1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 | Lib/test/test_cmath.py
from test.test_support import run_unittest, cpython_only from test.test_math import parse_testfile, test_file import unittest import cmath, math from cmath import phase, polar, rect, pi INF = float('inf') NAN = float('nan') complex_zeros = [complex(x, y) for x in [0.0, -0.0] for y in [0.0, -0.0]] complex_infinities = [complex(x, y) for x, y in [ (INF, 0.0), # 1st quadrant (INF, 2.3), (INF, INF), (2.3, INF), (0.0, INF), (-0.0, INF), # 2nd quadrant (-2.3, INF), (-INF, INF), (-INF, 2.3), (-INF, 0.0), (-INF, -0.0), # 3rd quadrant (-INF, -2.3), (-INF, -INF), (-2.3, -INF), (-0.0, -INF), (0.0, -INF), # 4th quadrant (2.3, -INF), (INF, -INF), (INF, -2.3), (INF, -0.0) ]] complex_nans = [complex(x, y) for x, y in [ (NAN, -INF), (NAN, -2.3), (NAN, -0.0), (NAN, 0.0), (NAN, 2.3), (NAN, INF), (-INF, NAN), (-2.3, NAN), (-0.0, NAN), (0.0, NAN), (2.3, NAN), (INF, NAN) ]] class CMathTests(unittest.TestCase): # list of all functions in cmath test_functions = [getattr(cmath, fname) for fname in [ 'acos', 'acosh', 'asin', 'asinh', 'atan', 'atanh', 'cos', 'cosh', 'exp', 'log', 'log10', 'sin', 'sinh', 'sqrt', 'tan', 'tanh']] # test first and second arguments independently for 2-argument log test_functions.append(lambda x : cmath.log(x, 1729. + 0j)) test_functions.append(lambda x : cmath.log(14.-27j, x)) def setUp(self): self.test_values = open(test_file) def tearDown(self): self.test_values.close() def rAssertAlmostEqual(self, a, b, rel_err = 2e-15, abs_err = 5e-323, msg=None): """Fail if the two floating-point numbers are not almost equal. Determine whether floating-point values a and b are equal to within a (small) rounding error. The default values for rel_err and abs_err are chosen to be suitable for platforms where a float is represented by an IEEE 754 double. They allow an error of between 9 and 19 ulps. """ # special values testing if math.isnan(a): if math.isnan(b): return self.fail(msg or '{!r} should be nan'.format(b)) if math.isinf(a): if a == b: return self.fail(msg or 'finite result where infinity expected: ' 'expected {!r}, got {!r}'.format(a, b)) # if both a and b are zero, check whether they have the same sign # (in theory there are examples where it would be legitimate for a # and b to have opposite signs; in practice these hardly ever # occur). if not a and not b: if math.copysign(1., a) != math.copysign(1., b): self.fail(msg or 'zero has wrong sign: expected {!r}, ' 'got {!r}'.format(a, b)) # if a-b overflows, or b is infinite, return False. Again, in # theory there are examples where a is within a few ulps of the # max representable float, and then b could legitimately be # infinite. In practice these examples are rare. try: absolute_error = abs(b-a) except OverflowError: pass else: # test passes if either the absolute error or the relative # error is sufficiently small. The defaults amount to an # error of between 9 ulps and 19 ulps on an IEEE-754 compliant # machine. if absolute_error <= max(abs_err, rel_err * abs(a)): return self.fail(msg or '{!r} and {!r} are not sufficiently close'.format(a, b)) def test_constants(self): e_expected = 2.71828182845904523536 pi_expected = 3.14159265358979323846 self.assertAlmostEqual(cmath.pi, pi_expected, places=9, msg="cmath.pi is {}; should be {}".format(cmath.pi, pi_expected)) self.assertAlmostEqual(cmath.e, e_expected, places=9, msg="cmath.e is {}; should be {}".format(cmath.e, e_expected)) def test_user_object(self): # Test automatic calling of __complex__ and __float__ by cmath # functions # some random values to use as test values; we avoid values # for which any of the functions in cmath is undefined # (i.e. 0., 1., -1., 1j, -1j) or would cause overflow cx_arg = 4.419414439 + 1.497100113j flt_arg = -6.131677725 # a variety of