1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
Lib/test/test_complex.py
import unittest
from test import test_support

from random import random
from math import atan2, isnan, copysign

INF = float("inf")
NAN = float("nan")
# These tests ensure that complex math does the right thing

class ComplexTest(unittest.TestCase):

    def assertAlmostEqual(self, a, b):
        if isinstance(a, complex):
            if isinstance(b, complex):
                unittest.TestCase.assertAlmostEqual(self, a.real, b.real)
                unittest.TestCase.assertAlmostEqual(self, a.imag, b.imag)
            else:
                unittest.TestCase.assertAlmostEqual(self, a.real, b)
                unittest.TestCase.assertAlmostEqual(self, a.imag, 0.)
        else:
            if isinstance(b, complex):
                unittest.TestCase.assertAlmostEqual(self, a, b.real)
                unittest.TestCase.assertAlmostEqual(self, 0., b.imag)
            else:
                unittest.TestCase.assertAlmostEqual(self, a, b)

    def assertCloseAbs(self, x, y, eps=1e-9):
        """Return true iff floats x and y "are close"."""
        # put the one with larger magnitude second
        if abs(x) > abs(y):
            x, y = y, x
        if y == 0:
            return abs(x) < eps
        if x == 0:
            return abs(y) < eps
        # check that relative difference < eps
        self.assertTrue(abs((x-y)/y) < eps)

    def assertFloatsAreIdentical(self, x, y):
        """assert that floats x and y are identical, in the sense that:
        (1) both x and y are nans, or
        (2) both x and y are infinities, with the same sign, or
        (3) both x and y are zeros, with the same sign, or
        (4) x and y are both finite and nonzero, and x == y

        """
        msg = 'floats {!r} and {!r} are not identical'

        if isnan(x) or isnan(y):
            if isnan(x) and isnan(y):
                return
        elif x == y:
            if x != 0.0:
                return
            # both zero; check that signs match
            elif copysign(1.0, x) == copysign(1.0, y):
                return
            else:
                msg += ': zeros have different signs'
        self.fail(msg.format(x, y))

    def assertClose(self, x, y, eps=1e-9):
        """Return true iff complexes x and y "are close"."""
        self.assertCloseAbs(x.real, y.real, eps)
        self.assertCloseAbs(x.imag, y.imag, eps)

    def check_div(self, x, y):
        """Compute complex z=x*y, and check that z/x==y and z/y==x."""
        z = x * y
        if x != 0:
            q = z / x
            self.assertClose(q, y)
            q = z.__div__(x)
            self.assertClose(q, y)
            q = z.__truediv__(x)
            self.assertClose(q, y)
        if y != 0:
            q = z / y
            self.assertClose(q, x)
            q = z.__div__(y)
            self.assertClose(q, x)
            q = z.__truediv__(y)
            self.assertClose(q, x)

    def test_div(self):
        simple_real = [float(i) for i in xrange(-5, 6)]
        simple_complex = [complex(x, y) for x in simple_real for y in simple_real]
        for x in simple_complex:
            for y in simple_complex:
                self.check_div(x, y)

        # A naive complex division algorithm (such as in 2.0) is very prone to
        # nonsense errors for these (overflows and underflows).
        self.check_div(complex(1e200, 1e200), 1+0j)
        self.check_div(complex(1e-200, 1e-200), 1+0j)

