1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 | Python/dtoa.c
/**************************************************************** * * The author of this software is David M. Gay. * * Copyright (c) 1991, 2000, 2001 by Lucent Technologies. * * Permission to use, copy, modify, and distribute this software for any * purpose without fee is hereby granted, provided that this entire notice * is included in all copies of any software which is or includes a copy * or modification of this software and in all copies of the supporting * documentation for such software. * * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED * WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY * OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE. * ***************************************************************/ /**************************************************************** * This is dtoa.c by David M. Gay, downloaded from * http://www.netlib.org/fp/dtoa.c on April 15, 2009 and modified for * inclusion into the Python core by Mark E. T. Dickinson and Eric V. Smith. * * Please remember to check http://www.netlib.org/fp regularly (and especially * before any Python release) for bugfixes and updates. * * The major modifications from Gay's original code are as follows: * * 0. The original code has been specialized to Python's needs by removing * many of the #ifdef'd sections. In particular, code to support VAX and * IBM floating-point formats, hex NaNs, hex floats, locale-aware * treatment of the decimal point, and setting of the inexact flag have * been removed. * * 1. We use PyMem_Malloc and PyMem_Free in place of malloc and free. * * 2. The public functions strtod, dtoa and freedtoa all now have * a _Py_dg_ prefix. * * 3. Instead of assuming that PyMem_Malloc always succeeds, we thread * PyMem_Malloc failures through the code. The functions * * Balloc, multadd, s2b, i2b, mult, pow5mult, lshift, diff, d2b * * of return type *Bigint all return NULL to indicate a malloc failure. * Similarly, rv_alloc and nrv_alloc (return type char *) return NULL on * failure. bigcomp now has return type int (it used to be void) and * returns -1 on failure and 0 otherwise. _Py_dg_dtoa returns NULL * on failure. _Py_dg_strtod indicates failure due to malloc failure * by returning -1.0, setting errno=ENOMEM and *se to s00. * * 4. The static variable dtoa_result has been removed. Callers of * _Py_dg_dtoa are expected to call _Py_dg_freedtoa to free * the memory allocated by _Py_dg_dtoa. * * 5. The code has been reformatted to better fit with Python's * C style guide (PEP 7). * * 6. A bug in the memory allocation has been fixed: to avoid FREEing memory * that hasn't been MALLOC'ed, private_mem should only be used when k <= * Kmax. * * 7. _Py_dg_strtod has been modified so that it doesn't accept strings with * leading whitespace. * ***************************************************************/ /* Please send bug reports for the original dtoa.c code to David M. Gay (dmg * at acm dot org, with " at " changed at "@" and " dot " changed to "."). * Please report bugs for this modified version using the Python issue tracker * (http://bugs.python.org). */ /* On a machine with IEEE extended-precision registers, it is * necessary to specify double-precision (53-bit) rounding precision * before invoking strtod or dtoa. If the machine uses (the equivalent * of) Intel 80x87 arithmetic, the call * _control87(PC_53, MCW_PC); * does this with many compilers. Whether this or another call is * appropriate depends on the compiler; for this to work, it may be * necessary to #include "float.h" or another system-dependent header * file. */ /* strtod for IEEE-, VAX-, and IBM-arithmetic machines. * * This strtod returns a nearest machine number to the input decimal * string (or sets errno to ERANGE). With IEEE arithmetic, ties are * broken by the IEEE round-even rule. Otherwise ties are broken by * biased rounding (add half and chop). * * Inspired loosely by William D. Clinger's paper "How to Read Floating * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 92-101]. * * Modifications: * * 1. We only require IEEE, IBM, or VAX double-precision * arithmetic (not IEEE double-extended). * 2. We get by with floating-point arithmetic in a case that * Clinger missed -- when we're computing d * 10^n * for a small integer d and the integer n is not too * much larger than 22 (the maximum integer k for which * we can represent 10^k exactly), we may be able to * compute (d*10^k) * 10^(e-k) with just one roundoff. * 3. Rather than a bit-at-a-time adjustment of the binary * result in the hard case, we use floating-point * arithmetic to determine the adjustment to within * one bit; only in really hard cases do we need to * compute a second residual. * 4. Because of 3., we don't need a large table of powers of 10 * for ten-to-e (just some small tables, e.g. of 10^k * for 0 <= k <= 22). */ /* Linking of Python's #defines to Gay's #defines starts here. */ #include "Python.h" /* if PY_NO_SHORT_FLOAT_REPR is defined, then don't even try to compile the following code */ #ifndef PY_NO_SHORT_FLOAT_REPR #include "float.h" #define MALLOC PyMem_Malloc #define FREE PyMem_Free /* This code should also work for ARM mixed-endian format on little-endian machines, where doubles have byte order 45670123 (in increasing address order, 0 being the least significant byte). */ #ifdef DOUBLE_IS_LITTLE_ENDIAN_IEEE754 # define IEEE_8087 #endif #if defined(DOUBLE_IS_BIG_ENDIAN_IEEE754) || \ defined(DOUBLE_IS_ARM_MIXED_ENDIAN_IEEE754) # define IEEE_MC68k #endif #if defined(IEEE_8087) + defined(IEEE_MC68k) != 1 #error "Exactly one of IEEE_8087 or IEEE_MC68k should be defined." #endif /* The code below assumes that the endianness of integers matches the endianness of the two 32-bit words of