non-complex numbers, used to check that # non-complex return values from __complex__ give an error non_complexes = ["not complex", 1, 5L, 2., None, object(), NotImplemented] # Now we introduce a variety of classes whose instances might # end up being passed to the cmath functions # usual case: new-style class implementing __complex__ class MyComplex(object): def __init__(self, value): self.value = value def __complex__(self): return self.value # old-style class implementing __complex__ class MyComplexOS: def __init__(self, value): self.value = value def __complex__(self): return self.value # classes for which __complex__ raises an exception class SomeException(Exception): pass class MyComplexException(object): def __complex__(self): raise SomeException class MyComplexExceptionOS: def __complex__(self): raise SomeException # some classes not providing __float__ or __complex__ class NeitherComplexNorFloat(object): pass class NeitherComplexNorFloatOS: pass class MyInt(object): def __int__(self): return 2 def __long__(self): return 2L def __index__(self): return 2 class MyIntOS: def __int__(self): return 2 def __long__(self): return 2L def __index__(self): return 2 # other possible combinations of __float__ and __complex__ # that should work class FloatAndComplex(object): def __float__(self): return flt_arg def __complex__(self): return cx_arg class FloatAndComplexOS: def __float__(self): return flt_arg def __complex__(self): return cx_arg class JustFloat(object): def __float__(self): return flt_arg class JustFloatOS: def __float__(self): return flt_arg for f in self.test_functions: # usual usage self.assertEqual(f(MyComplex(cx_arg)), f(cx_arg)) self.assertEqual(f(MyComplexOS(cx_arg)), f(cx_arg)) # other combinations of __float__ and __complex__ self.assertEqual(f(FloatAndComplex()), f(cx_arg)) self.assertEqual(f(FloatAndComplexOS()), f(cx_arg)) self.assertEqual(f(JustFloat()), f(flt_arg)) self.assertEqual(f(JustFloatOS()), f(flt_arg)) # TypeError should be raised for classes not providing # either __complex__ or __float__, even if they provide # __int__, __long__ or __index__. An old-style class # currently raises AttributeError instead of a TypeError; # this could be considered a bug. self.assertRaises(TypeError, f, NeitherComplexNorFloat()) self.assertRaises(TypeError, f, MyInt()) self.assertRaises(Exception, f, NeitherComplexNorFloatOS()) self.assertRaises(Exception, f, MyIntOS()) # non-complex return value from __complex__ -> TypeError for bad_complex in non_complexes: self.assertRaises(TypeError, f, MyComplex(bad_complex)) self.assertRaises(TypeError, f, MyComplexOS(bad_complex)) # exceptions in __complex__ should be propagated correctly self.assertRaises(SomeException, f, MyComplexException()) self.assertRaises(SomeException, f, MyComplexExceptionOS()) def test_input_type(self): # ints and longs should be acceptable inputs to all cmath # functions, by virtue of providing a __float__ method for f in self.test_functions: for arg in [2, 2L, 2.]: self.assertEqual(f(arg), f(arg.__float__())) # but strings should give a TypeError for f in self.test_functions: for arg in ["a", "long_string", "0", "1j", ""]: self.assertRaises(TypeError, f, arg) def test_cmath_matches_math(self): # check that corresponding cmath and math functions are equal # for floats in the appropriate range # test_values in (0, 1) test_values = [0.01, 0.1, 0.2, 0.5, 0.9, 0.99] # test_values for functions defined on [-1., 1.] unit_interval = test_values + [-x for x in test_values] + \ [0., 1., -1.] # test_values for log, log10, sqrt positive = test_values + [1.] + [1./x for x in test_values] nonnegative = [0.] + positive # test_values for functions defined on the whole real line real_line = [0.] + positive + [-x for x in positive] test_functions = { 'acos' : unit_interval, 'asin' : unit_interval, 