        # Just for fun.
        for i in xrange(100):
            self.check_div(complex(random(), random()),
                           complex(random(), random()))

        self.assertRaises(ZeroDivisionError, complex.__div__, 1+1j, 0+0j)
        # FIXME: The following currently crashes on Alpha
        # self.assertRaises(OverflowError, pow, 1e200+1j, 1e200+1j)

    def test_truediv(self):
        self.assertAlmostEqual(complex.__truediv__(2+0j, 1+1j), 1-1j)
        self.assertRaises(ZeroDivisionError, complex.__truediv__, 1+1j, 0+0j)

        for denom_real, denom_imag in [(0, NAN), (NAN, 0), (NAN, NAN)]:
            z = complex(0, 0) / complex(denom_real, denom_imag)
            self.assertTrue(isnan(z.real))
            self.assertTrue(isnan(z.imag))

    def test_floordiv(self):
        self.assertAlmostEqual(complex.__floordiv__(3+0j, 1.5+0j), 2)
        self.assertRaises(ZeroDivisionError, complex.__floordiv__, 3+0j, 0+0j)

    def test_coerce(self):
        self.assertRaises(OverflowError, complex.__coerce__, 1+1j, 1L<<10000)

    def test_no_implicit_coerce(self):
        # Python 2.7 removed implicit coercion from the complex type
        class A(object):
            def __coerce__(self, other):
                raise RuntimeError
            __hash__ = None
            def __cmp__(self, other):
                return -1

        a = A()
        self.assertRaises(TypeError, lambda: a + 2.0j)
        self.assertTrue(a < 2.0j)

    def test_richcompare(self):
        self.assertEqual(complex.__eq__(1+1j, 1L<<10000), False)
        self.assertEqual(complex.__lt__(1+1j, None), NotImplemented)
        self.assertIs(complex.__eq__(1+1j, 1+1j), True)
        self.assertIs(complex.__eq__(1+1j, 2+2j), False)
        self.assertIs(complex.__ne__(1+1j, 1+1j), False)
        self.assertIs(complex.__ne__(1+1j, 2+2j), True)
        self.assertRaises(TypeError, complex.__lt__, 1+1j, 2+2j)
        self.assertRaises(TypeError, complex.__le__, 1+1j, 2+2j)
        self.assertRaises(TypeError, complex.__gt__, 1+1j, 2+2j)
        self.assertRaises(TypeError, complex.__ge__, 1+1j, 2+2j)

    def test_richcompare_boundaries(self):
        def check(n, deltas, is_equal, imag = 0.0):
            for delta in deltas:
                i = n + delta
                z = complex(i, imag)
                self.assertIs(complex.__eq__(z, i), is_equal(delta))
                self.assertIs(complex.__ne__(z, i), not is_equal(delta))
        # For IEEE-754 doubles the following should hold:
        #    x in [2 ** (52 + i), 2 ** (53 + i + 1)] -> x mod 2 ** i == 0
        # where the interval is representable, of course.
        for i in range(1, 10):
            pow = 52 + i
            mult = 2 ** i
            check(2 ** pow, range(1, 101), lambda delta: delta % mult == 0)
            check(2 ** pow, range(1, 101), lambda delta: False, float(i))
        check(2 ** 53, range(-100, 0), lambda delta: True)

    def test_mod(self):
        self.assertRaises(ZeroDivisionError, (1+1j).__mod__, 0+0j)

        a = 3.33+4.43j
        try:
            a % 0
        except ZeroDivisionError:
            pass
        else:
            self.fail("modulo parama can't be 0")

    def test_divmod(self):
        self.assertRaises(ZeroDivisionError, divmod, 1+1j, 0+0j)

    def test_pow(self):
        self.assertAlmostEqual(pow(1+1j, 0+0j), 1.0)
        self.assertAlmostEqual(pow(0+0j, 2+0j), 0.0)
        self.assertRaises(ZeroDivisionError, pow, 0+0j, 1j)
        self.assertAlmostEqual(pow(1j, -1), 1/1j)
        self.assertAlmostEqual(pow(1j, 200), 1)
        self.assertRaises(ValueError, pow, 1+1j, 1+1j, 1+1j)

        a = 3.33+4.43j
        self.assertEqual(a ** 0j, 1)
        self.assertEqual(a ** 0.+0.j, 1)

        self.assertEqual(3j ** 0j, 1)
        self.assertEqual(3j ** 0, 1)

        try:
            0j ** a
        except ZeroDivisionError:
            pass
        else:
            self.fail("should fail 0.0 to negative or complex power")

        try:
            0j ** (3-2j)
        except ZeroDivisionError:
            pass
        else:
            self.fail("should fail 0.0 to negative or complex power")

