.2') >>> ExtendedContext.remainder_near(Decimal('10'), Decimal('0.3')) Decimal('0.1') >>> ExtendedContext.remainder_near(Decimal('3.6'), Decimal('1.3')) Decimal('-0.3') >>> ExtendedContext.remainder_near(3, 11) Decimal('3') >>> ExtendedContext.remainder_near(Decimal(3), 11) Decimal('3') >>> ExtendedContext.remainder_near(3, Decimal(11)) Decimal('3') """ a = _convert_other(a, raiseit=True) return a.remainder_near(b, context=self) def rotate(self, a, b): """Returns a rotated copy of a, b times. The coefficient of the result is a rotated copy of the digits in the coefficient of the first operand. The number of places of rotation is taken from the absolute value of the second operand, with the rotation being to the left if the second operand is positive or to the right otherwise. >>> ExtendedContext.rotate(Decimal('34'), Decimal('8')) Decimal('400000003') >>> ExtendedContext.rotate(Decimal('12'), Decimal('9')) Decimal('12') >>> ExtendedContext.rotate(Decimal('123456789'), Decimal('-2')) Decimal('891234567') >>> ExtendedContext.rotate(Decimal('123456789'), Decimal('0')) Decimal('123456789') >>> ExtendedContext.rotate(Decimal('123456789'), Decimal('+2')) Decimal('345678912') >>> ExtendedContext.rotate(1333333, 1) Decimal('13333330') >>> ExtendedContext.rotate(Decimal(1333333), 1) Decimal('13333330') >>> ExtendedContext.rotate(1333333, Decimal(1)) Decimal('13333330') """ a = _convert_other(a, raiseit=True) return a.rotate(b, context=self) def same_quantum(self, a, b): """Returns True if the two operands have the same exponent. The result is never affected by either the sign or the coefficient of either operand. >>> ExtendedContext.same_quantum(Decimal('2.17'), Decimal('0.001')) False >>> ExtendedContext.same_quantum(Decimal('2.17'), Decimal('0.01')) True >>> ExtendedContext.same_quantum(Decimal('2.17'), Decimal('1')) False >>> ExtendedContext.same_quantum(Decimal('Inf'), Decimal('-Inf')) True >>> ExtendedContext.same_quantum(10000, -1) True >>> ExtendedContext.same_quantum(Decimal(10000), -1) True >>> ExtendedContext.same_quantum(10000, Decimal(-1)) True """ a = _convert_other(a, raiseit=True) return a.same_quantum(b) def scaleb (self, a, b): """Returns the first operand after adding the second value its exp. >>> ExtendedContext.scaleb(Decimal('7.50'), Decimal('-2')) Decimal('0.0750') >>> ExtendedContext.scaleb(Decimal('7.50'), Decimal('0')) Decimal('7.50') >>> ExtendedContext.scaleb(Decimal('7.50'), Decimal('3')) Decimal('7.50E+3') >>> ExtendedContext.scaleb(1, 4) Decimal('1E+4') >>> ExtendedContext.scaleb(Decimal(1), 4) Decimal('1E+4') >>> ExtendedContext.scaleb(1, Decimal(4)) Decimal('1E+4') """ a = _convert_other(a, raiseit=True) return a.scaleb(b, context=self) def shift(self, a, b): """Returns a shifted copy of a, b times. The coefficient of the result is a shifted copy of the digits in the coefficient of the first operand. The number of places to shift is taken from the absolute value of the second operand, with the shift being to the left if the second operand is positive or to the right otherwise. Digits shifted into the coefficient are zeros. >>> ExtendedContext.shift(Decimal('34'), Decimal('8')) Decimal('400000000') >>> ExtendedContext.shift(Decimal('12'), Decimal('9')) Decimal('0') >>> ExtendedContext.shift(Decimal('123456789'), Decimal('-2')) Decimal('1234567') >>> ExtendedContext.shift(Decimal('123456789'), Decimal('0')) Decimal('123456789') >>> ExtendedContext.shift(Decimal('123456789'), Decimal('+2')) Decimal('345678900') >>> ExtendedContext.shift(88888888, 2) Decimal('888888800') >>> ExtendedContext.shift(Decimal(88888888), 2) Decimal('888888800') >>> ExtendedContext.shift(88888888, Decimal(2)) Decimal('888888800') """ a = _convert_other(a, raiseit=True) return a.shift(b, context=self) def sqrt(self, a): """Square root of a non-negative number to context precision. If the result must be inexact, it