1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 | Lib/test/test_long_future.py
from __future__ import division # When true division is the default, get rid of this and add it to # test_long.py instead. In the meantime, it's too obscure to try to # trick just part of test_long into using future division. import sys import random import math import unittest from test.test_support import run_unittest # decorator for skipping tests on non-IEEE 754 platforms requires_IEEE_754 = unittest.skipUnless( float.__getformat__("double").startswith("IEEE"), "test requires IEEE 754 doubles") DBL_MAX = sys.float_info.max DBL_MAX_EXP = sys.float_info.max_exp DBL_MIN_EXP = sys.float_info.min_exp DBL_MANT_DIG = sys.float_info.mant_dig DBL_MIN_OVERFLOW = 2**DBL_MAX_EXP - 2**(DBL_MAX_EXP - DBL_MANT_DIG - 1) # pure Python version of correctly-rounded true division def truediv(a, b): """Correctly-rounded true division for integers.""" negative = a^b < 0 a, b = abs(a), abs(b) # exceptions: division by zero, overflow if not b: raise ZeroDivisionError("division by zero") if a >= DBL_MIN_OVERFLOW * b: raise OverflowError("int/int too large to represent as a float") # find integer d satisfying 2**(d - 1) <= a/b < 2**d d = a.bit_length() - b.bit_length() if d >= 0 and a >= 2**d * b or d < 0 and a * 2**-d >= b: d += 1 # compute 2**-exp * a / b for suitable exp exp = max(d, DBL_MIN_EXP) - DBL_MANT_DIG a, b = a << max(-exp, 0), b << max(exp, 0) q, r = divmod(a, b) # round-half-to-even: fractional part is r/b, which is > 0.5 iff # 2*r > b, and == 0.5 iff 2*r == b. if 2*r > b or 2*r == b and q % 2 == 1: q += 1 result = math.ldexp(float(q), exp) return -result if negative else result class TrueDivisionTests(unittest.TestCase): def test(self): huge = 1L << 40000 mhuge = -huge self.assertEqual(huge / huge, 1.0) self.assertEqual(mhuge / mhuge, 1.0) self.assertEqual(huge / mhuge, -1.0) self.assertEqual(mhuge / huge, -1.0) self.assertEqual(1 / huge, 0.0) self.assertEqual(1L / huge, 0.0) self.assertEqual(1 / mhuge, 0.0) self.assertEqual(1L / mhuge, 0.0) self.assertEqual((666 * huge + (huge >> 1)) / huge, 666.5) self.assertEqual((666 * mhuge + (mhuge >> 1)) / mhuge, 666.5) self.assertEqual((666 * huge + (huge >> 1)) / mhuge, -666.5) self.assertEqual((666 * mhuge + (mhuge >> 1)) / huge, -666.5) self.assertEqual(huge / (huge << 1), 0.5) self.assertEqual((1000000 * huge) / huge, 1000000) namespace = {'huge': huge, 'mhuge': mhuge} for overflow in ["float(huge)", "float(mhuge)", "huge / 1", "huge / 2L", "huge / -1", "huge / -2L", "mhuge / 100", "mhuge / 100L"]: # If the "eval" does not happen in this module, # true division is not enabled with self.assertRaises(OverflowError): eval(overflow, namespace) for underflow in ["1 / huge", "2L / huge", "-1 / huge", "-2L / huge", "100 / mhuge", "100L / mhuge"]: result = eval(underflow, namespace) self.assertEqual(result, 0.0, 'expected underflow to 0 ' 'from {!r}'.format(underflow)) for zero in ["huge / 0", "huge / 0L", "mhuge / 0", "mhuge / 0L"]: with self.assertRaises(ZeroDivisionError): eval(zero, namespace) def check_truediv(self, a, b, skip_small=True): """Verify that the result of a/b is correctly rounded, by comparing it with a pure Python implementation of correctly rounded division. b should be nonzero.""" a, b = long(a), long(b) # skip check for small a and b: in this case, the current # implementation converts the arguments to float directly and # then applies a float division. This can give doubly-rounded # results on x87-using machines (particularly 32-bit Linux). if skip_small and max(abs(a), abs(b)) < 2**DBL_MANT_DIG: return try: # use repr so that we can distinguish between -0.0 and 0.0 expected = repr(truediv(a, b)) except OverflowError: expected = 'overflow' except ZeroDivisionError: expected = 'zerodivision' try: got = repr(a / b) except OverflowError: got = 'overflow' except ZeroDivisionError: got = 'zerodivision' self.assertEqual(expected, got, "Incorrectly rounded division {}/{}: " "expected {}, got {}".format(a, b, expected, got)) @requires_IEEE_754 def test_correctly_rounded_true_division(self): # more stringent tests than those above, checking that the # result of true division of ints is always correctly rounded. # This test should probably be considered CPython-specific. # Exercise all the code paths not involving Gb-sized ints. # ... divisions involving zero self.check_truediv(123, 0) self.check_truediv(-456, 0) self.check_truediv(0, 3) self.check_truediv(0, -3) self.check_truediv(0, 0) # ... overflow or underflow by large margin self.check_truediv(671 * 12345 * 2**DBL_MAX_EXP, 12345) self.check_truediv(12345, 345678 * 2**(DBL_MANT_DIG - DBL_MIN_EXP)) # ... a much larger or smaller than b self.check_truediv(12345*2**100, 98765) self.check_truediv(12345*2**30, 98765*7**81) # ... a / b near a boundary: one of 1, 2**DBL_MANT_DIG, 2**DBL_MIN_EXP, # 2**DBL_MAX_EXP, 2**(DBL_MIN_EXP-DBL_MANT_DIG) bases = (0, DBL_MANT_DIG, DBL_MIN_EXP, DBL_MAX_EXP, DBL_MIN_EXP - DBL_MANT_DIG) for base in bases: for exp in range(base - 15, base + 15): self.check_truediv(75312*2**max(exp, 0), 69187*2**max(-exp, 0)) self.check_truediv(69187*2**max(exp, 0), 75312*2**max(-exp, 0)) # overflow corner case for m in [1, 2, 7, 17, 12345, 7**100, -1, -2, -5, -23, -67891, -41**50]: for n in range(-10, 10): self.check_truediv(m*DBL_MIN_OVERFLOW + n, m) self.check_truediv(m*DBL_MIN_OVERFLOW + n, -m) # check detection of inexactness in shifting stage for n in range(250): # (2**DBL_MANT_DIG+1)/(2**DBL_MANT_DIG) lies halfway # between two representable floats, and would usually be # rounded down under round-half-to-even. The tiniest of # additions to the numerator should cause it to be rounded # up instead. self.check_truediv((2**DBL_MANT_DIG + 1)*12345*2**200 + 2**n, 2**DBL_MANT_DIG*12345) # 1/2731 is one of the smallest division cases that's subject # to double rounding on IEEE 754 machines working internally with # 64-bit precision. On such machines, the next check would fail, # were it not explicitly skipped in check_truediv. self.check_truediv(1, 2731) # a particularly bad case for the old algorithm: gives an # error of close to 3.5 ulps. self.check_truediv(295147931372582273023, 295147932265116303360) for i in range(1000): self.check_truediv(10**(i+1), 10**i) self.check_truediv(10**i, 10**(i+1)) # test round-half-to-even behaviour, normal result for m in [1, 2, 4, 7, 8, 16, 17, 32, 12345, 7**100, -1, -2, -5, -23, -67891, -41**50]: for n in range(-10, 10): self.check_truediv(2**DBL_MANT_DIG*m + n, m) # test round-half-to-even, subnormal result for n in range(-20, 20): self.check_truediv(n, 2**1076) # largeish random divisions: a/b where |a| <= |b| <= # 2*|a|; |ans| is between 0.5 and 1.0, so error should # always be bounded by 2**-54 with equality possible only # if the least significant bit of q=ans*2**53 is zero. for M in [10**10, 10**100, 10**1000]: for i in range(1000): a = random.randrange(1, M) b = random.randrange(a, 2*a+1) self.check_truediv(a, b) self.check_truediv(-a, b) self.check_truediv(a, -b) self.check_truediv(-a, -b) # and some (genuinely) random tests for _ in range(10000): a_bits = random.randrange(1000) b_bits = random.randrange(1, 1000) x = random.randrange(2**a_bits) y = random.randrange(1, 2**b_bits) self.check_truediv(x, y) self.check_truediv(x, -y) self.check_truediv(-x, y) self.check_truediv(-x, -y) def test_main(): run_unittest(TrueDivisionTests) if __name__ == "__main__": test_main() |