a double. Check this. */ #if defined(WORDS_BIGENDIAN) && (defined(DOUBLE_IS_LITTLE_ENDIAN_IEEE754) || \ defined(DOUBLE_IS_ARM_MIXED_ENDIAN_IEEE754)) #error "doubles and ints have incompatible endianness" #endif #if !defined(WORDS_BIGENDIAN) && defined(DOUBLE_IS_BIG_ENDIAN_IEEE754) #error "doubles and ints have incompatible endianness" #endif #if defined(HAVE_UINT32_T) && defined(HAVE_INT32_T) typedef PY_UINT32_T ULong; typedef PY_INT32_T Long; #else #error "Failed to find an exact-width 32-bit integer type" #endif #if defined(HAVE_UINT64_T) #define ULLong PY_UINT64_T #else #undef ULLong #endif #undef DEBUG #ifdef Py_DEBUG #define DEBUG #endif /* End Python #define linking */ #ifdef DEBUG #define Bug(x) {fprintf(stderr, "%s\n", x); exit(1);} #endif #ifndef PRIVATE_MEM #define PRIVATE_MEM 2304 #endif #define PRIVATE_mem ((PRIVATE_MEM+sizeof(double)-1)/sizeof(double)) static double private_mem[PRIVATE_mem], *pmem_next = private_mem; #ifdef __cplusplus extern "C" { #endif typedef union { double d; ULong L[2]; } U; #ifdef IEEE_8087 #define word0(x) (x)->L[1] #define word1(x) (x)->L[0] #else #define word0(x) (x)->L[0] #define word1(x) (x)->L[1] #endif #define dval(x) (x)->d #ifndef STRTOD_DIGLIM #define STRTOD_DIGLIM 40 #endif /* maximum permitted exponent value for strtod; exponents larger than MAX_ABS_EXP in absolute value get truncated to +-MAX_ABS_EXP. MAX_ABS_EXP should fit into an int. */ #ifndef MAX_ABS_EXP #define MAX_ABS_EXP 1100000000U #endif /* Bound on length of pieces of input strings in _Py_dg_strtod; specifically, this is used to bound the total number of digits ignoring leading zeros and the number of digits that follow the decimal point. Ideally, MAX_DIGITS should satisfy MAX_DIGITS + 400 < MAX_ABS_EXP; that ensures that the exponent clipping in _Py_dg_strtod can't affect the value of the output. */ #ifndef MAX_DIGITS #define MAX_DIGITS 1000000000U #endif /* Guard against trying to use the above values on unusual platforms with ints * of width less than 32 bits. */ #if MAX_ABS_EXP > INT_MAX #error "MAX_ABS_EXP should fit in an int" #endif #if MAX_DIGITS > INT_MAX #error "MAX_DIGITS should fit in an int" #endif /* The following definition of Storeinc is appropriate for MIPS processors. * An alternative that might be better on some machines is * #define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff) */ #if defined(IEEE_8087) #define Storeinc(a,b,c) (((unsigned short *)a)[1] = (unsigned short)b, \ ((unsigned short *)a)[0] = (unsigned short)c, a++) #else #define Storeinc(a,b,c) (((unsigned short *)a)[0] = (unsigned short)b, \ ((unsigned short *)a)[1] = (unsigned short)c, a++) #endif /* #define P DBL_MANT_DIG */ /* Ten_pmax = floor(P*log(2)/log(5)) */ /* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */ /* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */ /* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */ #define Exp_shift 20 #define Exp_shift1 20 #define Exp_msk1 0x100000 #define Exp_msk11 0x100000 #define Exp_mask 0x7ff00000 #define P 53 #define Nbits 53 #define Bias 1023 #define Emax 1023 #define Emin (-1022) #define Etiny (-1074) /* smallest denormal is 2**Etiny */ #define Exp_1 0x3ff00000 #define Exp_11 0x3ff00000 #define Ebits 11 #define Frac_mask 0xfffff #define Frac_mask1 0xfffff #define Ten_pmax 22 #define Bletch 0x10 #define Bndry_mask 0xfffff #define Bndry_mask1 0xfffff #define Sign_bit 0x80000000 #define Log2P 1 #define Tiny0 0 #define Tiny1 1 #define Quick_max 14 #define Int_max 14 #ifndef Flt_Rounds #ifdef FLT_ROUNDS #define Flt_Rounds FLT_ROUNDS #else #define Flt_Rounds 1 #endif #endif /*Flt_Rounds*/ #define Rounding Flt_Rounds #define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1)) #define Big1 0xffffffff /* struct BCinfo is used to pass information from _Py_dg_strtod to bigcomp */ typedef struct BCinfo BCinfo; struct BCinfo { int e0, nd, nd0, scale; }; #define FFFFFFFF 0xffffffffUL #define Kmax 7 /* struct Bigint is used to represent arbitrary-precision integers. These integers are stored in sign-magnitude format, with the magnitude stored as an array of base 2**32 digits. Bigints are always normalized: if x is a Bigint then x->wds >= 1, and either x->wds == 1 or x[wds-1] is nonzero. The Bigint fields are as follows: - next is a header used by Balloc and Bfree to keep track of lists of freed Bigints; it's also used for the linked list of powers of 5 of the form 5**2**i used by pow5mult. - k indicates which pool this Bigint was allocated from - maxwds is the maximum number of words space was allocated for (usually maxwds == 2**k) - sign is 1 for negative Bigints, 0 for positive. The sign is unused (ignored on inputs, set to 0 on outputs) in almost all operations involving Bigints: a notable exception is the diff function, which ignores signs on inputs but sets the sign of the output correctly. - wds is the actual number of significant words - x contains the vector of words (digits) for this Bigint, from least significant (x[0]) to most significant (x[wds-1]). */ struct Bigint { struct Bigint *next; int k, maxwds, sign, wds; ULong x[1]; }; typedef struct Bigint Bigint; #ifndef Py_USING_MEMORY_DEBUGGER /* Memory management: memory is allocated from, and returned to, Kmax+1 pools of memory, where pool k (0 <= k <= Kmax) is for Bigints b with b->maxwds == 1 << k. These pools are maintained as linked lists, with freelist[k] pointing to the head of the list for pool k. On allocation, if there's no free slot in the appropriate pool, MALLOC is called to get more memory. This memory is not returned to the system until Python quits. There's also a private memory pool that's allocated from in preference to using MALLOC. For Bigints with more than (1 << Kmax) digits (which implies at least 1233 decimal digits), memory is directly allocated using MALLOC, and