is rounded using the round-half-even algorithm. >>> ExtendedContext.sqrt(Decimal('0')) Decimal('0') >>> ExtendedContext.sqrt(Decimal('-0')) Decimal('-0') >>> ExtendedContext.sqrt(Decimal('0.39')) Decimal('0.624499800') >>> ExtendedContext.sqrt(Decimal('100')) Decimal('10') >>> ExtendedContext.sqrt(Decimal('1')) Decimal('1') >>> ExtendedContext.sqrt(Decimal('1.0')) Decimal('1.0') >>> ExtendedContext.sqrt(Decimal('1.00')) Decimal('1.0') >>> ExtendedContext.sqrt(Decimal('7')) Decimal('2.64575131') >>> ExtendedContext.sqrt(Decimal('10')) Decimal('3.16227766') >>> ExtendedContext.sqrt(2) Decimal('1.41421356') >>> ExtendedContext.prec 9 """ a = _convert_other(a, raiseit=True) return a.sqrt(context=self) def subtract(self, a, b): """Return the difference between the two operands. >>> ExtendedContext.subtract(Decimal('1.3'), Decimal('1.07')) Decimal('0.23') >>> ExtendedContext.subtract(Decimal('1.3'), Decimal('1.30')) Decimal('0.00') >>> ExtendedContext.subtract(Decimal('1.3'), Decimal('2.07')) Decimal('-0.77') >>> ExtendedContext.subtract(8, 5) Decimal('3') >>> ExtendedContext.subtract(Decimal(8), 5) Decimal('3') >>> ExtendedContext.subtract(8, Decimal(5)) Decimal('3') """ a = _convert_other(a, raiseit=True) r = a.__sub__(b, context=self) if r is NotImplemented: raise TypeError("Unable to convert %s to Decimal" % b) else: return r def to_eng_string(self, a): """Converts a number to a string, using scientific notation. The operation is not affected by the context. """ a = _convert_other(a, raiseit=True) return a.to_eng_string(context=self) def to_sci_string(self, a): """Converts a number to a string, using scientific notation. The operation is not affected by the context. """ a = _convert_other(a, raiseit=True) return a.__str__(context=self) def to_integral_exact(self, a): """Rounds to an integer. When the operand has a negative exponent, the result is the same as using the quantize() operation using the given operand as the left-hand-operand, 1E+0 as the right-hand-operand, and the precision of the operand as the precision setting; Inexact and Rounded flags are allowed in this operation. The rounding mode is taken from the context. >>> ExtendedContext.to_integral_exact(Decimal('2.1')) Decimal('2') >>> ExtendedContext.to_integral_exact(Decimal('100')) Decimal('100') >>> ExtendedContext.to_integral_exact(Decimal('100.0')) Decimal('100') >>> ExtendedContext.to_integral_exact(Decimal('101.5')) Decimal('102') >>> ExtendedContext.to_integral_exact(Decimal('-101.5')) Decimal('-102') >>> ExtendedContext.to_integral_exact(Decimal('10E+5')) Decimal('1.0E+6') >>> ExtendedContext.to_integral_exact(Decimal('7.89E+77')) Decimal('7.89E+77') >>> ExtendedContext.to_integral_exact(Decimal('-Inf')) Decimal('-Infinity') """ a = _convert_other(a, raiseit=True) return a.to_integral_exact(context=self) def to_integral_value(self, a): """Rounds to an integer. When the operand has a negative exponent, the result is the same as using the quantize() operation using the given operand as the left-hand-operand, 1E+0 as the right-hand-operand, and the precision of the operand as the precision setting, except that no flags will be set. The rounding mode is taken from the context. >>> ExtendedContext.to_integral_value(Decimal('2.1')) Decimal('2') >>> ExtendedContext.to_integral_value(Decimal('100')) Decimal('100') >>> ExtendedContext.to_integral_value(Decimal('100.0')) Decimal('100') >>> ExtendedContext.to_integral_value(Decimal('101.5')) Decimal('102') >>> ExtendedContext.to_integral_value(Decimal('-101.5')) Decimal('-102') >>> ExtendedContext.to_integral_value(Decimal('10E+5')) Decimal('1.0E+6') >>> ExtendedContext.to_integral_value(Decimal('7.89E+77')) Decimal('7.89E+77') >>> ExtendedContext.to_integral_value(Decimal('-Inf')) Decimal('-Infinity') """ a = _convert_other(a, raiseit=True) return a.to_integral_value(context=self) # the method