1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 | Lib/test/test_long.py
import unittest import sys import random import math from test import test_int, test_support # Used for lazy formatting of failure messages class Frm(object): def __init__(self, format, *args): self.format = format self.args = args def __str__(self): return self.format % self.args # SHIFT should match the value in longintrepr.h for best testing. SHIFT = sys.long_info.bits_per_digit BASE = 2 ** SHIFT MASK = BASE - 1 KARATSUBA_CUTOFF = 70 # from longobject.c # Max number of base BASE digits to use in test cases. Doubling # this will more than double the runtime. MAXDIGITS = 15 # build some special values special = map(long, [0, 1, 2, BASE, BASE >> 1]) special.append(0x5555555555555555L) special.append(0xaaaaaaaaaaaaaaaaL) # some solid strings of one bits p2 = 4L # 0 and 1 already added for i in range(2*SHIFT): special.append(p2 - 1) p2 = p2 << 1 del p2 # add complements & negations special = special + map(lambda x: ~x, special) + \ map(lambda x: -x, special) L = [ ('0', 0), ('1', 1), ('9', 9), ('10', 10), ('99', 99), ('100', 100), ('314', 314), (' 314', 314), ('314 ', 314), (' \t\t 314 \t\t ', 314), (repr(sys.maxint), sys.maxint), (' 1x', ValueError), (' 1 ', 1), (' 1\02 ', ValueError), ('', ValueError), (' ', ValueError), (' \t\t ', ValueError) ] if test_support.have_unicode: L += [ (unicode('0'), 0), (unicode('1'), 1), (unicode('9'), 9), (unicode('10'), 10), (unicode('99'), 99), (unicode('100'), 100), (unicode('314'), 314), (unicode(' 314'), 314), (unicode('\u0663\u0661\u0664 ','raw-unicode-escape'), 314), (unicode(' \t\t 314 \t\t '), 314), (unicode(' 1x'), ValueError), (unicode(' 1 '), 1), (unicode(' 1\02 '), ValueError), (unicode(''), ValueError), (unicode(' '), ValueError), (unicode(' \t\t '), ValueError), (unichr(0x200), ValueError), ] class LongTest(test_int.IntLongCommonTests, unittest.TestCase): ntype = long # Get quasi-random long consisting of ndigits digits (in base BASE). # quasi == the most-significant digit will not be 0, and the number # is constructed to contain long strings of 0 and 1 bits. These are # more likely than random bits to provoke digit-boundary errors. # The sign of the number is also random. def getran(self, ndigits): self.assertGreater(ndigits, 0) nbits_hi = ndigits * SHIFT nbits_lo = nbits_hi - SHIFT + 1 answer = 0L nbits = 0 r = int(random.random() * (SHIFT * 2)) | 1 # force 1 bits to start while nbits < nbits_lo: bits = (r >> 1) + 1 bits = min(bits, nbits_hi - nbits) self.assertTrue(1 <= bits <= SHIFT) nbits = nbits + bits answer = answer << bits if r & 1: answer = answer | ((1 << bits) - 1) r = int(random.random() * (SHIFT * 2)) self.assertTrue(nbits_lo <= nbits <= nbits_hi) if random.random() < 0.5: answer = -answer return answer # Get random long consisting of ndigits random digits (relative to base # BASE). The sign bit is also random. def getran2(ndigits): answer = 0L for i in xrange(ndigits): answer = (answer << SHIFT) | random.randint(0, MASK) if random.random() < 0.5: answer = -answer return answer def check_division(self, x, y): eq = self.assertEqual q, r = divmod(x, y) q2, r2 = x//y, x%y pab, pba = x*y, y*x eq(pab, pba, Frm("multiplication does not commute for %r and %r", x, y)) eq(q, q2, Frm("divmod returns different quotient than / for %r and %r", x, y)) eq(r, r2, Frm("divmod returns different mod than %% for %r and %r", x, y)) eq(x, q*y + r, Frm("x != q*y + r after divmod on x=%r, y=%r", x, y)) if y > 0: self.assertTrue(0 <= r < y, Frm("bad mod from divmod on %r and %r", x, y)) else: self.assertTrue(y < r <= 0, Frm("bad mod from divmod on %r and %r", x, y)) def test_division(self): digits = range(1, MAXDIGITS+1) + range(KARATSUBA_CUTOFF, KARATSUBA_CUTOFF + 14) digits.append(KARATSUBA_CUTOFF * 3) for lenx in digits: x = self.getran(lenx) for leny in digits: y = self.getran(leny) or 1L self.check_division(x, y) # specific numbers chosen to exercise corner cases of the # current long division implementation # 30-bit cases involving a quotient digit estimate of BASE+1 self.check_division(1231948412290879395966702881L, 1147341367131428698L) self.check_division(815427756481275430342312021515587883L, 707270836069027745L) self.check_division(627976073697012820849443363563599041L, 643588798496057020L) self.check_division(1115141373653752303710932756325578065L, 1038556335171453937726882627L) # 30-bit cases that require the post-subtraction correction step self.check_division(922498905405436751940989320930368494L, 949985870686786135626943396L) self.check_division(768235853328091167204009652174031844L, 1091555541180371554426545266L) # 15-bit cases involving a quotient digit estimate of BASE+1 self.check_division(20172188947443L, 615611397L) self.check_division(1020908530270155025L, 950795710L) self.check_division(128589565723112408L, 736393718L) self.check_division(609919780285761575L, 18613274546784L) # 15-bit cases that require the post-subtraction correction step self.check_division(710031681576388032L, 26769404391308L) self.check_division(1933622614268221L, 30212853348836L) def test_karatsuba(self): digits = range(1, 5) + range(KARATSUBA_CUTOFF, KARATSUBA_CUTOFF + 10) digits.extend([KARATSUBA_CUTOFF * 10, KARATSUBA_CUTOFF * 100]) bits = [digit * SHIFT for digit in digits] # Test products of long strings of 1 bits -- (2**x-1)*(2**y-1) == # 2**(x+y) - 2**x - 2**y + 1, so the proper result is easy to check. for abits in bits: a = (1L << abits) - 1 for bbits in bits: if bbits < abits: continue b = (1L << bbits) - 1 x = a * b y = ((1L << (abits + bbits)) - (1L << abits) - (1L << bbits) + 1) self.assertEqual(x, y, Frm("bad result for a*b: a=%r, b=%r, x=%r, y=%r", a, b, x, y)) def check_bitop_identities_1(self, x): eq = self.assertEqual eq(x & 0, 0, Frm("x & 0 != 0 for x=%r", x)) eq(x | 0, x, Frm("x | 0 != x for x=%r", x)) eq(x ^ 0, x, Frm("x ^ 0 != x for x=%r", x)) eq(x & -1, x, Frm("x & -1 != x for x=%r", x)) eq(x | -1, -1, Frm("x | -1 != -1 for x=%r", x)) eq(x ^ -1, ~x, Frm("x ^ -1 != ~x for x=%r", x)) eq(x, ~~x, Frm("x != ~~x for x=%r", x)) eq(x & x, x, Frm("x & x != x for x=%r", x)) eq(x | x, x, Frm("x | x != x for x=%r", x)) eq(x ^ x, 0, Frm("x ^ x != 0 for x=%r", x)) eq(x & ~x, 0, Frm("x & ~x != 0 for x=%r", x)) eq(x | ~x, -1, Frm("x | ~x != -1 for x=%r", x)) eq(x ^ ~x, -1, Frm("x ^ ~x != -1 for x=%r", x)) eq(-x, 1 + ~x, Frm("not -x == 1 + ~x for x=%r", x)) eq(-x, ~(x-1), Frm("not -x == ~(x-1) forx =%r", x)) for n in xrange(2*SHIFT): p2 = 2L ** n eq(x << n >> n, x, Frm("x << n >> n != x for x=%r, n=%r", x, n)) eq(x // p2, x >> n, Frm("x // p2 != x >> n for x=%r n=%r p2=%r", x, n, p2)) eq(x * p2, x << n, Frm("x * p2 != x << n for x=%r n=%r p2=%r", x, n, p2)) eq(x & -p2, x >> n << n, Frm("not x & -p2 == x >> n << n for x=%r n=%r p2=%r", x, n, p2)) eq(x & -p2, x & ~(p2 - 1), Frm("not x & -p2 == x & ~(p2 - 1) for x=%r n=%r p2=%r", x, n, p2)) def check_bitop_identities_2(self, x, y): eq = self.assertEqual eq(x & y, y & x, Frm("x & y != y & x for x=%r, y=%r", x, y)) eq(x | y, y | x, Frm("x | y != y | x for x=%r, y=%r", x, y)) eq(x ^ y, y ^ x, Frm("x ^ y != y ^ x for x=%r, y=%r", x, y)) eq(x ^ y ^ x, y, Frm("x ^ y ^ x != y for x=%r, y=%r", x, y)) eq(x & y, ~(~x | ~y), Frm("x & y != ~(~x | ~y) for x=%r, y=%r", x, y)) eq(x | y, ~(~x & ~y), Frm("x | y != ~(~x & ~y) for x=%r, y=%r", x, y)) eq(x ^ y, (x | y) & ~(x & y), Frm("x ^ y != (x | y) & ~(x & y) for x=%r, y=%r", x, y)) eq(x ^ y, (x & ~y) | (~x & y), Frm("x ^ y == (x & ~y) | (~x & y) for x=%r, y=%r", x, y)) eq(x ^ y, (x | y) & (~x | ~y), Frm("x ^ y == (x | y) & (~x | ~y) for x=%r, y=%r", x, y)) def check_bitop_identities_3(self, x, y, z): eq = self.assertEqual eq((x & y) & z, x & (y & z), Frm("(x & y) & z != x & (y & z) for x=%r, y=%r, z=%r", x, y, z)) eq((x | y) | z, x | (y | z), Frm("(x | y) | z != x | (y | z) for x=%r, y=%r, z=%r", x, y, z)) eq((x ^ y) ^ z, x ^ (y ^ z), Frm("(x ^ y) ^ z != x ^ (y ^ z) for x=%r, y=%r, z=%r", x, y, z)) eq(x & (y | z), (x & y) | (x & z), Frm("x & (y | z) != (x & y) | (x & z) for x=%r, y=%r, z=%r", x, y, z)) eq(x | (y & z), (x | y) & (x | z), Frm("x | (y & z) != (x | y) & (x | z) for x=%r, y=%r, z=%r", x, y, z)) def test_bitop_identities(self): for x in special: self.check_bitop_identities_1(x) digits = xrange(1, MAXDIGITS+1) for lenx in digits: x = self.getran(lenx) self.check_bitop_identities_1(x) for leny in digits: y = self.getran(leny) self.check_bitop_identities_2(x, y) self.check_bitop_identities_3(x, y, self.getran((lenx + leny)//2)) def slow_format(self, x, base): if (x, base) == (0, 8): # this is an oddball! return "0L" digits = [] sign = 0 if x < 0: sign, x = 1, -x while x: x, r = divmod(x, base) digits.append(int(r)) digits.reverse() digits = digits or [0] return '-'[:sign] + \ {8: '0', 10: '', 16: '0x'}[base] + \ "".join(map(lambda i: "0123456789abcdef"[i], digits)) + "L" def check_format_1(self, x): for base, mapper in (8, oct), (10, repr), (16, hex): got = mapper(x) expected = self.slow_format(x, base) msg = Frm("%s returned %r but expected %r for %r", mapper.__name__, got, expected, x) self.assertEqual(got, expected, msg) self.assertEqual(long(got, 0), x, Frm('long("%s", 0) != %r', got, x)) # str() has to be checked a little differently since there's no # trailing "L" got = str(x) expected = self.slow_format(x, 10)[:-1] msg = Frm("%s returned %r but expected %r for %r", mapper.__name__, got, expected, x) self.assertEqual(got, expected, msg) def test_format(self): for x in special: self.check_format_1(x) for i in xrange(10): for lenx in xrange(1, MAXDIGITS+1): x = self.getran(lenx) self.check_format_1(x) def test_long(self): self.assertEqual(long(314), 314L) self.assertEqual(long(3.14), 3L) self.assertEqual(long(314L), 314L) # Check that long() of basic types actually returns a long self.assertEqual(type(long(314)), long) self.assertEqual(type(long(3.14)), long) self.assertEqual(type(long(314L)), long) # Check that conversion from float truncates towards zero self.assertEqual(long(-3.14), -3L) self.assertEqual(long(3.9), 3L) self.assertEqual(long(-3.9), -3L) self.assertEqual(long(3.5), 3L) self.assertEqual(long(-3.5), -3L) self.assertEqual(long("-3"), -3L) self.assertEqual(long("0b10", 2), 2L) self.assertEqual(long("0o10", 8), 8L) self.assertEqual(long("0x10", 16), 16L) if test_support.have_unicode: self.assertEqual(long(unicode("-3")), -3L) # Different base: self.assertEqual(long("10",16), 16L) if test_support.have_unicode: self.assertEqual(long(unicode("10"),16), 16L) # Check conversions from string (same