'atan' : real_line, 'cos' : real_line, 'cosh' : real_line, 'exp' : real_line, 'log' : positive, 'log10' : positive, 'sin' : real_line, 'sinh' : real_line, 'sqrt' : nonnegative, 'tan' : real_line, 'tanh' : real_line} for fn, values in test_functions.items(): float_fn = getattr(math, fn) complex_fn = getattr(cmath, fn) for v in values: z = complex_fn(v) self.rAssertAlmostEqual(float_fn(v), z.real) self.assertEqual(0., z.imag) # test two-argument version of log with various bases for base in [0.5, 2., 10.]: for v in positive: z = cmath.log(v, base) self.rAssertAlmostEqual(math.log(v, base), z.real) self.assertEqual(0., z.imag) def test_specific_values(self): if not float.__getformat__("double").startswith("IEEE"): self.skipTest('needs IEEE double') def rect_complex(z): """Wrapped version of rect that accepts a complex number instead of two float arguments.""" return cmath.rect(z.real, z.imag) def polar_complex(z): """Wrapped version of polar that returns a complex number instead of two floats.""" return complex(*polar(z)) for id, fn, ar, ai, er, ei, flags in parse_testfile(test_file): arg = complex(ar, ai) expected = complex(er, ei) if fn == 'rect': function = rect_complex elif fn == 'polar': function = polar_complex else: function = getattr(cmath, fn) if 'divide-by-zero' in flags or 'invalid' in flags: try: actual = function(arg) except ValueError: continue else: self.fail('ValueError not raised in test ' '{}: {}(complex({!r}, {!r}))'.format(id, fn, ar, ai)) if 'overflow' in flags: try: actual = function(arg) except OverflowError: continue else: self.fail('OverflowError not raised in test ' '{}: {}(complex({!r}, {!r}))'.format(id, fn, ar, ai)) actual = function(arg) if 'ignore-real-sign' in flags: actual = complex(abs(actual.real), actual.imag) expected = complex(abs(expected.real), expected.imag) if 'ignore-imag-sign' in flags: actual = complex(actual.real, abs(actual.imag)) expected = complex(expected.real, abs(expected.imag)) # for the real part of the log function, we allow an # absolute error of up to 2e-15. if fn in ('log', 'log10'): real_abs_err = 2e-15 else: real_abs_err = 5e-323 error_message = ( '{}: {}(complex({!r}, {!r}))\n' 'Expected: complex({!r}, {!r})\n' 'Received: complex({!r}, {!r})\n' 'Received value insufficiently close to expected value.' ).format(id, fn, ar, ai, expected.real, expected.imag, actual.real, actual.imag) self.rAssertAlmostEqual(expected.real, actual.real, abs_err=real_abs_err, msg=error_message) self.rAssertAlmostEqual(expected.imag, actual.imag, msg=error_message) def check_polar(self, func): def check(arg, expected): got = func(arg) for e, g in zip(expected, got): self.rAssertAlmostEqual(e, g) check(0, (0., 0.)) check(1, (1., 0.)) check(-1, (1., pi)) check(1j, (1., pi / 2)) check(-3j, (3., -pi / 2)) inf = float('inf') check(complex(inf, 0), (inf, 0.)) check(complex(-inf, 0), (inf, pi)) check(complex(3, inf), (inf, pi / 2)) check(complex(5, -inf), (inf, -pi / 2)) check(complex(inf, inf), (inf, pi / 4)) check(complex(inf, -inf), (inf, -pi / 4)) check(complex(-inf, inf), (inf, 3 * pi / 4)) check(complex(-inf, -inf), (inf, -3 * pi / 4)) nan = float('nan') check(complex(nan, 0), (nan, nan)) check(complex(0, nan), (nan, nan)) check(complex(nan, nan), (nan, nan)) check(complex(inf, nan), (inf, nan)) check(complex(-inf, nan), (inf, nan)) check(complex(nan, inf), (inf, nan)) check(complex(nan, -inf), (inf, nan)) def test_polar(self): self.check_polar(polar) @cpython_only def test_polar_errno(self): # Issue #24489: check a previously set C errno doesn't disturb polar() from _testcapi import set_errno def polar_with_errno_set(z): set_errno(11) try: return polar(z) finally: set_errno(0) self.check_polar(polar_with_errno_set) def test_phase(self): self.assertAlmostEqual(phase(0), 0.) self.assertAlmostEqual(phase(1.), 0.) self.assertAlmostEqual(phase(-1.), pi) self.assertAlmostEqual(phase(-1.