freed using FREE. XXX: it would be easy to bypass this memory-management system and translate each call to Balloc into a call to PyMem_Malloc, and each Bfree to PyMem_Free. Investigate whether this has any significant performance on impact. */ static Bigint *freelist[Kmax+1]; /* Allocate space for a Bigint with up to 1<<k digits */ static Bigint * Balloc(int k) { int x; Bigint *rv; unsigned int len; if (k <= Kmax && (rv = freelist[k])) freelist[k] = rv->next; else { x = 1 << k; len = (sizeof(Bigint) + (x-1)*sizeof(ULong) + sizeof(double) - 1) /sizeof(double); if (k <= Kmax && pmem_next - private_mem + len <= PRIVATE_mem) { rv = (Bigint*)pmem_next; pmem_next += len; } else { rv = (Bigint*)MALLOC(len*sizeof(double)); if (rv == NULL) return NULL; } rv->k = k; rv->maxwds = x; } rv->sign = rv->wds = 0; return rv; } /* Free a Bigint allocated with Balloc */ static void Bfree(Bigint *v) { if (v) { if (v->k > Kmax) FREE((void*)v); else { v->next = freelist[v->k]; freelist[v->k] = v; } } } #else /* Alternative versions of Balloc and Bfree that use PyMem_Malloc and PyMem_Free directly in place of the custom memory allocation scheme above. These are provided for the benefit of memory debugging tools like Valgrind. */ /* Allocate space for a Bigint with up to 1<<k digits */ static Bigint * Balloc(int k) { int x; Bigint *rv; unsigned int len; x = 1 << k; len = (sizeof(Bigint) + (x-1)*sizeof(ULong) + sizeof(double) - 1) /sizeof(double); rv = (Bigint*)MALLOC(len*sizeof(double)); if (rv == NULL) return NULL; rv->k = k; rv->maxwds = x; rv->sign = rv->wds = 0; return rv; } /* Free a Bigint allocated with Balloc */ static void Bfree(Bigint *v) { if (v) { FREE((void*)v); } } #endif /* Py_USING_MEMORY_DEBUGGER */ #define Bcopy(x,y) memcpy((char *)&x->sign, (char *)&y->sign, \ y->wds*sizeof(Long) + 2*sizeof(int)) /* Multiply a Bigint b by m and add a. Either modifies b in place and returns a pointer to the modified b, or Bfrees b and returns a pointer to a copy. On failure, return NULL. In this case, b will have been already freed. */ static Bigint * multadd(Bigint *b, int m, int a) /* multiply by m and add a */ { int i, wds; #ifdef ULLong ULong *x; ULLong carry, y; #else ULong carry, *x, y; ULong xi, z; #endif Bigint *b1; wds = b->wds; x = b->x; i = 0; carry = a; do { #ifdef ULLong y = *x * (ULLong)m + carry; carry = y >> 32; *x++ = (ULong)(y & FFFFFFFF); #else xi = *x; y = (xi & 0xffff) * m + carry; z = (xi >> 16) * m + (y >> 16); carry = z >> 16; *x++ = (z << 16) + (y & 0xffff); #endif } while(++i < wds); if (carry) { if (wds >= b->maxwds) { b1 = Balloc(b->k+1); if (b1 == NULL){ Bfree(b); return NULL; } Bcopy(b1, b); Bfree(b); b = b1; } b->x[wds++] = (ULong)carry; b->wds = wds; } return b; } /* convert a string s containing nd decimal digits (possibly containing a decimal separator at position nd0, which is ignored) to a Bigint. This function carries on where the parsing code in _Py_dg_strtod leaves off: on entry, y9 contains the result of converting the first 9 digits. Returns NULL on failure. */ static Bigint * s2b(const char *s, int nd0, int nd, ULong y9) { Bigint *b; int i, k; Long x, y; x = (nd + 8) / 9; for(k = 0, y = 1; x > y; y <<= 1, k++) ; b = Balloc(k); if (b == NULL) return NULL; b->x[0] = y9; b->wds = 1; if (nd <= 9) return b; s += 9; for (i = 9; i < nd0; i++) { b = multadd(b, 10, *s++ - '0'); if (b == NULL) return NULL; } s++; for(; i < nd; i++) { b = multadd(b, 10, *s++ - '0'); if (b == NULL) return NULL; } return b; } /* count leading 0 bits in the 32-bit integer x. */ static int hi0bits(ULong x) { int k = 0; if (!(x & 0xffff0000)) { k = 16; x <<= 16; } if (!(x & 0xff000000)) { k += 8; x <<= 8; } if (!(x & 0xf0000000)) { k += 4; x <<= 4; } if (!(x & 0xc0000000)) { k += 2; x <<= 2; } if (!(x & 0x80000000)) { k++; if (!(x & 0x40000000)) return 32; } return k; } /* count trailing 0 bits in the 32-bit integer y, and shift y right by that number of bits. */ static int lo0bits(ULong *y) { int k; ULong x = *y; if (x & 7) { if (x & 1) return 0; if (x & 2) { *y = x >> 1; return 1; } *y = x >> 2; return 2; } k = 0; if (!(x & 0xffff)) { k = 16; x >>= 16; } if (!(x & 0xff)) { k += 8; x >>= 8; } if (!(x & 0xf)) { k += 4; x >>= 4; } if (!(x & 0x3)) { k += 2; x >>= 2; } if (!(x & 1)) { k++; x >>= 1; if (!x) return 32; } *y = x; return k; } /* convert a small nonnegative integer to a Bigint */ static Bigint * i2b(int i) { Bigint *b; b = Balloc(1); if (b == NULL) return NULL; b->x[0] = i; b->wds = 1; return b; } /* multiply two Bigints. Returns a new Bigint, or NULL on failure. Ignores the signs of a and b. */ static Bigint * mult(Bigint *a, Bigint *b) { Bigint *c; int k, wa, wb, wc; ULong *x, *xa, *xae, *xb, *xbe, *xc, *xc0; ULong y; #ifdef ULLong ULLong carry, z; #else ULong carry, z; ULong z2; #endif if ((!a->x[0] && a->wds == 1) || (!b->x[0] && b->wds == 1)) { c = Balloc(0); if (c == NULL) return NULL; c->wds = 1; c->x[0] = 0; return c; } if (a->wds < b->wds) { c = a; a = b; b = c; } k = a->k; wa = a->wds; wb = b->wds; wc = wa + wb; if (wc > a->maxwds) k++; c = Balloc(k); if (c == NULL) return NULL; for(x = c->x, xa = x + wc; x < xa; x++) *x = 0; xa = a->x; xae = xa + wa; xb = b->x; xbe = xb + wb; xc0 = c->x; #ifdef ULLong for(; xb < xbe; xc0++) { if ((y = *xb++)) { x = xa; xc = xc0; carry = 0; do { z = *x++ * (ULLong)y + *xc + carry; carry = z >> 32; *xc++ = (ULong)(z & FFFFFFFF); } while(x < xae); *xc = (ULong)carry; } } #else for(; xb < xbe; xb++, xc0++) { if (y = *xb & 0xffff) { x = xa; xc = xc0; carry = 0; do { z = (*x & 0xffff) * y + (*xc & 0xffff) + carry; carry = z >> 16; z2 = (*x++ >> 16) * y + (*xc >> 16) + carry; carry = z2 >> 16; Storeinc(xc, z2, z); } while(x < xae); *xc = carry; } if (y = *xb >> 16) { x = xa; xc = xc0; carry = 0; z2 = *xc; do { z = (*x & 0xffff) * y + (*xc >> 16) + carry; carry = z >> 16; Storeinc(xc, z, z2); z2 = (*x++ >> 16) * y + (*xc & 0xffff) + carry; carry = z2 >> 16; } while(x < xae); *xc = z2; } } #endif for(xc0 = c->x, xc = xc0 + wc; wc > 0 && !