test set as for int(), and then some) LL = [ ('1' + '0'*20, 10L**20), ('1' + '0'*100, 10L**100) ] L2 = L[:] if test_support.have_unicode: L2 += [ (unicode('1') + unicode('0')*20, 10L**20), (unicode('1') + unicode('0')*100, 10L**100), ] for s, v in L2 + LL: for sign in "", "+", "-": for prefix in "", " ", "\t", " \t\t ": ss = prefix + sign + s vv = v if sign == "-" and v is not ValueError: vv = -v try: self.assertEqual(long(ss), long(vv)) except v: pass self.assertRaises(ValueError, long, '123\0') self.assertRaises(ValueError, long, '53', 40) self.assertRaises(TypeError, long, 1, 12) # tests with base 0 self.assertEqual(long(' 0123 ', 0), 83) self.assertEqual(long(' 0123 ', 0), 83) self.assertEqual(long('000', 0), 0) self.assertEqual(long('0o123', 0), 83) self.assertEqual(long('0x123', 0), 291) self.assertEqual(long('0b100', 0), 4) self.assertEqual(long(' 0O123 ', 0), 83) self.assertEqual(long(' 0X123 ', 0), 291) self.assertEqual(long(' 0B100 ', 0), 4) self.assertEqual(long('0', 0), 0) self.assertEqual(long('+0', 0), 0) self.assertEqual(long('-0', 0), 0) self.assertEqual(long('00', 0), 0) self.assertRaises(ValueError, long, '08', 0) self.assertRaises(ValueError, long, '-012395', 0) # SF patch #1638879: embedded NULs were not detected with # explicit base self.assertRaises(ValueError, long, '123\0', 10) self.assertRaises(ValueError, long, '123\x00 245', 20) self.assertEqual(long('100000000000000000000000000000000', 2), 4294967296) self.assertEqual(long('102002022201221111211', 3), 4294967296) self.assertEqual(long('10000000000000000', 4), 4294967296) self.assertEqual(long('32244002423141', 5), 4294967296) self.assertEqual(long('1550104015504', 6), 4294967296) self.assertEqual(long('211301422354', 7), 4294967296) self.assertEqual(long('40000000000', 8), 4294967296) self.assertEqual(long('12068657454', 9), 4294967296) self.assertEqual(long('4294967296', 10), 4294967296) self.assertEqual(long('1904440554', 11), 4294967296) self.assertEqual(long('9ba461594', 12), 4294967296) self.assertEqual(long('535a79889', 13), 4294967296) self.assertEqual(long('2ca5b7464', 14), 4294967296) self.assertEqual(long('1a20dcd81', 15), 4294967296) self.assertEqual(long('100000000', 16), 4294967296) self.assertEqual(long('a7ffda91', 17), 4294967296) self.assertEqual(long('704he7g4', 18), 4294967296) self.assertEqual(long('4f5aff66', 19), 4294967296) self.assertEqual(long('3723ai4g', 20), 4294967296) self.assertEqual(long('281d55i4', 21), 4294967296) self.assertEqual(long('1fj8b184', 22), 4294967296) self.assertEqual(long('1606k7ic', 23), 4294967296) self.assertEqual(long('mb994ag', 24), 4294967296) self.assertEqual(long('hek2mgl', 25), 4294967296) self.assertEqual(long('dnchbnm', 26), 4294967296) self.assertEqual(long('b28jpdm', 27), 4294967296) self.assertEqual(long('8pfgih4', 28), 4294967296) self.assertEqual(long('76beigg', 29), 4294967296) self.assertEqual(long('5qmcpqg', 30), 4294967296) self.assertEqual(long('4q0jto4', 31), 4294967296) self.assertEqual(long('4000000', 32), 4294967296) self.assertEqual(long('3aokq94', 33), 4294967296) self.assertEqual(long('2qhxjli', 34), 4294967296) self.assertEqual(long('2br45qb', 35), 4294967296) self.assertEqual(long('1z141z4', 36), 4294967296) self.assertEqual(long('100000000000000000000000000000001', 2), 4294967297) self.assertEqual(long('102002022201221111212', 3), 4294967297) self.assertEqual(long('10000000000000001', 4), 4294967297) self.assertEqual(long('32244002423142', 5), 4294967297) self.assertEqual(long('1550104015505', 