+1E-300j), pi) self.assertAlmostEqual(phase(-1.-1E-300j), -pi) self.assertAlmostEqual(phase(1j), pi/2) self.assertAlmostEqual(phase(-1j), -pi/2) # zeros self.assertEqual(phase(complex(0.0, 0.0)), 0.0) self.assertEqual(phase(complex(0.0, -0.0)), -0.0) self.assertEqual(phase(complex(-0.0, 0.0)), pi) self.assertEqual(phase(complex(-0.0, -0.0)), -pi) # infinities self.assertAlmostEqual(phase(complex(-INF, -0.0)), -pi) self.assertAlmostEqual(phase(complex(-INF, -2.3)), -pi) self.assertAlmostEqual(phase(complex(-INF, -INF)), -0.75*pi) self.assertAlmostEqual(phase(complex(-2.3, -INF)), -pi/2) self.assertAlmostEqual(phase(complex(-0.0, -INF)), -pi/2) self.assertAlmostEqual(phase(complex(0.0, -INF)), -pi/2) self.assertAlmostEqual(phase(complex(2.3, -INF)), -pi/2) self.assertAlmostEqual(phase(complex(INF, -INF)), -pi/4) self.assertEqual(phase(complex(INF, -2.3)), -0.0) self.assertEqual(phase(complex(INF, -0.0)), -0.0) self.assertEqual(phase(complex(INF, 0.0)), 0.0) self.assertEqual(phase(complex(INF, 2.3)), 0.0) self.assertAlmostEqual(phase(complex(INF, INF)), pi/4) self.assertAlmostEqual(phase(complex(2.3, INF)), pi/2) self.assertAlmostEqual(phase(complex(0.0, INF)), pi/2) self.assertAlmostEqual(phase(complex(-0.0, INF)), pi/2) self.assertAlmostEqual(phase(complex(-2.3, INF)), pi/2) self.assertAlmostEqual(phase(complex(-INF, INF)), 0.75*pi) self.assertAlmostEqual(phase(complex(-INF, 2.3)), pi) self.assertAlmostEqual(phase(complex(-INF, 0.0)), pi) # real or imaginary part NaN for z in complex_nans: self.assertTrue(math.isnan(phase(z))) def test_abs(self): # zeros for z in complex_zeros: self.assertEqual(abs(z), 0.0) # infinities for z in complex_infinities: self.assertEqual(abs(z), INF) # real or imaginary part NaN self.assertEqual(abs(complex(NAN, -INF)), INF) self.assertTrue(math.isnan(abs(complex(NAN, -2.3)))) self.assertTrue(math.isnan(abs(complex(NAN, -0.0)))) self.assertTrue(math.isnan(abs(complex(NAN, 0.0)))) self.assertTrue(math.isnan(abs(complex(NAN, 2.3)))) self.assertEqual(abs(complex(NAN, INF)), INF) self.assertEqual(abs(complex(-INF, NAN)), INF) self.assertTrue(math.isnan(abs(complex(-2.3, NAN)))) self.assertTrue(math.isnan(abs(complex(-0.0, NAN)))) self.assertTrue(math.isnan(abs(complex(0.0, NAN)))) self.assertTrue(math.isnan(abs(complex(2.3, NAN)))) self.assertEqual(abs(complex(INF, NAN)), INF) self.assertTrue(math.isnan(abs(complex(NAN, NAN)))) # result overflows if float.__getformat__("double").startswith("IEEE"): self.assertRaises(OverflowError, abs, complex(1.4e308, 1.4e308)) def assertCEqual(self, a, b): eps = 1E-7 if abs(a.real - b[0]) > eps or abs(a.imag - b[1]) > eps: self.fail((a ,b)) def test_rect(self): self.assertCEqual(rect(0, 0), (0, 0)) self.assertCEqual(rect(1, 0), (1., 0)) self.assertCEqual(rect(1, -pi), (-1., 0)) self.assertCEqual(rect(1, pi/2), (0, 1.)) self.assertCEqual(rect(1, -pi/2), (0, -1.)) def test_isnan(self): self.assertFalse(cmath.isnan(1)) self.assertFalse(cmath.isnan(1j)) self.assertFalse(cmath.isnan(INF)) self.assertTrue(cmath.isnan(NAN)) self.assertTrue(cmath.isnan(complex(NAN, 0))) self.assertTrue(cmath.isnan(complex(0, NAN))) self.assertTrue(cmath.isnan(complex(NAN, NAN))) self.assertTrue(cmath.isnan(complex(NAN, INF))) self.assertTrue(cmath.isnan(complex(INF, NAN))) def test_isinf(self): self.assertFalse(cmath.isinf(1)) self.assertFalse(cmath.isinf(1j)) self.assertFalse(cmath.isinf(NAN)) self.assertTrue(cmath.isinf(INF)) self.assertTrue(cmath.isinf(complex(INF, 0))) self.assertTrue(cmath.isinf(complex(0, INF))) self.assertTrue(cmath.isinf(complex(INF, INF))) self.assertTrue(cmath.isinf(complex(NAN, INF))) self.assertTrue(cmath.isinf(complex(INF, NAN))) def test_main(): run_unittest(CMathTests) if __name__ == "__main__": test_main() |