name changed, but we provide also the old one, for compatibility to_integral = to_integral_value class _WorkRep(object): __slots__ = ('sign','int','exp') # sign: 0 or 1 # int: int or long # exp: None, int, or string def __init__(self, value=None): if value is None: self.sign = None self.int = 0 self.exp = None elif isinstance(value, Decimal): self.sign = value._sign self.int = int(value._int) self.exp = value._exp else: # assert isinstance(value, tuple) self.sign = value[0] self.int = value[1] self.exp = value[2] def __repr__(self): return "(%r, %r, %r)" % (self.sign, self.int, self.exp) __str__ = __repr__ def _normalize(op1, op2, prec = 0): """Normalizes op1, op2 to have the same exp and length of coefficient. Done during addition. """ if op1.exp < op2.exp: tmp = op2 other = op1 else: tmp = op1 other = op2 # Let exp = min(tmp.exp - 1, tmp.adjusted() - precision - 1). # Then adding 10**exp to tmp has the same effect (after rounding) # as adding any positive quantity smaller than 10**exp; similarly # for subtraction. So if other is smaller than 10**exp we replace # it with 10**exp. This avoids tmp.exp - other.exp getting too large. tmp_len = len(str(tmp.int)) other_len = len(str(other.int)) exp = tmp.exp + min(-1, tmp_len - prec - 2) if other_len + other.exp - 1 < exp: other.int = 1 other.exp = exp tmp.int *= 10 ** (tmp.exp - other.exp) tmp.exp = other.exp return op1, op2 ##### Integer arithmetic functions used by ln, log10, exp and __pow__ ##### # This function from Tim Peters was taken from here: # http://mail.python.org/pipermail/python-list/1999-July/007758.html # The correction being in the function definition is for speed, and # the whole function is not resolved with math.log because of avoiding # the use of floats. def _nbits(n, correction = { '0': 4, '1': 3, '2': 2, '3': 2, '4': 1, '5': 1, '6': 1, '7': 1, '8': 0, '9': 0, 'a': 0, 'b': 0, 'c': 0, 'd': 0, 'e': 0, 'f': 0}): """Number of bits in binary representation of the positive integer n, or 0 if n == 0. """ if n < 0: raise ValueError("The argument to _nbits should be nonnegative.") hex_n = "%x" % n return 4*len(hex_n) - correction[hex_n[0]] def _decimal_lshift_exact(n, e): """ Given integers n and e, return n * 10**e if it's an integer, else None. The computation is designed to avoid computing large powers of 10 unnecessarily. >>> _decimal_lshift_exact(3, 4) 30000 >>> _decimal_lshift_exact(300, -999999999) # returns None """ if n == 0: return 0 elif e >= 0: return n * 10**e else: # val_n = largest power of 10 dividing n. str_n = str(abs(n)) val_n = len(str_n) - len(str_n.rstrip('0')) return None if val_n < -e else n // 10**-e def _sqrt_nearest(n, a): """Closest integer to the square root of the positive integer n. a is an initial approximation to the square root. Any positive integer will do for a, but the closer a is to the square root of n the faster convergence will be. """ if n <= 0 or a <= 0: raise ValueError("Both arguments to _sqrt_nearest should be positive.") b=0 while a != b: b, a = a, a--n//a>>1 return a def _rshift_nearest(x, shift): """Given an integer x and a nonnegative integer shift, return closest integer to x / 2**shift; use round-to-even in case of a tie. """ b, q = 1L << shift, x >> shift return q + (2*(x & (b-1)) + (q&1) > b) def _div_nearest(a, b): """Closest integer to a/b, a and b positive integers; rounds to even in the case of a tie. """ q, r = divmod(a, b) return q + (2*r + (q&1) > b) def _ilog(x, M, L = 8): """Integer approximation to M*log(x/M), with absolute error boundable in terms only of x/M. Given positive integers x and M, return an integer approximation to M * log(x/M). For L = 8 and 0.1 <= x/M <= 10 the difference between the approximation and the exact result is at most 22. For L = 8 and 1.0 <= x/M <= 10.0 the difference is at most 15. In both cases these are upper bounds on the error; it will usually be much