6), 4294967297) self.assertEqual(long('211301422355', 7), 4294967297) self.assertEqual(long('40000000001', 8), 4294967297) self.assertEqual(long('12068657455', 9), 4294967297) self.assertEqual(long('4294967297', 10), 4294967297) self.assertEqual(long('1904440555', 11), 4294967297) self.assertEqual(long('9ba461595', 12), 4294967297) self.assertEqual(long('535a7988a', 13), 4294967297) self.assertEqual(long('2ca5b7465', 14), 4294967297) self.assertEqual(long('1a20dcd82', 15), 4294967297) self.assertEqual(long('100000001', 16), 4294967297) self.assertEqual(long('a7ffda92', 17), 4294967297) self.assertEqual(long('704he7g5', 18), 4294967297) self.assertEqual(long('4f5aff67', 19), 4294967297) self.assertEqual(long('3723ai4h', 20), 4294967297) self.assertEqual(long('281d55i5', 21), 4294967297) self.assertEqual(long('1fj8b185', 22), 4294967297) self.assertEqual(long('1606k7id', 23), 4294967297) self.assertEqual(long('mb994ah', 24), 4294967297) self.assertEqual(long('hek2mgm', 25), 4294967297) self.assertEqual(long('dnchbnn', 26), 4294967297) self.assertEqual(long('b28jpdn', 27), 4294967297) self.assertEqual(long('8pfgih5', 28), 4294967297) self.assertEqual(long('76beigh', 29), 4294967297) self.assertEqual(long('5qmcpqh', 30), 4294967297) self.assertEqual(long('4q0jto5', 31), 4294967297) self.assertEqual(long('4000001', 32), 4294967297) self.assertEqual(long('3aokq95', 33), 4294967297) self.assertEqual(long('2qhxjlj', 34), 4294967297) self.assertEqual(long('2br45qc', 35), 4294967297) self.assertEqual(long('1z141z5', 36), 4294967297) def test_conversion(self): # Test __long__() class ClassicMissingMethods: pass self.assertRaises(AttributeError, long, ClassicMissingMethods()) class MissingMethods(object): pass self.assertRaises(TypeError, long, MissingMethods()) class Foo0: def __long__(self): return 42L class Foo1(object): def __long__(self): return 42L class Foo2(long): def __long__(self): return 42L class Foo3(long): def __long__(self): return self class Foo4(long): def __long__(self): return 42 class Foo5(long): def __long__(self): return 42. self.assertEqual(long(Foo0()), 42L) self.assertEqual(long(Foo1()), 42L) self.assertEqual(long(Foo2()), 42L) self.assertEqual(long(Foo3()), 0) self.assertEqual(long(Foo4()), 42) self.assertRaises(TypeError, long, Foo5()) class Classic: pass for base in (object, Classic): class LongOverridesTrunc(base): def __long__(self): return 42 def __trunc__(self): return -12 self.assertEqual(long(LongOverridesTrunc()), 42) class JustTrunc(base): def __trunc__(self): return 42 self.assertEqual(long(JustTrunc()), 42) for trunc_result_base in (object, Classic): class Integral(trunc_result_base): def __int__(self): return 42 class TruncReturnsNonLong(base): def __trunc__(self): return Integral() self.assertEqual(long(TruncReturnsNonLong()), 42) class NonIntegral(trunc_result_base): def __trunc__(self): # Check that we avoid infinite recursion. return NonIntegral() class TruncReturnsNonIntegral(base): def __trunc__(self): return NonIntegral() try: long(TruncReturnsNonIntegral()) except TypeError as e: self.assertEqual(str(e), "__trunc__ returned non-Integral" " (type NonIntegral)") else: self.fail("Failed to raise TypeError with %s" % ((base, trunc_result_base),)) def test_misc(self): # check the extremes in int<->long conversion hugepos = sys.maxint hugeneg = -hugepos - 1 hugepos_aslong = long(hugepos) hugeneg_aslong = long(hugeneg) self.assertEqual(hugepos, hugepos_aslong, "long(sys.maxint) != sys.maxint") self.assertEqual(hugeneg, hugeneg_aslong, "long(-sys.maxint-1) != -sys.maxint-1") # long -> int should not fail for hugepos_aslong or hugeneg_aslong x = int(hugepos_aslong) try: self.assertEqual(x, hugepos, "converting sys.maxint to long and back to int fails") except OverflowError: self.fail("int(long(sys.maxint)) overflowed!") if not isinstance(x, int): self.fail("int(long(sys.maxint)) should have returned int") x = int(hugeneg_aslong) try: self.assertEqual(x, hugeneg, "converting -sys.maxint-1 to long and back to int fails") except OverflowError: self.fail("int(long(-sys.maxint-1)) overflowed!") if not isinstance(x, int): self.fail("int(long(-sys.maxint-1)) should have returned int") # but long -> int should overflow for hugepos+1 and hugeneg-1 x = hugepos_aslong + 1 try: y = int(x) except OverflowError: self.fail("int(long(sys.maxint) + 1) mustn't overflow") self.assertIsInstance(y, long, "int(long(sys.maxint) + 1) should have returned long") x = hugeneg_aslong - 1 try: y = int(x) except OverflowError: self.fail("int(long(-sys.maxint-1) - 1) mustn't overflow") self.assertIsInstance(y, long, "int(long(-sys.maxint-1) - 1) should have returned long") class long2(long): pass x = long2(1L<<100) y = int(x) self.assertIs(type(y), long, "overflowing int conversion must return long not long subtype") # long -> Py_ssize_t conversion class X(object): def __getslice__(self, i, j): return i, j with test_support.check_py3k_warnings(): self.assertEqual(X()[-5L:7L], (-5, 7)) # use the clamping effect to test the smallest and largest longs # that fit a Py_ssize_t slicemin, slicemax = X()[-2L**100:2L**100] self.assertEqual(X()[slicemin:slicemax], (slicemin, slicemax)) def test_issue9869(self): # Issue 9869: Interpreter crash when initializing an instance # of a long subclass from an object whose __long__ method returns # a plain int. class BadLong(object): def __long__(self): return 1000000 class MyLong(long): pass x = MyLong(BadLong()) self.assertIsInstance(x, long) self.assertEqual(x, 1000000) # ----------------------------------- tests of auto int->long conversion def test_auto_overflow(self): special = [0, 1, 2, 3, sys.maxint-1, sys.maxint, sys.maxint+1] sqrt = int(math.sqrt(sys.maxint)) special.extend([sqrt-1, sqrt, sqrt+1]) special.extend([-i for i in special]) def checkit(*args): # Heavy use of nested scopes here! self.assertEqual(got, expected, Frm("for %r expected %r got %r", args, expected, got)) for x in special: longx = long(x) expected = -longx got = -x checkit('-', x) for y in special: longy = long(y) expected = longx + longy got = x + y checkit(x, '+', y) expected = longx - longy got = x - y checkit(x, '-', y) expected = longx * longy got = x * y checkit(x, '*', y) if y: with test_support.check_py3k_warnings(): expected = longx / longy got = x / y checkit(x, '/', y) expected = longx // longy got = x // y checkit(x, '//', y) expected = divmod(longx, longy) got = divmod(longx, longy) checkit(x, 'divmod', y) if abs(y) < 5 and not (x == 0 and y < 0): expected = longx ** longy got = x ** y checkit(x, '**', y) for z in special: if z != 0 : if y >= 0: expected = pow(longx, longy, long(z)) got = pow(x, y, z) checkit('pow', x, y, '%', z) else: self.assertRaises(TypeError, pow,longx, longy, long(z)) @unittest.skipUnless(float.