        # The following is used to exercise certain code paths
        self.assertEqual(a ** 105, a ** 105)
        self.assertEqual(a ** -105, a ** -105)
        self.assertEqual(a ** -30, a ** -30)

        self.assertEqual(0.0j ** 0, 1)

        b = 5.1+2.3j
        self.assertRaises(ValueError, pow, a, b, 0)

    def test_boolcontext(self):
        for i in xrange(100):
            self.assertTrue(complex(random() + 1e-6, random() + 1e-6))
        self.assertTrue(not complex(0.0, 0.0))

    def test_conjugate(self):
        self.assertClose(complex(5.3, 9.8).conjugate(), 5.3-9.8j)

    def test_constructor(self):
        class OS:
            def __init__(self, value): self.value = value
            def __complex__(self): return self.value
        class NS(object):
            def __init__(self, value): self.value = value
            def __complex__(self): return self.value
        self.assertEqual(complex(OS(1+10j)), 1+10j)
        self.assertEqual(complex(NS(1+10j)), 1+10j)
        self.assertRaises(TypeError, complex, OS(None))
        self.assertRaises(TypeError, complex, NS(None))

        self.assertAlmostEqual(complex("1+10j"), 1+10j)
        self.assertAlmostEqual(complex(10), 10+0j)
        self.assertAlmostEqual(complex(10.0), 10+0j)
        self.assertAlmostEqual(complex(10L), 10+0j)
        self.assertAlmostEqual(complex(10+0j), 10+0j)
        self.assertAlmostEqual(complex(1,10), 1+10j)
        self.assertAlmostEqual(complex(1,10L), 1+10j)
        self.assertAlmostEqual(complex(1,10.0), 1+10j)
        self.assertAlmostEqual(complex(1L,10), 1+10j)
        self.assertAlmostEqual(complex(1L,10L), 1+10j)
        self.assertAlmostEqual(complex(1L,10.0), 1+10j)
        self.assertAlmostEqual(complex(1.0,10), 1+10j)
        self.assertAlmostEqual(complex(1.0,10L), 1+10j)
        self.assertAlmostEqual(complex(1.0,10.0), 1+10j)
        self.assertAlmostEqual(complex(3.14+0j), 3.14+0j)
        self.assertAlmostEqual(complex(3.14), 3.14+0j)
        self.assertAlmostEqual(complex(314), 314.0+0j)
        self.assertAlmostEqual(complex(314L), 314.0+0j)
        self.assertAlmostEqual(complex(3.14+0j, 0j), 3.14+0j)
        self.assertAlmostEqual(complex(3.14, 0.0), 3.14+0j)
        self.assertAlmostEqual(complex(314, 0), 314.0+0j)
        self.assertAlmostEqual(complex(314L, 0L), 314.0+0j)
        self.assertAlmostEqual(complex(0j, 3.14j), -3.14+0j)
        self.assertAlmostEqual(complex(0.0, 3.14j), -3.14+0j)
        self.assertAlmostEqual(complex(0j, 3.14), 3.14j)
        self.assertAlmostEqual(complex(0.0, 3.14), 3.14j)
        self.assertAlmostEqual(complex("1"), 1+0j)
        self.assertAlmostEqual(complex("1j"), 1j)
        self.assertAlmostEqual(complex(),  0)
        self.assertAlmostEqual(complex("-1"), -1)
        self.assertAlmostEqual(complex("+1"), +1)
        self.assertAlmostEqual(complex("(1+2j)"), 1+2j)
        self.assertAlmostEqual(complex("(1.3+2.2j)"), 1.3+2.2j)
        self.assertAlmostEqual(complex("3.14+1J"), 3.14+1j)
        self.assertAlmostEqual(complex(" ( +3.14-6J )"), 3.14-6j)
        self.assertAlmostEqual(complex(" ( +3.14-J )"), 3.14-1j)
        self.assertAlmostEqual(complex(" ( +3.14+j )"), 3.14+1j)
        self.assertAlmostEqual(complex("J"), 1j)
        self.assertAlmostEqual(complex("( j )"), 1j)
        self.assertAlmostEqual(complex("+J"), 1j)
        self.assertAlmostEqual(complex("( -j)"), -1j)
        self.assertAlmostEqual(complex('1e-500'), 0.0 + 0.0j)
        self.assertAlmostEqual(complex('-1e-500j'), 0.0 - 0.0j)
        self.assertAlmostEqual(complex('-1e-500+1e-500j'), -0.0 + 0.0j)