smaller.""" # The basic algorithm is the following: let log1p be the function # log1p(x) = log(1+x). Then log(x/M) = log1p((x-M)/M). We use # the reduction # # log1p(y) = 2*log1p(y/(1+sqrt(1+y))) # # repeatedly until the argument to log1p is small (< 2**-L in # absolute value). For small y we can use the Taylor series # expansion # # log1p(y) ~ y - y**2/2 + y**3/3 - ... - (-y)**T/T # # truncating at T such that y**T is small enough. The whole # computation is carried out in a form of fixed-point arithmetic, # with a real number z being represented by an integer # approximation to z*M. To avoid loss of precision, the y below # is actually an integer approximation to 2**R*y*M, where R is the # number of reductions performed so far. y = x-M # argument reduction; R = number of reductions performed R = 0 while (R <= L and long(abs(y)) << L-R >= M or R > L and abs(y) >> R-L >= M): y = _div_nearest(long(M*y) << 1, M + _sqrt_nearest(M*(M+_rshift_nearest(y, R)), M)) R += 1 # Taylor series with T terms T = -int(-10*len(str(M))//(3*L)) yshift = _rshift_nearest(y, R) w = _div_nearest(M, T) for k in xrange(T-1, 0, -1): w = _div_nearest(M, k) - _div_nearest(yshift*w, M) return _div_nearest(w*y, M) def _dlog10(c, e, p): """Given integers c, e and p with c > 0, p >= 0, compute an integer approximation to 10**p * log10(c*10**e), with an absolute error of at most 1. Assumes that c*10**e is not exactly 1.""" # increase precision by 2; compensate for this by dividing # final result by 100 p += 2 # write c*10**e as d*10**f with either: # f >= 0 and 1 <= d <= 10, or # f <= 0 and 0.1 <= d <= 1. # Thus for c*10**e close to 1, f = 0 l = len(str(c)) f = e+l - (e+l >= 1) if p > 0: M = 10**p k = e+p-f if k >= 0: c *= 10**k else: c = _div_nearest(c, 10**-k) log_d = _ilog(c, M) # error < 5 + 22 = 27 log_10 = _log10_digits(p) # error < 1 log_d = _div_nearest(log_d*M, log_10) log_tenpower = f*M # exact else: log_d = 0 # error < 2.31 log_tenpower = _div_nearest(f, 10**-p) # error < 0.5 return _div_nearest(log_tenpower+log_d, 100) def _dlog(c, e, p): """Given integers c, e and p with c > 0, compute an integer approximation to 10**p * log(c*10**e), with an absolute error of at most 1. Assumes that c*10**e is not exactly 1.""" # Increase precision by 2. The precision increase is compensated # for at the end with a division by 100. p += 2 # rewrite c*10**e as d*10**f with either f >= 0 and 1 <= d <= 10, # or f <= 0 and 0.1 <= d <= 1. Then we can compute 10**p * log(c*10**e) # as 10**p * log(d) + 10**p*f * log(10). l = len(str(c)) f = e+l - (e+l >= 1) # compute approximation to 10**p*log(d), with error < 27 if p > 0: k = e+p-f if k >= 0: c *= 10**k else: c = _div_nearest(c, 10**-k) # error of <= 0.5 in c # _ilog magnifies existing error in c by a factor of at most 10 log_d = _ilog(c, 10**p) # error < 5 + 22 = 27 else: # p <= 0: just approximate the whole thing by 0; error < 2.31 log_d = 0 # compute approximation to f*10**p*log(10), with error < 11. if f: extra = len(str(abs(f)))-1 if p + extra >= 0: # error in f * _log10_digits(p+extra) < |f| * 1 = |f| # after division, error < |f|/10**extra + 0.5 < 10 + 0.5 < 11 f_log_ten = _div_nearest(f*_log10_digits(p+extra), 10**extra) else: f_log_ten = 0 else: f_log_ten = 0 # error in sum < 11+27 = 38; error after division < 0.38 + 0.5 < 1 return _div_nearest(f_log_ten + log_d, 100) class _Log10Memoize(object): """Class to compute, store, and allow retrieval of, digits of the constant log(10) = 2.302585.... This constant is needed by Decimal.ln, Decimal.log10, Decimal.exp and Decimal.