__getformat__("double").startswith("IEEE"), "test requires IEEE 754 doubles") def test_float_conversion(self): import sys DBL_MAX = sys.float_info.max DBL_MAX_EXP = sys.float_info.max_exp DBL_MANT_DIG = sys.float_info.mant_dig exact_values = [0L, 1L, 2L, long(2**53-3), long(2**53-2), long(2**53-1), long(2**53), long(2**53+2), long(2**54-4), long(2**54-2), long(2**54), long(2**54+4)] for x in exact_values: self.assertEqual(long(float(x)), x) self.assertEqual(long(float(-x)), -x) # test round-half-even for x, y in [(1, 0), (2, 2), (3, 4), (4, 4), (5, 4), (6, 6), (7, 8)]: for p in xrange(15): self.assertEqual(long(float(2L**p*(2**53+x))), 2L**p*(2**53+y)) for x, y in [(0, 0), (1, 0), (2, 0), (3, 4), (4, 4), (5, 4), (6, 8), (7, 8), (8, 8), (9, 8), (10, 8), (11, 12), (12, 12), (13, 12), (14, 16), (15, 16)]: for p in xrange(15): self.assertEqual(long(float(2L**p*(2**54+x))), 2L**p*(2**54+y)) # behaviour near extremes of floating-point range long_dbl_max = long(DBL_MAX) top_power = 2**DBL_MAX_EXP halfway = (long_dbl_max + top_power)//2 self.assertEqual(float(long_dbl_max), DBL_MAX) self.assertEqual(float(long_dbl_max+1), DBL_MAX) self.assertEqual(float(halfway-1), DBL_MAX) self.assertRaises(OverflowError, float, halfway) self.assertEqual(float(1-halfway), -DBL_MAX) self.assertRaises(OverflowError, float, -halfway) self.assertRaises(OverflowError, float, top_power-1) self.assertRaises(OverflowError, float, top_power) self.assertRaises(OverflowError, float, top_power+1) self.assertRaises(OverflowError, float, 2*top_power-1) self.assertRaises(OverflowError, float, 2*top_power) self.assertRaises(OverflowError, float, top_power*top_power) for p in xrange(100): x = long(2**p * (2**53 + 1) + 1) y = long(2**p * (2**53+ 2)) self.assertEqual(long(float(x)), y) x = long(2**p * (2**53 + 1)) y = long(2**p * 2**53) self.assertEqual(long(float(x)), y) def test_float_overflow(self): for x in -2.0, -1.0, 0.0, 1.0, 2.0: self.assertEqual(float(long(x)), x) shuge = '12345' * 120 huge = 1L << 30000 mhuge = -huge namespace = {'huge': huge, 'mhuge': mhuge, 'shuge': shuge, 'math': math} for test in ["float(huge)", "float(mhuge)", "complex(huge)", "complex(mhuge)", "complex(huge, 1)", "complex(mhuge, 1)", "complex(1, huge)", "complex(1, mhuge)", "1. + huge", "huge + 1.", "1. + mhuge", "mhuge + 1.", "1. - huge", "huge - 1.", "1. - mhuge", "mhuge - 1.", "1. * huge", "huge * 1.", "1. * mhuge", "mhuge * 1.", "1. // huge", "huge // 1.", "1. // mhuge", "mhuge // 1.", "1. / huge", "huge / 1.", "1. / mhuge", "mhuge / 1.", "1. ** huge", "huge ** 1.", "1. ** mhuge", "mhuge ** 1.", "math.sin(huge)", "math.sin(mhuge)", "math.sqrt(huge)", "math.sqrt(mhuge)", # should do better "math.floor(huge)", "math.floor(mhuge)"]: self.assertRaises(OverflowError, eval, test, namespace) # XXX Perhaps float(shuge) can raise OverflowError on some box? # The comparison should not. self.assertNotEqual(float(shuge), int(shuge), "float(shuge) should not equal int(shuge)") def test_logs(self): LOG10E = math.log10(math.e) for exp in range(10) + [100, 1000, 10000]: value = 10 ** exp log10 = math.log10(value) self.assertAlmostEqual(log10, exp) # log10(value) == exp, so log(value) == log10(value)/log10(e) == # exp/LOG10E expected = exp / LOG10E log = math.log(value) self.assertAlmostEqual(log, expected) for bad in -(1L << 10000), -2L, 0L: self.assertRaises(ValueError, math.log, bad) self.assertRaises(ValueError, math.log10, bad) def test_mixed_compares(self): eq = self.assertEqual # We're mostly concerned with that mixing floats and longs does the # right stuff, even when longs are too large to fit in a float. # The safest way to check the results is to use an entirely different # method, which we do here via a skeletal rational class (which # represents