        class complex2(complex): pass
        self.assertAlmostEqual(complex(complex2(1+1j)), 1+1j)
        self.assertAlmostEqual(complex(real=17, imag=23), 17+23j)
        self.assertAlmostEqual(complex(real=17+23j), 17+23j)
        self.assertAlmostEqual(complex(real=17+23j, imag=23), 17+46j)
        self.assertAlmostEqual(complex(real=1+2j, imag=3+4j), -3+5j)

        # check that the sign of a zero in the real or imaginary part
        # is preserved when constructing from two floats.  (These checks
        # are harmless on systems without support for signed zeros.)
        def split_zeros(x):
            """Function that produces different results for 0. and -0."""
            return atan2(x, -1.)

        self.assertEqual(split_zeros(complex(1., 0.).imag), split_zeros(0.))
        self.assertEqual(split_zeros(complex(1., -0.).imag), split_zeros(-0.))
        self.assertEqual(split_zeros(complex(0., 1.).real), split_zeros(0.))
        self.assertEqual(split_zeros(complex(-0., 1.).real), split_zeros(-0.))

        c = 3.14 + 1j
        self.assertTrue(complex(c) is c)
        del c

        self.assertRaises(TypeError, complex, "1", "1")
        self.assertRaises(TypeError, complex, 1, "1")

        if test_support.have_unicode:
            self.assertEqual(complex(unicode("  3.14+J  ")), 3.14+1j)

        # SF bug 543840:  complex(string) accepts strings with \0
        # Fixed in 2.3.
        self.assertRaises(ValueError, complex, '1+1j\0j')

        self.assertRaises(TypeError, int, 5+3j)
        self.assertRaises(TypeError, long, 5+3j)
        self.assertRaises(TypeError, float, 5+3j)
        self.assertRaises(ValueError, complex, "")
        self.assertRaises(TypeError, complex, None)
        self.assertRaises(ValueError, complex, "\0")
        self.assertRaises(ValueError, complex, "3\09")
        self.assertRaises(TypeError, complex, "1", "2")
        self.assertRaises(TypeError, complex, "1", 42)
        self.assertRaises(TypeError, complex, 1, "2")
        self.assertRaises(ValueError, complex, "1+")
        self.assertRaises(ValueError, complex, "1+1j+1j")
        self.assertRaises(ValueError, complex, "--")
        self.assertRaises(ValueError, complex, "(1+2j")
        self.assertRaises(ValueError, complex, "1+2j)")
        self.assertRaises(ValueError, complex, "1+(2j)")
        self.assertRaises(ValueError, complex, "(1+2j)123")
        if test_support.have_unicode:
            self.assertRaises(ValueError, complex, unicode("x"))
        self.assertRaises(ValueError, complex, "1j+2")
        self.assertRaises(ValueError, complex, "1e1ej")
        self.assertRaises(ValueError, complex, "1e++1ej")
        self.assertRaises(ValueError, complex, ")1+2j(")
        # the following three are accepted by Python 2.6
        self.assertRaises(ValueError, complex, "1..1j")
        self.assertRaises(ValueError, complex, "1.11.1j")
        self.assertRaises(ValueError, complex, "1e1.1j")