*--xc; --wc) ; c->wds = wc; return c; } #ifndef Py_USING_MEMORY_DEBUGGER /* p5s is a linked list of powers of 5 of the form 5**(2**i), i >= 2 */ static Bigint *p5s; /* multiply the Bigint b by 5**k. Returns a pointer to the result, or NULL on failure; if the returned pointer is distinct from b then the original Bigint b will have been Bfree'd. Ignores the sign of b. */ static Bigint * pow5mult(Bigint *b, int k) { Bigint *b1, *p5, *p51; int i; static int p05[3] = { 5, 25, 125 }; if ((i = k & 3)) { b = multadd(b, p05[i-1], 0); if (b == NULL) return NULL; } if (!(k >>= 2)) return b; p5 = p5s; if (!p5) { /* first time */ p5 = i2b(625); if (p5 == NULL) { Bfree(b); return NULL; } p5s = p5; p5->next = 0; } for(;;) { if (k & 1) { b1 = mult(b, p5); Bfree(b); b = b1; if (b == NULL) return NULL; } if (!(k >>= 1)) break; p51 = p5->next; if (!p51) { p51 = mult(p5,p5); if (p51 == NULL) { Bfree(b); return NULL; } p51->next = 0; p5->next = p51; } p5 = p51; } return b; } #else /* Version of pow5mult that doesn't cache powers of 5. Provided for the benefit of memory debugging tools like Valgrind. */ static Bigint * pow5mult(Bigint *b, int k) { Bigint *b1, *p5, *p51; int i; static int p05[3] = { 5, 25, 125 }; if ((i = k & 3)) { b = multadd(b, p05[i-1], 0); if (b == NULL) return NULL; } if (!(k >>= 2)) return b; p5 = i2b(625); if (p5 == NULL) { Bfree(b); return NULL; } for(;;) { if (k & 1) { b1 = mult(b, p5); Bfree(b); b = b1; if (b == NULL) { Bfree(p5); return NULL; } } if (!(k >>= 1)) break; p51 = mult(p5, p5); Bfree(p5); p5 = p51; if (p5 == NULL) { Bfree(b); return NULL; } } Bfree(p5); return b; } #endif /* Py_USING_MEMORY_DEBUGGER */ /* shift a Bigint b left by k bits. Return a pointer to the shifted result, or NULL on failure. If the returned pointer is distinct from b then the original b will have been Bfree'd. Ignores the sign of b. */ static Bigint * lshift(Bigint *b, int k) { int i, k1, n, n1; Bigint *b1; ULong *x, *x1, *xe, z; if (!k || (!b->x[0] && b->wds == 1)) return b; n = k >> 5; k1 = b->k; n1 = n + b->wds + 1; for(i = b->maxwds; n1 > i; i <<= 1) k1++; b1 = Balloc(k1); if (b1 == NULL) { Bfree(b); return NULL; } x1 = b1->x; for(i = 0; i < n; i++) *x1++ = 0; x = b->x; xe = x + b->wds; if (k &= 0x1f) { k1 = 32 - k; z = 0; do { *x1++ = *x << k | z; z = *x++ >> k1; } while(x < xe); if ((*x1 = z)) ++n1; } else do *x1++ = *x++; while(x < xe); b1->wds = n1 - 1; Bfree(b); return b1; } /* Do a three-way compare of a and b, returning -1 if a < b, 0 if a == b and 1 if a > b. Ignores signs of a and b. */ static int cmp(Bigint *a, Bigint *b) { ULong *xa, *xa0, *xb, *xb0; int i, j; i = a->wds; j = b->wds; #ifdef DEBUG if (i > 1 && !a->x[i-1]) Bug("cmp called with a->x[a->wds-1] == 0"); if (j > 1 && !b->x[j-1]) Bug("cmp called with b->x[b->wds-1] == 0"); #endif if (i -= j) return i; xa0 = a->x; xa = xa0 + j; xb0 = b->x; xb = xb0 + j; for(;;) { if (*--xa != *--xb) return *xa < *xb ? -1 : 1; if (xa <= xa0) break; } return 0; } /* Take the difference of Bigints a and b, returning a new Bigint. Returns NULL on failure. The signs of a and b are ignored, but the sign of the result is set appropriately. */ static Bigint * diff(Bigint *a, Bigint *b) { Bigint *c; int i, wa, wb; ULong *xa, *xae, *xb, *xbe, *xc; #ifdef ULLong ULLong borrow, y; #else ULong borrow, y; ULong z; #endif i = cmp(a,b); if (!i) { c = Balloc(0); if (c == NULL) return NULL; c->wds = 1; c->x[0] = 0; return c; } if (i < 0) { c = a; a = b; b = c; i = 1; } else i = 0; c = Balloc(a->k); if (c == NULL) return NULL; c->sign = i; wa = a->wds; xa = a->x; xae = xa + wa; wb = b->wds; xb = b->x; xbe = xb + wb; xc = c->x; borrow = 0; #ifdef ULLong do { y = (ULLong)*xa++ - *xb++ - borrow; borrow = y >> 32 & (ULong)1; *xc++ = (ULong)(y & FFFFFFFF); } while(xb < xbe); while(xa < xae) { y = *xa++ - borrow; borrow = y >> 32 & (ULong)1; *xc++ = (ULong)(y & FFFFFFFF); } #else do { y = (*xa & 0xffff) - (*xb & 0xffff) - borrow; borrow = (y & 0x10000) >> 16; z = (*xa++ >> 16) - (*xb++ >> 16) - borrow; borrow = (z & 0x10000) >> 16; Storeinc(xc, z, y); } while(xb < xbe); while(xa < xae) { y = (*xa & 0xffff) - borrow; borrow = (y & 0x10000) >> 16; z = (*xa++ >> 16) - borrow; borrow = (z & 0x10000) >> 16; Storeinc(xc, z, y); } #endif while(!*--xc) wa--; c->wds = wa; return c; } /* Given a positive normal double x, return the difference between x and the next double up. Doesn't give correct results for subnormals. */ static double ulp(U *x) { Long L; U u; L = (word0(x) & Exp_mask) - (P-1)*Exp_msk1; word0(&u) = L; word1(&u) = 0; return dval(&u); } /* Convert a Bigint to a double plus an exponent */ static double b2d(Bigint *a, int *e) { ULong *xa, *xa0, w, y, z; int k; U d; xa0 = a->x; xa = xa0 + a->wds; y = *--xa; #ifdef DEBUG if (!y) Bug("zero y in b2d"); #endif k = hi0bits(y); *e = 32 - k; if (k < Ebits) { word0(&d) = Exp_1 | y >> (Ebits - k); w = xa > xa0 ? *--xa : 0; word1(&d) = y << ((32-Ebits) + k) | w >> (Ebits - k); goto ret_d; } z = xa > xa0 ? *--xa : 0; if (k -= Ebits) { word0(&d) = Exp_1 | y << k | z >> (32 - k); y = xa > xa0 ? *--xa : 0; word1(&d) = z << k | y >> (32 - k); } else { word0(&d) = Exp_1 | y; word1(&d) = z; } ret_d: return dval(&d); } /* Convert a scaled double to a Bigint plus an exponent. Similar to d2b, except that it accepts the scale parameter used in _Py_dg_strtod (which should be either 0 or 2*P), and the normalization for the return value is different (see below). On input, d should be finite and nonnegative, and d / 2**scale should be exactly representable as an IEEE 754 double. Returns a Bigint b and an integer e such that dval(d) / 2**scale = b * 2**e. Unlike d2b, b is