all Python ints, longs and floats exactly). class Rat: def __init__(self, value): if isinstance(value, (int, long)): self.n = value self.d = 1 elif isinstance(value, float): # Convert to exact rational equivalent. f, e = math.frexp(abs(value)) assert f == 0 or 0.5 <= f < 1.0 # |value| = f * 2**e exactly # Suck up CHUNK bits at a time; 28 is enough so that we suck # up all bits in 2 iterations for all known binary double- # precision formats, and small enough to fit in an int. CHUNK = 28 top = 0 # invariant: |value| = (top + f) * 2**e exactly while f: f = math.ldexp(f, CHUNK) digit = int(f) assert digit >> CHUNK == 0 top = (top << CHUNK) | digit f -= digit assert 0.0 <= f < 1.0 e -= CHUNK # Now |value| = top * 2**e exactly. if e >= 0: n = top << e d = 1 else: n = top d = 1 << -e if value < 0: n = -n self.n = n self.d = d assert float(n) / float(d) == value else: raise TypeError("can't deal with %r" % value) def __cmp__(self, other): if not isinstance(other, Rat): other = Rat(other) return cmp(self.n * other.d, self.d * other.n) cases = [0, 0.001, 0.99, 1.0, 1.5, 1e20, 1e200] # 2**48 is an important boundary in the internals. 2**53 is an # important boundary for IEEE double precision. for t in 2.0**48, 2.0**50, 2.0**53: cases.extend([t - 1.0, t - 0.3, t, t + 0.3, t + 1.0, long(t-1), long(t), long(t+1)]) cases.extend([0, 1, 2, sys.maxint, float(sys.maxint)]) # 1L<<20000 should exceed all double formats. long(1e200) is to # check that we get equality with 1e200 above. t = long(1e200) cases.extend([0L, 1L, 2L, 1L << 20000, t-1, t, t+1]) cases.extend([-x for x in cases]) for x in cases: Rx = Rat(x) for y in cases: Ry = Rat(y) Rcmp = cmp(Rx, Ry) xycmp = cmp(x, y) eq(Rcmp, xycmp, Frm("%r %r %d %d", x, y, Rcmp, xycmp)) eq(x == y, Rcmp == 0, Frm("%r == %r %d", x, y, Rcmp)) eq(x != y, Rcmp != 0, Frm("%r != %r %d", x, y, Rcmp)) eq(x < y, Rcmp < 0, Frm("%r < %r %d", x, y, Rcmp)) eq(x <= y, Rcmp <= 0, Frm("%r <= %r %d", x, y, Rcmp)) eq(x > y, Rcmp > 0, Frm("%r > %r %d", x, y, Rcmp)) eq(x >= y, Rcmp >= 0, Frm("%r >= %r %d", x, y, Rcmp)) def test_nan_inf(self): self.assertRaises(OverflowError, long, float('inf')) self.assertRaises(OverflowError, long, float('-inf')) self.assertRaises(ValueError, long, float('nan')) def test_bit_length(self): tiny = 1e-10 for x in xrange(-65000, 65000): x = long(x) k = x.bit_length() # Check equivalence with Python version self.assertEqual(k, len(bin(x).lstrip('-0b'))) # Behaviour as specified in the docs if x != 0: self.assertTrue(2**(k-1) <= abs(x) < 2**k) else: self.assertEqual(k, 0) # Alternative definition: x.bit_length() == 1 + floor(log_2(x)) if x != 0: # When x is an exact power of 2, numeric errors can # cause floor(log(x)/log(2)) to be one too small; for # small x this can be fixed by adding a small quantity # to the quotient before taking the floor. self.assertEqual(k, 1 + math.floor( math.log(abs(x))/math.log(2) + tiny)) self.assertEqual((0L).bit_length(), 0) self.assertEqual((1L).bit_length(), 1) self.assertEqual((-1L).bit_length(), 1) self.assertEqual((2L).bit_length(), 2) self.assertEqual((-2L).bit_length(), 2) for i in [2, 3, 15, 16, 17, 31, 32, 33, 63, 64, 234]: a = 2L**i self.assertEqual((a-1).bit_length(), i) self.assertEqual((1-a).bit_length(), i) self.assertEqual((a).bit_length(), i+1) self.assertEqual((-a).bit_length(), i+1) self.assertEqual((a+1).bit_length(), i+1) self.assertEqual((-a-1).bit_length(), i+1) def test_main(): test_support.run_unittest(LongTest) if __name__ == "__main__": test_main() |