        if test_support.have_unicode:
            # check that complex accepts long unicode strings
            self.assertEqual(type(complex(unicode("1"*500))), complex)

        class EvilExc(Exception):
            pass

        class evilcomplex:
            def __complex__(self):
                raise EvilExc

        self.assertRaises(EvilExc, complex, evilcomplex())

        class float2:
            def __init__(self, value):
                self.value = value
            def __float__(self):
                return self.value

        self.assertAlmostEqual(complex(float2(42.)), 42)
        self.assertAlmostEqual(complex(real=float2(17.), imag=float2(23.)), 17+23j)
        self.assertRaises(TypeError, complex, float2(None))

        class complex0(complex):
            """Test usage of __complex__() when inheriting from 'complex'"""
            def __complex__(self):
                return 42j

        class complex1(complex):
            """Test usage of __complex__() with a __new__() method"""
            def __new__(self, value=0j):
                return complex.__new__(self, 2*value)
            def __complex__(self):
                return self

        class complex2(complex):
            """Make sure that __complex__() calls fail if anything other than a
            complex is returned"""
            def __complex__(self):
                return None

        self.assertAlmostEqual(complex(complex0(1j)), 42j)
        self.assertAlmostEqual(complex(complex1(1j)), 2j)
        self.assertRaises(TypeError, complex, complex2(1j))

    def test_subclass(self):
        class xcomplex(complex):
            def __add__(self,other):
                return xcomplex(complex(self) + other)
            __radd__ = __add__

            def __sub__(self,other):
                return xcomplex(complex(self) + other)
            __rsub__ = __sub__

            def __mul__(self,other):
                return xcomplex(complex(self) * other)
            __rmul__ = __mul__

            def __div__(self,other):
                return xcomplex(complex(self) / other)

            def __rdiv__(self,other):
                return xcomplex(other / complex(self))

            __truediv__ = __div__
            __rtruediv__ = __rdiv__

            def __floordiv__(self,other):
                return xcomplex(complex(self) // other)

            def __rfloordiv__(self,other):
                return xcomplex(other // complex(self))

            def __pow__(self,other):
                return xcomplex(complex(self) ** other)

            def __rpow__(self,other):
                return xcomplex(other ** complex(self) )

            def __mod__(self,other):
                return xcomplex(complex(self) % other)

            def __rmod__(self,other):
                return xcomplex(other % complex(self))

        infix_binops = ('+', '-', '*', '**', '%', '//', '/')
        xcomplex_values = (xcomplex(1), xcomplex(123.0),
                           xcomplex(-10+2j), xcomplex(3+187j),
                           xcomplex(3-78j))
        test_values = (1, 123.0, 10-19j, xcomplex(1+2j),
                       xcomplex(1+87j), xcomplex(10+90j))

        for op in infix_binops:
            for x in xcomplex_values:
                for y in test_values:
                    a = 'x %s y' % op
                    b = 'y %s x' % op
                    self.assertTrue(type(eval(a)) is type(eval(b)) is xcomplex)

    def test_hash(self):
        for x in xrange(-30, 30):
            self.assertEqual(hash(x), hash(complex(x, 0)))
            x /= 3.0    # now check against floating point
            self.assertEqual(hash(x), hash(complex(x, 0.)))