not necessarily odd: b and e are normalized so that either 2**(P-1) <= b < 2**P and e >= Etiny, or b < 2**P and e == Etiny. This applies equally to an input of 0.0: in that case the return values are b = 0 and e = Etiny. The above normalization ensures that for all possible inputs d, 2**e gives ulp(d/2**scale). Returns NULL on failure. */ static Bigint * sd2b(U *d, int scale, int *e) { Bigint *b; b = Balloc(1); if (b == NULL) return NULL; /* First construct b and e assuming that scale == 0. */ b->wds = 2; b->x[0] = word1(d); b->x[1] = word0(d) & Frac_mask; *e = Etiny - 1 + (int)((word0(d) & Exp_mask) >> Exp_shift); if (*e < Etiny) *e = Etiny; else b->x[1] |= Exp_msk1; /* Now adjust for scale, provided that b != 0. */ if (scale && (b->x[0] || b->x[1])) { *e -= scale; if (*e < Etiny) { scale = Etiny - *e; *e = Etiny; /* We can't shift more than P-1 bits without shifting out a 1. */ assert(0 < scale && scale <= P - 1); if (scale >= 32) { /* The bits shifted out should all be zero. */ assert(b->x[0] == 0); b->x[0] = b->x[1]; b->x[1] = 0; scale -= 32; } if (scale) { /* The bits shifted out should all be zero. */ assert(b->x[0] << (32 - scale) == 0); b->x[0] = (b->x[0] >> scale) | (b->x[1] << (32 - scale)); b->x[1] >>= scale; } } } /* Ensure b is normalized. */ if (!b->x[1]) b->wds = 1; return b; } /* Convert a double to a Bigint plus an exponent. Return NULL on failure. Given a finite nonzero double d, return an odd Bigint b and exponent *e such that fabs(d) = b * 2**e. On return, *bbits gives the number of significant bits of b; that is, 2**(*bbits-1) <= b < 2**(*bbits). If d is zero, then b == 0, *e == -1010, *bbits = 0. */ static Bigint * d2b(U *d, int *e, int *bits) { Bigint *b; int de, k; ULong *x, y, z; int i; b = Balloc(1); if (b == NULL) return NULL; x = b->x; z = word0(d) & Frac_mask; word0(d) &= 0x7fffffff; /* clear sign bit, which we ignore */ if ((de = (int)(word0(d) >> Exp_shift))) z |= Exp_msk1; if ((y = word1(d))) { if ((k = lo0bits(&y))) { x[0] = y | z << (32 - k); z >>= k; } else x[0] = y; i = b->wds = (x[1] = z) ? 2 : 1; } else { k = lo0bits(&z); x[0] = z; i = b->wds = 1; k += 32; } if (de) { *e = de - Bias - (P-1) + k; *bits = P - k; } else { *e = de - Bias - (P-1) + 1 + k; *bits = 32*i - hi0bits(x[i-1]); } return b; } /* Compute the ratio of two Bigints, as a double. The result may have an error of up to 2.5 ulps. */ static double ratio(Bigint *a, Bigint *b) { U da, db; int k, ka, kb; dval(&da) = b2d(a, &ka); dval(&db) = b2d(b, &kb); k = ka - kb + 32*(a->wds - b->wds); if (k > 0) word0(&da) += k*Exp_msk1; else { k = -k; word0(&db) += k*Exp_msk1; } return dval(&da) / dval(&db); } static const double tens[] = { 1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, 1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19, 1e20, 1e21, 1e22 }; static const double bigtens[] = { 1e16, 1e32, 1e64, 1e128, 1e256 }; static const double tinytens[] = { 1e-16, 1e-32, 1e-64, 1e-128, 9007199254740992.*9007199254740992.e-256 /* = 2^106 * 1e-256 */ }; /* The factor of 2^53 in tinytens[4] helps us avoid setting the underflow */ /* flag unnecessarily. It leads to a song and dance at the end of strtod. */ #define Scale_Bit 0x10 #define n_bigtens 5 #define ULbits 32 #define kshift 5 #define kmask 31 static int dshift(Bigint *b, int p2) { int rv = hi0bits(b->x[b->wds-1]) - 4; if (p2 > 0) rv -= p2; return rv & kmask; } /* special case of Bigint division. The quotient is always in the range 0 <= quotient < 10, and on entry the divisor S is normalized so that its top 4 bits (28--31) are zero and bit 27 is set. */ static int quorem(Bigint *b, Bigint *S) { int n; ULong *bx, *bxe, q, *sx, *sxe; #ifdef ULLong ULLong borrow, carry, y, ys; #else ULong borrow, carry, y, ys; ULong si, z, zs; #endif n = S->wds; #ifdef DEBUG /*debug*/ if (b->wds > n) /*debug*/ Bug("oversize b in quorem"); #endif if (b->wds < n) return 0; sx = S->x; sxe = sx + --n; bx = b->x; bxe = bx + n; q = *bxe / (*sxe + 1); /* ensure q <= true quotient */ #ifdef DEBUG /*debug*/ if (q > 9) /*debug*/ Bug("oversized quotient in quorem"); #endif if (q) { borrow = 0; carry = 0; do { #ifdef ULLong ys = *sx++ * (ULLong)q + carry; carry = ys >> 32; y = *bx - (ys & FFFFFFFF) - borrow; borrow = y >> 32 & (ULong)1; *bx++ = (ULong)(y & FFFFFFFF); #else si = *sx++; ys = (si & 0xffff) * q + carry; zs = (si >> 16) * q + (ys >> 16); carry = zs >> 16; y = (*bx & 0xffff) - (ys & 0xffff) - borrow; borrow = (y & 0x10000) >> 16; z = (*bx >> 16) - (zs & 0xffff) - borrow; borrow = (z & 0x10000) >> 16; Storeinc(bx, z, y); #endif } while(sx <= sxe); if (!*bxe) { bx = b->x; while(--bxe > bx && !*bxe) --n; b->wds = n; } } if (cmp(b, S) >= 0) { q++; borrow = 0; carry = 0; bx = b->x; sx = S->x; do { #ifdef ULLong ys = *sx++ + carry; carry = ys >> 32; y = *bx - (ys & FFFFFFFF) - borrow; borrow = y >> 32 & (ULong)1; *bx++ = (ULong)(y & FFFFFFFF); #else si = *sx++; ys = (si & 0xffff) + carry; zs = (si >> 16) + (ys >> 16); carry = zs >> 16; y = (*bx & 0xffff) - (ys & 0xffff) - borrow; borrow = (y & 0x10000) >> 16; z = (*bx >> 16) - (zs & 0xffff) - borrow; borrow = (z & 0x10000) >> 16; Storeinc(bx, z, y); #endif } while(sx <= sxe); bx = b->x; bxe = bx + n; if (!*bxe) { while(--bxe > bx && !