__pow__.""" def __init__(self): self.digits = "23025850929940456840179914546843642076011014886" def getdigits(self, p): """Given an integer p >= 0, return floor(10**p)*log(10). For example, self.getdigits(3) returns 2302. """ # digits are stored as a string, for quick conversion to # integer in the case that we've already computed enough # digits; the stored digits should always be correct # (truncated, not rounded to nearest). if p < 0: raise ValueError("p should be nonnegative") if p >= len(self.digits): # compute p+3, p+6, p+9, ... digits; continue until at # least one of the extra digits is nonzero extra = 3 while True: # compute p+extra digits, correct to within 1ulp M = 10**(p+extra+2) digits = str(_div_nearest(_ilog(10*M, M), 100)) if digits[-extra:] != '0'*extra: break extra += 3 # keep all reliable digits so far; remove trailing zeros # and next nonzero digit self.digits = digits.rstrip('0')[:-1] return int(self.digits[:p+1]) _log10_digits = _Log10Memoize().getdigits def _iexp(x, M, L=8): """Given integers x and M, M > 0, such that x/M is small in absolute value, compute an integer approximation to M*exp(x/M). For 0 <= x/M <= 2.4, the absolute error in the result is bounded by 60 (and is usually much smaller).""" # Algorithm: to compute exp(z) for a real number z, first divide z # by a suitable power R of 2 so that |z/2**R| < 2**-L. Then # compute expm1(z/2**R) = exp(z/2**R) - 1 using the usual Taylor # series # # expm1(x) = x + x**2/2! + x**3/3! + ... # # Now use the identity # # expm1(2x) = expm1(x)*(expm1(x)+2) # # R times to compute the sequence expm1(z/2**R), # expm1(z/2**(R-1)), ... , exp(z/2), exp(z). # Find R such that x/2**R/M <= 2**-L R = _nbits((long(x)<<L)//M) # Taylor series. (2**L)**T > M T = -int(-10*len(str(M))//(3*L)) y = _div_nearest(x, T) Mshift = long(M)<<R for i in xrange(T-1, 0, -1): y = _div_nearest(x*(Mshift + y), Mshift * i) # Expansion for k in xrange(R-1, -1, -1): Mshift = long(M)<<(k+2) y = _div_nearest(y*(y+Mshift), Mshift) return M+y def _dexp(c, e, p): """Compute an approximation to exp(c*10**e), with p decimal places of precision. Returns integers d, f such that: 10**(p-1) <= d <= 10**p, and (d-1)*10**f < exp(c*10**e) < (d+1)*10**f In other words, d*10**f is an approximation to exp(c*10**e) with p digits of precision, and with an error in d of at most 1. This is almost, but not quite, the same as the error being < 1ulp: when d = 10**(p-1) the error could be up to 10 ulp.""" # we'll call iexp with M = 10**(p+2), giving p+3 digits of precision p += 2 # compute log(10) with extra precision = adjusted exponent of c*10**e extra = max(0, e + len(str(c)) - 1) q = p + extra # compute quotient c*10**e/(log(10)) = c*10**(e+q)/(log(10)*10**q), # rounding down shift = e+q if shift >= 0: cshift = c*10**shift else: cshift = c//10**-shift quot, rem = divmod(cshift, _log10_digits(q)) # reduce remainder back to original precision rem = _div_nearest(rem, 10**extra) # error in result of _iexp < 120; error after division < 0.62 return _div_nearest(_iexp(rem, 10**p), 1000), quot - p + 3 def _dpower(xc, xe, yc, ye, p): """Given integers xc, xe, yc and ye representing Decimals x = xc*10**xe and y = yc*10**ye, compute x**y. Returns a pair of integers (c, e) such that: 10**(p-1) <= c <= 10**p, and (c-1)*10**e < x**y < (c+1)*10**e in other words, c*10**e is an approximation to x**y with p digits of precision, and with an error in c of at most 1. (This is almost, but not quite, the same as the error being < 1ulp: when c == 10**(p-1) we can only guarantee error < 10ulp.) We assume that: x is positive and not equal to 1, and y is nonzero. """ # Find b such that 10**(b-1) <= |y| <= 10**b b = len(str(abs(yc))) + ye # log(x) = lxc*10**(-p-b-1), to p+b+1 places after the decimal point lxc = _dlog(xc, xe, p+b+1) # compute product y*log(x) = yc*lxc*10**(-p-b-1+ye) = pc*10**(-p-1) shift = ye-b if shift >= 0: pc = lxc*yc*10**shift else: pc = _div_nearest(lxc*yc, 10**-shift) if pc == 0: # we prefer a result that isn't exactly 1; this makes it # easier to compute a correctly rounded result in __pow__ if ((len(str(xc)) + xe >= 1) == (yc > 0)): # if x**y > 1: coeff, exp = 10**(p-1)+1, 1-p else: coeff, exp = 10**p-1, -p