    def test_abs(self):
        nums = [complex(x/3., y/7.) for x in xrange(-9,9) for y in xrange(-9,9)]
        for num in nums:
            self.assertAlmostEqual((num.real**2 + num.imag**2)  ** 0.5, abs(num))

    def test_repr(self):
        self.assertEqual(repr(1+6j), '(1+6j)')
        self.assertEqual(repr(1-6j), '(1-6j)')

        self.assertNotEqual(repr(-(1+0j)), '(-1+-0j)')

        self.assertEqual(1-6j,complex(repr(1-6j)))
        self.assertEqual(1+6j,complex(repr(1+6j)))
        self.assertEqual(-6j,complex(repr(-6j)))
        self.assertEqual(6j,complex(repr(6j)))

        self.assertEqual(repr(complex(1., INF)), "(1+infj)")
        self.assertEqual(repr(complex(1., -INF)), "(1-infj)")
        self.assertEqual(repr(complex(INF, 1)), "(inf+1j)")
        self.assertEqual(repr(complex(-INF, INF)), "(-inf+infj)")
        self.assertEqual(repr(complex(NAN, 1)), "(nan+1j)")
        self.assertEqual(repr(complex(1, NAN)), "(1+nanj)")
        self.assertEqual(repr(complex(NAN, NAN)), "(nan+nanj)")

        self.assertEqual(repr(complex(0, INF)), "infj")
        self.assertEqual(repr(complex(0, -INF)), "-infj")
        self.assertEqual(repr(complex(0, NAN)), "nanj")

    def test_neg(self):
        self.assertEqual(-(1+6j), -1-6j)

    def test_file(self):
        a = 3.33+4.43j
        b = 5.1+2.3j

        fo = None
        try:
            fo = open(test_support.TESTFN, "wb")
            print >>fo, a, b
            fo.close()
            fo = open(test_support.TESTFN, "rb")
            self.assertEqual(fo.read(), "%s %s\n" % (a, b))
        finally:
            if (fo is not None) and (not fo.closed):
                fo.close()
            test_support.unlink(test_support.TESTFN)

    def test_getnewargs(self):
        self.assertEqual((1+2j).__getnewargs__(), (1.0, 2.0))
        self.assertEqual((1-2j).__getnewargs__(), (1.0, -2.0))
        self.assertEqual((2j).__getnewargs__(), (0.0, 2.0))
        self.assertEqual((-0j).__getnewargs__(), (0.0, -0.0))
        self.assertEqual(complex(0, INF).__getnewargs__(), (0.0, INF))
        self.assertEqual(complex(INF, 0).__getnewargs__(), (INF, 0.0))

    if float.__getformat__("double").startswith("IEEE"):
        def test_plus_minus_0j(self):
            # test that -0j and 0j literals are not identified
            z1, z2 = 0j, -0j
            self.assertEqual(atan2(z1.imag, -1.), atan2(0., -1.))
            self.assertEqual(atan2(z2.imag, -1.), atan2(-0., -1.))

    @unittest.skipUnless(float.__getformat__("double").startswith("IEEE"),
                         "test requires IEEE 754 doubles")
    def test_overflow(self):
        self.assertEqual(complex("1e500"), complex(INF, 0.0))
        self.assertEqual(complex("-1e500j"), complex(0.0, -INF))
        self.assertEqual(complex("-1e500+1.8e308j"), complex(-INF, INF))

    @unittest.skipUnless(float.__getformat__("double").startswith("IEEE"),
                         "test requires IEEE 754 doubles")
    def test_repr_roundtrip(self):
        vals = [0.0, 1e-500, 1e-315, 1e-200, 0.0123, 3.1415, 1e50, INF, NAN]
        vals += [-v for v in vals]

        # complex(repr(z)) should recover z exactly, even for complex
        # numbers involving an infinity, nan, or negative zero
        for x in vals:
            for y in vals:
                z = complex(x, y)
                roundtrip = complex(repr(z))
                self.assertFloatsAreIdentical(z.real, roundtrip.real)
                self.assertFloatsAreIdentical(z.imag, roundtrip.imag)