*bxe) --n; b->wds = n; } } return q; } /* sulp(x) is a version of ulp(x) that takes bc.scale into account. Assuming that x is finite and nonnegative (positive zero is fine here) and x / 2^bc.scale is exactly representable as a double, sulp(x) is equivalent to 2^bc.scale * ulp(x / 2^bc.scale). */ static double sulp(U *x, BCinfo *bc) { U u; if (bc->scale && 2*P + 1 > (int)((word0(x) & Exp_mask) >> Exp_shift)) { /* rv/2^bc->scale is subnormal */ word0(&u) = (P+2)*Exp_msk1; word1(&u) = 0; return u.d; } else { assert(word0(x) || word1(x)); /* x != 0.0 */ return ulp(x); } } /* The bigcomp function handles some hard cases for strtod, for inputs with more than STRTOD_DIGLIM digits. It's called once an initial estimate for the double corresponding to the input string has already been obtained by the code in _Py_dg_strtod. The bigcomp function is only called after _Py_dg_strtod has found a double value rv such that either rv or rv + 1ulp represents the correctly rounded value corresponding to the original string. It determines which of these two values is the correct one by computing the decimal digits of rv + 0.5ulp and comparing them with the corresponding digits of s0. In the following, write dv for the absolute value of the number represented by the input string. Inputs: s0 points to the first significant digit of the input string. rv is a (possibly scaled) estimate for the closest double value to the value represented by the original input to _Py_dg_strtod. If bc->scale is nonzero, then rv/2^(bc->scale) is the approximation to the input value. bc is a struct containing information gathered during the parsing and estimation steps of _Py_dg_strtod. Description of fields follows: bc->e0 gives the exponent of the input value, such that dv = (integer given by the bd->nd digits of s0) * 10**e0 bc->nd gives the total number of significant digits of s0. It will be at least 1. bc->nd0 gives the number of significant digits of s0 before the decimal separator. If there's no decimal separator, bc->nd0 == bc->nd. bc->scale is the value used to scale rv to avoid doing arithmetic with subnormal values. It's either 0 or 2*P (=106). Outputs: On successful exit, rv/2^(bc->scale) is the closest double to dv. Returns 0 on success, -1 on failure (e.g., due to a failed malloc call). */ static int bigcomp(U *rv, const char *s0, BCinfo *bc) { Bigint *b, *d; int b2, d2, dd, i, nd, nd0, odd, p2, p5; nd = bc->nd; nd0 = bc->nd0; p5 = nd + bc->e0; b = sd2b(rv, bc->scale, &p2); if (b == NULL) return -1; /* record whether the lsb of rv/2^(bc->scale) is odd: in the exact halfway case, this is used for round to even. */ odd = b->x[0] & 1; /* left shift b by 1 bit and or a 1 into the least significant bit; this gives us b * 2**p2 = rv/2^(bc->scale) + 0.5 ulp. */ b = lshift(b, 1); if (b == NULL) return -1; b->x[0] |= 1; p2--; p2 -= p5; d = i2b(1); if (d == NULL) { Bfree(b); return -1; } /* Arrange for convenient computation of quotients: * shift left if necessary so divisor has 4 leading 0 bits. */ if (p5 > 0) { d = pow5mult(d, p5); if (d == NULL) { Bfree(b); return -1; } } else if (p5 < 0) { b = pow5mult(b, -p5); if (b == NULL) { Bfree(d); return -1; } } if (p2 > 0) { b2 = p2; d2 = 0; } else { b2 = 0; d2 = -p2; } i = dshift(d, d2); if ((b2 += i) > 0) { b = lshift(b, b2); if (b == NULL) { Bfree(d); return -1; } } if ((d2 += i) > 0) { d = lshift(d, d2); if (d == NULL) { Bfree(b); return -1; } } /* Compare s0 with b/d: set dd to -1, 0, or 1 according as s0 < b/d, s0 == * b/d, or s0 > b/d. Here the digits of s0 are thought of as representing * a number in the range [0.1, 1). */ if (cmp(b, d) >= 0) /* b/d >= 1 */ dd = -1; else { i = 0; for(;;) { b = multadd(b, 10, 0); if (b == NULL) { Bfree(d); return -1; } dd = s0[i < nd0 ? i : i+1] - '0' - quorem(b, d); i++; if (dd) break; if (!b->x[0] && b->wds == 1) { /* b/d == 0 */ dd = i < nd; break; } if (!(i < nd)) { /* b/d != 0, but digits of s0 exhausted */ dd = -1; break; } } } Bfree(b); Bfree(d); if (dd > 0 || (dd == 0 && odd)) dval(rv) += sulp(rv, bc); return 0; } double _Py_dg_strtod(const char *s00, char **se) { int bb2, bb5, bbe, bd2, bd5, bs2, c, dsign, e, e1, error; int esign, i, j, k, lz, nd, nd0, odd, sign; const char *s, *s0, *s1; double aadj, aadj1; U aadj2, adj, rv, rv0; ULong y, z, abs_exp; Long L; BCinfo bc; Bigint *bb, *bb1, *bd, *bd0, *bs, *delta; size_t ndigits, fraclen; dval(&rv) = 0.; /* Start parsing. */ c = *(s = s00); /* Parse optional sign, if present. */ sign = 0; switch (c) { case '-': sign = 1; /* no break */ case '+': c = *++s; } /* Skip leading zeros: lz is true iff there were leading zeros. */ s1 = s; while (c == '0') c = *++s; lz = s != s1; /* Point s0 at the first nonzero digit (if any). fraclen will be the number of digits between the decimal point and the end of the digit string. ndigits will be the total number of digits ignoring leading zeros. */ s0 = s1 = s; while ('0' <= c && c <= '9') c = *++s; ndigits = s - s1; fraclen = 0; /* Parse decimal point and following digits. */ if (c == '.') { c = *++s; if (!ndigits) { s1 = s; while (c == '0') c = *++s; lz = lz || s != s1; fraclen += (s - s1); s0 = s; } s1 = s; while ('0' <= c && c <= '9') c = *++s; ndigits += s - s1; fraclen += s - s1; } /* Now lz is true if and only if there were leading zero digits, and ndigits gives the total number of digits ignoring leading zeros. A valid input must have at least one digit. */ if (!ndigits && !lz) { if (se) *se = (char *)s00; goto parse_error; } /* Range check ndigits and fraclen to make sure that they, and values computed with them, can safely fit in an int. */ if (ndigits > MAX_DIGITS || fraclen > MAX_DIGITS) { if (se) *se = (char *)s00; goto parse_error; } nd = (int)ndigits; nd0 = (int)ndigits - (int)fraclen; /* Parse exponent. */ e = 0; if (c == 'e' || c == 'E') { s00 = s; c = *++s; /* Exponent sign. */ esign = 0; switch (c) { case '-': esign = 1; /* no break */ case '+': c = *++s; } /* Skip zeros. lz is true iff there are leading zeros. */ s1 = s; while (c == '0') c = *++s; lz = s != s1; /* Get absolute value of the exponent. */ s1 = s; abs_exp = 0; while ('0' <= c && c <= '9') { abs_exp = 10*abs_exp + (c - '0'); c = *++s; } /* abs_exp will be correct modulo 2**32. But 10**9 < 2**32, so if there are at most 9 significant exponent digits then overflow is impossible. */ if (s - s1 > 9 || abs_exp > MAX_ABS_EXP) e = (int)MAX_ABS_EXP; else e = (int)abs_exp; if (esign) e = -e; /* A valid exponent must have at least one digit. */ if (s == s1 && !lz) s = s00; } /* Adjust exponent to take into account position of the point. */ e -= nd - nd0; if (nd0 <= 0) nd0 = nd; /* Finished parsing. Set se to indicate how far we parsed */ if (se) *se = (char *)s; /* If all digits were zero, exit with return value +-0.0. Otherwise, strip trailing zeros: scan back until we hit a nonzero digit. */ if (!nd) goto ret; for (i = nd; i > 0; ) { --i; if (s0[i < nd0 ? i : i+1] != '0') { ++i; break; } } e += nd - i; nd = i; if (nd0 > nd) nd0 = nd; /* Summary of parsing results. After parsing, and dealing with zero * inputs, we have values s0, nd0, nd, e, sign, where: * * - s0 points to the first significant digit of the input string * * - nd is the total number of significant digits (here, and * below, 'significant digits' means the set of digits of the * significand of the input that remain after ignoring leading * and trailing zeros). * * - nd0 indicates the position of the decimal point, if present; it * satisfies 1 <= nd0 <= nd. The nd significant digits are in * s0[0:nd0] and s0[nd0+1:nd+1] using the usual Python half-open slice * notation. (If nd0 < nd, then s0[nd0] contains a '.' character; if * nd0 == nd, then s0[nd0] could be any non-digit character.) * * - e is the adjusted exponent: the absolute value of the number * represented by the original input string is n * 10**e, where * n is the integer represented by the concatenation of * s0[0:nd0] and s0[nd0+1:nd+1] * * - sign gives the sign of the input: 1 for negative, 0 for positive * * - the first and last significant digits are nonzero */ /* put first DBL_DIG+1 digits into integer y and z. * * - y contains the value represented by the first min(9, nd) * significant digits * * - if nd > 9, z contains the value represented by significant digits * with indices in [9, min(16, nd)). So y * 10**(min(16, nd) - 9) + z * gives the value represented by the first min(16, nd) sig. digits. */ bc.e0 = e1 = e; y = z = 0; for (i = 0; i < nd; i++) { if (i < 9) y = 10*y + s0[i < nd0 ? i : i+1] - '0'; else if (i < DBL_DIG+1) z = 10*z + s0[i < nd0 ? i : i+1] - '0'; else break; } k = nd < DBL_DIG + 1 ? nd : DBL_DIG + 1; dval(&rv) = y; if (k > 9) { dval(&rv) = tens[k - 9] * dval(&rv) + z; } bd0 = 0; if (nd <= DBL_DIG && Flt_Rounds == 1 ) { if (!e) goto ret; if (e > 0) { if (e <= Ten_pmax) { dval(&rv) *= tens[e]; goto ret; } i = DBL_DIG - nd; if (e <= Ten_pmax + i) { /* A fancier test would sometimes let us do * this for larger i values. */ e -= i; dval(&rv) *= tens[i]; dval(&rv) *= tens[e]; goto ret; } } else if (e >= -Ten_pmax) { dval(&rv) /= tens[-e]; goto ret; } } e1 += nd - k; bc.scale = 0; /* Get starting approximation = rv * 10**e1 */ if (e1 > 0) { if ((i = e1 & 15)) dval(&rv) *= tens[i]; if (e1 &= ~15) { if (e1 > DBL_MAX_10_EXP) goto ovfl; e1 >>= 4; for(j = 0; e1 > 1; j++, e1 >>= 1) if (e1 & 1) dval(&rv) *= bigtens[j]; /* The last multiplication could overflow. */ word0(&rv) -= P*Exp_msk1; dval(&rv) *= bigtens[j]; if ((z = word0(&rv) & Exp_mask) > Exp_msk1*(DBL_MAX_EXP+Bias-P)) goto ovfl; if (z > Exp_msk1*(DBL_MAX_EXP+Bias-1-P)) { /* set to largest number */ /* (Can't trust DBL_MAX) */ word0(&rv) = Big0; word1(&rv) = Big1; } else word0(&rv) += P*Exp_msk1; } } else if (e1 < 0) { /* The input decimal value lies in [10**e1, 10**(e1+16)). If e1 <= -512, underflow immediately. If e1 <= -256, set bc.scale to 2*P. So for input value < 1e-256, bc.scale is always set; for input value >= 1e-240, bc.scale is never set. For input values in [1e-256, 1e-240), bc.scale may or may not be set. */ e1 = -e1; if ((i = e1 & 15)) dval(&rv) /= tens[i]; if (e1 >>= 4) { if (e1 >= 1 << n_bigtens) goto undfl; if (e1 & Scale_Bit) bc.scale = 2*P; for(j = 0; e1 > 0; j++, e1 >>= 1) if (e1 & 1) dval(&rv) *= tinytens[j]; if (bc.scale && (j = 2*P + 1 - ((word0(&rv) & Exp_mask) >> Exp_shift)) > 0) { /* scaled rv is denormal; clear j low bits */ if (j >= 32) { word1(&rv) = 0; if (j >= 53) word0(&rv) = (P+2)*Exp_msk1; else word0(&rv) &= 0xffffffff << (j-32); } else word1(&rv) &= 0xffffffff << j; } if (!dval(&rv)) goto undfl; } } /* Now the hard part -- adjusting rv to the correct value.*/ /* Put digits into bd: true value = bd * 10^e */ bc.nd = nd; bc.nd0 = nd0; /* Only needed if nd > STRTOD_DIGLIM, but done here */ /* to silence an erroneous warning about bc.nd0 */ /* possibly not being initialized. */ if (nd > STRTOD_DIGLIM) { /* ASSERT(STRTOD_DIGLIM >= 18); 18 == one more than the */ /* minimum number of decimal digits to distinguish double values */ /* in IEEE arithmetic. */ /* Truncate input to 18 significant digits, then discard any trailing zeros on the result by updating nd, nd0, e and y suitably. (There's no need to update z; it's not reused beyond this point.) */ for (i = 18; i > 0; ) { /* scan back until we hit a nonzero digit. significant digit 'i' is s0[i] if i < nd0, s0[i+1] if i >= nd0. */ --i; if (s0[i < nd0 ? i : i+1] != '0') { ++i; break; } } e += nd - i; nd = i; if (nd0 > nd) nd0 = nd; if (nd < 9) { /* must recompute y */ y = 0; for(i = 0; i < nd0; ++i) y = 10*y + s0[i] - '0'; for(; i < nd; ++i) y = 10*y + s0[i+1] - '0'; } } bd0 = s2b(s0, nd0, nd, y); if (bd0 == NULL) goto failed_malloc; /* Notation for the comments below. Write: - dv for the absolute value of the number represented by the original decimal input string. - if we've truncated dv, write tdv for the truncated value. Otherwise, set tdv == dv. - srv for the quantity rv/2^bc.scale; so srv is the current binary approximation to tdv (and dv). It should be exactly representable in an IEEE 754 double. */ for(;;) { /* This is the main correction loop for _Py_dg_strtod. We've got a decimal value tdv, and a floating-point approximation srv=rv/2^bc.scale to tdv. The aim is to determine whether srv is