else: coeff, exp = _dexp(pc, -(p+1), p+1) coeff = _div_nearest(coeff, 10) exp += 1 return coeff, exp def _log10_lb(c, correction = { '1': 100, '2': 70, '3': 53, '4': 40, '5': 31, '6': 23, '7': 16, '8': 10, '9': 5}): """Compute a lower bound for 100*log10(c) for a positive integer c.""" if c <= 0: raise ValueError("The argument to _log10_lb should be nonnegative.") str_c = str(c) return 100*len(str_c) - correction[str_c[0]] ##### Helper Functions #################################################### def _convert_other(other, raiseit=False, allow_float=False): """Convert other to Decimal. Verifies that it's ok to use in an implicit construction. If allow_float is true, allow conversion from float; this is used in the comparison methods (__eq__ and friends). """ if isinstance(other, Decimal): return other if isinstance(other, (int, long)): return Decimal(other) if allow_float and isinstance(other, float): return Decimal.from_float(other) if raiseit: raise TypeError("Unable to convert %s to Decimal" % other) return NotImplemented ##### Setup Specific Contexts ############################################ # The default context prototype used by Context() # Is mutable, so that new contexts can have different default values DefaultContext = Context( prec=28, rounding=ROUND_HALF_EVEN, traps=[DivisionByZero, Overflow, InvalidOperation], flags=[], Emax=999999999, Emin=-999999999, capitals=1 ) # Pre-made alternate contexts offered by the specification # Don't change these; the user should be able to select these # contexts and be able to reproduce results from other implementations # of the spec. BasicContext = Context( prec=9, rounding=ROUND_HALF_UP, traps=[DivisionByZero, Overflow, InvalidOperation, Clamped, Underflow], flags=[], ) ExtendedContext = Context( prec=9, rounding=ROUND_HALF_EVEN, traps=[], flags=[], ) ##### crud for parsing strings ############################################# # # Regular expression used for parsing numeric strings. Additional # comments: # # 1. Uncomment the two '\s*' lines to allow leading and/or trailing # whitespace. But note that the specification disallows whitespace in # a numeric string. # # 2. For finite numbers (not infinities and NaNs) the body of the # number between the optional sign and the optional exponent must have # at least one decimal digit, possibly after the decimal point. The # lookahead expression '(?=\d|\.\d)' checks this. import re _parser = re.compile(r""" # A numeric string consists of: # \s* (?P<sign>[-+])? # an optional sign, followed by either... ( (?=\d|\.\d) # ...a number (with at least one digit) (?P<int>\d*) # having a (possibly empty) integer part (\.(?P<frac>\d*))? # followed by an optional fractional part (E(?P<exp>[-+]?\d+))? # followed by an optional exponent, or... | Inf(inity)? # ...an infinity, or... | (?P<signal>s)? # ...an (optionally signaling) NaN # NaN (?P<diag>\d*) # with (possibly empty) diagnostic info. ) # \s* \Z """, re.VERBOSE | re.IGNORECASE | re.UNICODE).match _all_zeros = re.compile('0*$').match _exact_half = re.compile('50*$').match ##### PEP3101 support functions ############################################## # The functions in this section have little to do with the Decimal # class, and could potentially be reused or adapted for other pure # Python numeric classes that want to implement __format__ # # A format specifier for Decimal looks like: # # [[fill]align][sign][0][minimumwidth][,][.precision][type] _parse_format_specifier_regex = re.compile(r"""\A (?: (?P<fill>.)? (?P<align>[<>=^]) )? (?P<sign>[-+ ])? (?P<zeropad>0)? (?P<minimumwidth>(?!0)\d+)? (?P<thousands_sep>,)? (?:\.