        # if we predefine some constants, then eval(repr(z)) should
        # also work, except that it might change the sign of zeros
        inf, nan = float('inf'), float('nan')
        infj, nanj = complex(0.0, inf), complex(0.0, nan)
        for x in vals:
            for y in vals:
                z = complex(x, y)
                roundtrip = eval(repr(z))
                # adding 0.0 has no effect beside changing -0.0 to 0.0
                self.assertFloatsAreIdentical(0.0 + z.real,
                                              0.0 + roundtrip.real)
                self.assertFloatsAreIdentical(0.0 + z.imag,
                                              0.0 + roundtrip.imag)

    def test_format(self):
        # empty format string is same as str()
        self.assertEqual(format(1+3j, ''), str(1+3j))
        self.assertEqual(format(1.5+3.5j, ''), str(1.5+3.5j))
        self.assertEqual(format(3j, ''), str(3j))
        self.assertEqual(format(3.2j, ''), str(3.2j))
        self.assertEqual(format(3+0j, ''), str(3+0j))
        self.assertEqual(format(3.2+0j, ''), str(3.2+0j))

        # empty presentation type should still be analogous to str,
        # even when format string is nonempty (issue #5920).
        self.assertEqual(format(3.2+0j, '-'), str(3.2+0j))
        self.assertEqual(format(3.2+0j, '<'), str(3.2+0j))
        z = 4/7. - 100j/7.
        self.assertEqual(format(z, ''), str(z))
        self.assertEqual(format(z, '-'), str(z))
        self.assertEqual(format(z, '<'), str(z))
        self.assertEqual(format(z, '10'), str(z))
        z = complex(0.0, 3.0)
        self.assertEqual(format(z, ''), str(z))
        self.assertEqual(format(z, '-'), str(z))
        self.assertEqual(format(z, '<'), str(z))
        self.assertEqual(format(z, '2'), str(z))
        z = complex(-0.0, 2.0)
        self.assertEqual(format(z, ''), str(z))
        self.assertEqual(format(z, '-'), str(z))
        self.assertEqual(format(z, '<'), str(z))
        self.assertEqual(format(z, '3'), str(z))

        self.assertEqual(format(1+3j, 'g'), '1+3j')
        self.assertEqual(format(3j, 'g'), '0+3j')
        self.assertEqual(format(1.5+3.5j, 'g'), '1.5+3.5j')

        self.assertEqual(format(1.5+3.5j, '+g'), '+1.5+3.5j')
        self.assertEqual(format(1.5-3.5j, '+g'), '+1.5-3.5j')
        self.assertEqual(format(1.5-3.5j, '-g'), '1.5-3.5j')
        self.assertEqual(format(1.5+3.5j, ' g'), ' 1.5+3.5j')
        self.assertEqual(format(1.5-3.5j, ' g'), ' 1.5-3.5j')
        self.assertEqual(format(-1.5+3.5j, ' g'), '-1.5+3.5j')
        self.assertEqual(format(-1.5-3.5j, ' g'), '-1.5-3.5j')

        self.assertEqual(format(-1.5-3.5e-20j, 'g'), '-1.5-3.5e-20j')
        self.assertEqual(format(-1.5-3.5j, 'f'), '-1.500000-3.500000j')
        self.assertEqual(format(-1.5-3.5j, 'F'), '-1.500000-3.500000j')
        self.assertEqual(format(-1.5-3.5j, 'e'), '-1.500000e+00-3.500000e+00j')
        self.assertEqual(format(-1.5-3.5j, '.2e'), '-1.50e+00-3.50e+00j')
        self.assertEqual(format(-1.5-3.5j, '.2E'), '-1.50E+00-3.50E+00j')
        self.assertEqual(format(-1.5e10-3.5e5j, '.2G'), '-1.5E+10-3.5E+05j')

        self.assertEqual(format(1.5+3j, '<20g'),  '1.5+3j              ')
        self.assertEqual(format(1.5+3j, '*<20g'), '1.5+3j**************')
        self.assertEqual(format(1.5+3j, '>20g'),  '              1.5+3j')
        self.assertEqual(format(1.5+3j, '^20g'),  '       1.5+3j       ')
        self.assertEqual(format(1.5+3j, '<20'),   '(1.5+3j)            ')
        self.assertEqual(format(1.5+3j, '>20'),   '            (1.5+3j)')
        self.assertEqual(format(1.5+3j, '^20'),   '      (1.5+3j)      ')
        self.assertEqual(format(1.123-3.123j, '^20.2'), '     (1.1-3.1j)     ')

        self.assertEqual(format(1.5+3j, '20.2f'), '          1.50+3.00j')
        self.assertEqual(format(1.5+3j, '>20.2f'), '          1.50+3.00j')
        self.assertEqual(format(1.5+3j, '<20.2f'), '1.50+3.00j          ')
        self.assertEqual(format(1.5e20+3j, '<20.2f'), '150000000000000000000.00+3.00j')
        self.assertEqual(format(1.5e20+3j, '>40.2f'), '          150000000000000000000.00+3.00j')
        self.assertEqual(format(1.5e20+3j, '^40,.2f'), '  150,000,000,000,000,000,000.00+3.00j  ')
        self.assertEqual(format(1.5e21+3j, '^40,.2f'), ' 1,500,000,000,000,000,000,000.00+3.00j ')
        self.assertEqual(format(1.5e21+3000j, ',.2f'), '1,500,000,000,000,000,000,000.00+3,000.00j')

        # alternate is invalid
        self.assertRaises(ValueError, (1.5+0.5j).__format__, '#f')

        # zero padding is invalid
        self.assertRaises(ValueError, (1.5+0.5j).__format__, '010f')

        # '=' alignment is invalid
        self.assertRaises(ValueError, (1.5+3j).__format__, '=20')

        # integer presentation types are an error
        for t in 'bcdoxX':
            self.assertRaises(ValueError, (1.5+0.5j).__format__, t)

        # make sure everything works in ''.format()
        self.assertEqual('*{0:.3f}*'.format(3.14159+2.71828j), '*3.142+2.718j*')

        # issue 3382: 'f' and 'F' with inf's and nan's
        self.assertEqual('{0:f}'.format(INF+0j), 'inf+0.000000j')
        self.assertEqual('{0:F}'.format(INF+0j), 'INF+0.000000j')
        self.assertEqual('{0:f}'.format(-INF+0j), '-inf+0.000000j')
        self.assertEqual('{0:F}'.format(-INF+0j), '-INF+0.000000j')
        self.assertEqual('{0:f}'.format(complex(INF, INF)), 'inf+infj')
        self.assertEqual('{0:F}'.format(complex(INF, INF)), 'INF+INFj')
        self.assertEqual('{0:f}'.format(complex(INF, -INF)), 'inf-infj')
        self.assertEqual('{0:F}'.format(complex(INF, -INF)), 'INF-INFj')
        self.assertEqual('{0:f}'.format(complex(-INF, INF)), '-inf+infj')
        self.assertEqual('{0:F}'.format(complex(-INF, INF)), '-INF+INFj')
        self.assertEqual('{0:f}'.format(complex(-INF, -INF)), '-inf-infj')
        self.assertEqual('{0:F}'.format(complex(-INF, -INF)), '-INF-INFj')

        self.assertEqual('{0:f}'.format(complex(NAN, 0)), 'nan+0.000000j')
        self.assertEqual('{0:F}'.format(complex(NAN, 0)), 'NAN+0.000000j')
        self.assertEqual('{0:f}'.format(complex(NAN, NAN)), 'nan+nanj')
        self.assertEqual('{0:F}'.format(complex(NAN, NAN)), 'NAN+NANj')

def test_main():
    with test_support.check_warnings(("complex divmod.., // and % are "
                                      "deprecated", DeprecationWarning)):
        test_support.run_unittest(ComplexTest)

if __name__ == "__main__":
    test_main()