(?P<precision>0|(?!0)\d+))? (?P<type>[eEfFgGn%])? \Z """, re.VERBOSE) del re # The locale module is only needed for the 'n' format specifier. The # rest of the PEP 3101 code functions quite happily without it, so we # don't care too much if locale isn't present. try: import locale as _locale except ImportError: pass def _parse_format_specifier(format_spec, _localeconv=None): """Parse and validate a format specifier. Turns a standard numeric format specifier into a dict, with the following entries: fill: fill character to pad field to minimum width align: alignment type, either '<', '>', '=' or '^' sign: either '+', '-' or ' ' minimumwidth: nonnegative integer giving minimum width zeropad: boolean, indicating whether to pad with zeros thousands_sep: string to use as thousands separator, or '' grouping: grouping for thousands separators, in format used by localeconv decimal_point: string to use for decimal point precision: nonnegative integer giving precision, or None type: one of the characters 'eEfFgG%', or None unicode: boolean (always True for Python 3.x) """ m = _parse_format_specifier_regex.match(format_spec) if m is None: raise ValueError("Invalid format specifier: " + format_spec) # get the dictionary format_dict = m.groupdict() # zeropad; defaults for fill and alignment. If zero padding # is requested, the fill and align fields should be absent. fill = format_dict['fill'] align = format_dict['align'] format_dict['zeropad'] = (format_dict['zeropad'] is not None) if format_dict['zeropad']: if fill is not None: raise ValueError("Fill character conflicts with '0'" " in format specifier: " + format_spec) if align is not None: raise ValueError("Alignment conflicts with '0' in " "format specifier: " + format_spec) format_dict['fill'] = fill or ' ' # PEP 3101 originally specified that the default alignment should # be left; it was later agreed that right-aligned makes more sense # for numeric types. See http://bugs.python.org/issue6857. format_dict['align'] = align or '>' # default sign handling: '-' for negative, '' for positive if format_dict['sign'] is None: format_dict['sign'] = '-' # minimumwidth defaults to 0; precision remains None if not given format_dict['minimumwidth'] = int(format_dict['minimumwidth'] or '0') if format_dict['precision'] is not None: format_dict['precision'] = int(format_dict['precision']) # if format type is 'g' or 'G' then a precision of 0 makes little # sense; convert it to 1. Same if format type is unspecified. if format_dict['precision'] == 0: if format_dict['type'] is None or format_dict['type'] in 'gG': format_dict['precision'] = 1 # determine thousands separator, grouping, and decimal separator, and # add appropriate entries to format_dict if format_dict['type'] == 'n': # apart from separators, 'n' behaves just like 'g' format_dict['type'] = 'g' if _localeconv is None: _localeconv = _locale.localeconv() if format_dict['thousands_sep'] is not None: raise ValueError("Explicit thousands separator conflicts with " "'n' type in format specifier: " + format_spec) format_dict['thousands_sep'] = _localeconv['thousands_sep'] format_dict['grouping'] = _localeconv['grouping'] format_dict['decimal_point'] = _localeconv['decimal_point'] else: if format_dict['thousands_sep'] is None: format_dict['thousands_sep'] = '' format_dict['grouping'] = [3, 0] format_dict['decimal_point'] = '.' # record whether return type should be str or unicode try: format_dict['unicode'] = isinstance(format_spec, unicode) except NameError: format_dict['unicode'] = False return format_dict def _format_align(sign, body, spec): """Given an unpadded, non-aligned numeric string 'body' and sign string 'sign', add padding and alignment conforming to the given format specifier dictionary 'spec' (as produced by parse_format_specifier). Also converts result to unicode if necessary. """ # how much extra space do we have to play with? minimumwidth = spec['minimumwidth'] fill = spec['fill'] padding = fill*(minimumwidth - len(sign) - len(body)) align = spec['align'] if align == '<': result = sign + body + padding elif align == '>': result = padding + sign + body elif align == '=': result = sign + padding + body elif align == '^': half = len(padding)//2 result = padding[:half] + sign + body + padding[half:] else: raise ValueError('Unrecognised alignment field') # make sure that result is unicode if necessary if spec['unicode']: result = unicode(result) return result def _group_lengths(grouping): """Convert a localeconv-style grouping into a (possibly infinite) iterable of integers representing group lengths. """ # The result from localeconv()['grouping'], and the input to this # function, should be a list of integers in one of the # following three forms: # # (1) an empty list, or # (2) nonempty list of positive integers + [0] # (3) list of positive integers + [locale.CHAR_MAX], or from itertools import chain, repeat if not grouping: return [] elif grouping[-1] == 0 and len(grouping) >= 2: return chain(grouping[:-1], repeat(grouping[-2])) elif grouping[-1] == _locale.CHAR_MAX: return grouping[:-1] else: raise ValueError('unrecognised format for grouping') def _insert_thousands_sep(digits, spec, min_width=1): """Insert thousands separators into a digit string. spec is a dictionary whose keys should include 'thousands_sep' and 'grouping'; typically it's the result of parsing the format specifier using _parse_format_specifier. The min_width keyword argument gives the minimum length of the result, which will be padded on the left with zeros if necessary. If necessary, the zero padding adds an extra '0' on the left to avoid a leading thousands separator. For example, inserting commas every three digits in '123456', with min_width=8, gives '0,123,456', even though that has length 9. """ sep = spec['thousands_sep'] grouping = spec['grouping'] groups = [] for l in _group_lengths(grouping): if l <= 0: raise ValueError("group length should be positive") # max(..., 1) forces at least 1 digit to the left of a separator l = min(max(len(digits), min_width, 1), l) groups.append('0'*(l - len(digits)) + digits[-l:]) digits = digits[:-l] min_width -= l if not digits and min_width <= 0: break min_width -= len(sep) else: l = max(len(digits), min_width, 1) groups.append('0'*(l - len(digits)) + digits[-l:]) return sep.join(reversed(groups)) def _format_sign(is_negative, spec): """Determine sign character.""" if is_negative: return '-' elif spec['sign'] in ' +': return spec['sign'] else: return '' def _format_number(is_negative, intpart, fracpart, exp, spec): """Format a number, given the following data: is_negative: true if the number is negative, else false intpart: string of digits that must appear before the decimal point fracpart: string of digits that must come after the point exp: exponent, as an integer spec: dictionary resulting from parsing the format specifier This function uses the information in spec to: insert separators (decimal separator and thousands separators) format the sign format the exponent add trailing '%' for the '%' type zero-pad if necessary fill and align if necessary """ sign = _format_sign(is_negative, spec) if fracpart: fracpart = spec['decimal_point'] + fracpart if exp != 0 or spec['type'] in 'eE': echar = {'E': 'E', 'e': 'e', 'G': 'E', 'g': 'e'}[spec['type']] fracpart += "{0}{1:+}".format(echar, exp) if spec['type'] == '%': fracpart += '%' if spec['zeropad']: min_width = spec['minimumwidth'] - len(fracpart) - len(sign) else: min_width = 0 intpart = _insert_thousands_sep(intpart, spec, min_width) return _format_align(sign, intpart+fracpart, spec) ##### Useful Constants (internal use only) ################################ # Reusable defaults _Infinity = Decimal('Inf') _NegativeInfinity = Decimal('-Inf') _NaN = Decimal('NaN') _Zero = Decimal(0) _One = Decimal(1) _NegativeOne = Decimal(-1) # _SignedInfinity[sign] is infinity w/ that sign _SignedInfinity = (_Infinity, _NegativeInfinity) if __name__ == '__main__': import doctest, sys doctest.testmod(sys.modules[__name__]) |