close enough (i.e., within 0.5 ulps) to tdv, and to compute a new approximation if not. To determine whether srv is close enough to tdv, compute integers bd, bb and bs proportional to tdv, srv and 0.5 ulp(srv) respectively, and then use integer arithmetic to determine whether |tdv - srv| is less than, equal to, or greater than 0.5 ulp(srv). */ bd = Balloc(bd0->k); if (bd == NULL) { Bfree(bd0); goto failed_malloc; } Bcopy(bd, bd0); bb = sd2b(&rv, bc.scale, &bbe); /* srv = bb * 2^bbe */ if (bb == NULL) { Bfree(bd); Bfree(bd0); goto failed_malloc; } /* Record whether lsb of bb is odd, in case we need this for the round-to-even step later. */ odd = bb->x[0] & 1; /* tdv = bd * 10**e; srv = bb * 2**bbe */ bs = i2b(1); if (bs == NULL) { Bfree(bb); Bfree(bd); Bfree(bd0); goto failed_malloc; } if (e >= 0) { bb2 = bb5 = 0; bd2 = bd5 = e; } else { bb2 = bb5 = -e; bd2 = bd5 = 0; } if (bbe >= 0) bb2 += bbe; else bd2 -= bbe; bs2 = bb2; bb2++; bd2++; /* At this stage bd5 - bb5 == e == bd2 - bb2 + bbe, bb2 - bs2 == 1, and bs == 1, so: tdv == bd * 10**e = bd * 2**(bbe - bb2 + bd2) * 5**(bd5 - bb5) srv == bb * 2**bbe = bb * 2**(bbe - bb2 + bb2) 0.5 ulp(srv) == 2**(bbe-1) = bs * 2**(bbe - bb2 + bs2) It follows that: M * tdv = bd * 2**bd2 * 5**bd5 M * srv = bb * 2**bb2 * 5**bb5 M * 0.5 ulp(srv) = bs * 2**bs2 * 5**bb5 for some constant M. (Actually, M == 2**(bb2 - bbe) * 5**bb5, but this fact is not needed below.) */ /* Remove factor of 2**i, where i = min(bb2, bd2, bs2). */ i = bb2 < bd2 ? bb2 : bd2; if (i > bs2) i = bs2; if (i > 0) { bb2 -= i; bd2 -= i; bs2 -= i; } /* Scale bb, bd, bs by the appropriate powers of 2 and 5. */ if (bb5 > 0) { bs = pow5mult(bs, bb5); if (bs == NULL) { Bfree(bb); Bfree(bd); Bfree(bd0); goto failed_malloc; } bb1 = mult(bs, bb); Bfree(bb); bb = bb1; if (bb == NULL) { Bfree(bs); Bfree(bd); Bfree(bd0); goto failed_malloc; } } if (bb2 > 0) { bb = lshift(bb, bb2); if (bb == NULL) { Bfree(bs); Bfree(bd); Bfree(bd0); goto failed_malloc; } } if (bd5 > 0) { bd = pow5mult(bd, bd5); if (bd == NULL) { Bfree(bb); Bfree(bs); Bfree(bd0); goto failed_malloc; } } if (bd2 > 0) { bd = lshift(bd, bd2); if (bd == NULL) { Bfree(bb); Bfree(bs); Bfree(bd0); goto failed_malloc; } } if (bs2 > 0) { bs = lshift(bs, bs2); if (bs == NULL) { Bfree(bb); Bfree(bd); Bfree(bd0); goto failed_malloc; } } /* Now bd, bb and bs are scaled versions of tdv, srv and 0.5 ulp(srv), respectively. Compute the difference |tdv - srv|, and compare with 0.5 ulp(srv). */ delta = diff(bb, bd); if (delta == NULL) { Bfree(bb); Bfree(bs); Bfree(bd); Bfree(bd0); goto failed_malloc; } dsign = delta->sign; delta->sign = 0; i = cmp(delta, bs); if (bc.nd > nd && i <= 0) { if (dsign) break; /* Must use bigcomp(). */ /* Here rv overestimates the truncated decimal value by at most 0.5 ulp(rv). Hence rv either overestimates the true decimal value by <= 0.5 ulp(rv), or underestimates it by some small amount (< 0.1 ulp(rv)); either way, rv is within 0.5 ulps of the true decimal value, so it's possible to exit. Exception: if scaled rv is a normal exact power of 2, but not DBL_MIN, then rv - 0.5 ulp(rv) takes us all the way down to the next double, so the correctly rounded result is either rv - 0.5 ulp(rv) or rv; in this case, use bigcomp to distinguish. */ if (!word1(&rv) && !(word0(&rv) & Bndry_mask)) { /* rv can't be 0, since it's an overestimate for some nonzero value. So rv is a normal power of 2. */ j = (int)(word0(&rv) & Exp_mask) >> Exp_shift; /* rv / 2^bc.scale = 2^(j - 1023 - bc.scale); use bigcomp if rv / 2^bc.scale >= 2^-1021. */ if (j - bc.scale >= 2) { dval(&rv) -= 0.5 * sulp(&rv, &bc); break; /* Use bigcomp. */ } } { bc.nd = nd; i = -1; /* Discarded digits make delta smaller. */ } } if (i < 0) { /* Error is less than half an ulp -- check for * special case of mantissa a power of two. */ if (dsign || word1(&rv) || word0(&rv) & Bndry_mask || (word0(&rv) & Exp_mask) <= (2*P+1)*Exp_msk1 ) { break; } if (!delta->x[0] && delta->wds <= 1) { /* exact result */ break; } delta = lshift(delta,Log2P); if (delta == NULL) { Bfree(bb); Bfree(bs); Bfree(bd); Bfree(bd0); goto failed_malloc; } if (cmp(delta, bs) > 0) goto drop_down; break; } if (i == 0) { /* exactly half-way between */ if (dsign) { if ((word0(&rv) & Bndry_mask1) == Bndry_mask1 && word1(&rv) == ( (bc.scale && (y = word0(&rv) & Exp_mask) <= 2*P*Exp_msk1) ? (0xffffffff & (0xffffffff << (2*P+1-(y>>Exp_shift)))) : 0xffffffff)) { /*boundary case -- increment exponent*/ word0(&rv) = (word0(&rv) & Exp_mask) + Exp_msk1 ; word1(&rv) = 0; dsign = 0; break; } } else if (!(word0(&rv) & Bndry_mask) && !word1(&rv)) { drop_down: /* boundary case -- decrement exponent */ if (bc.scale) { L = word0(&rv) & Exp_mask; if (L <= (2*P+1)*Exp_msk1) { if (L > (P+2)*Exp_msk1) /* round even ==> */ /* accept rv */ break; /* rv = smallest denormal */ if (bc.nd > nd) break; goto undfl; } } L = (word0(&rv) & Exp_mask) - Exp_msk1; word0(&rv) = L | Bndry_mask1; word1(&rv) = 0xffffffff; break; } if (!odd) break; if (dsign) dval(&rv) += sulp(&rv, &bc); else { dval(&rv) -= sulp(&rv, &bc); if (!dval(&rv)) { if (bc.nd >nd) break; goto undfl; } } dsign = 1 - dsign; break; } if ((aadj = ratio(delta, bs)) <= 2.) { if (dsign) aadj = aadj1 = 1.; else if (word1(&rv) || word0(&rv) & Bndry_mask) { if (word1(&rv) == Tiny1 && !word0(&rv)) { if (bc.nd >nd) break; goto undfl; } aadj = 1.; aadj1 = -1.; } else { /* special case -- power of FLT_RADIX to be */ /* rounded down... */ if (aadj < 2./FLT_RADIX) aadj = 1./FLT_RADIX; else aadj *= 0.5; aadj1 = -aadj; } } else { aadj *= 0.5; aadj1 = dsign ? aadj : -aadj; if (Flt_Rounds == 0) aadj1 += 0.5; } y = word0(&rv) & Exp_mask; /* Check for overflow */ if (y == Exp_msk1*(DBL_MAX_EXP+Bias-1)) { dval(&rv0) = dval(&rv); word0(&rv) -= P*Exp_msk1; adj.d = aadj1 * ulp(&rv); dval(&rv) += adj.d; if ((word0(&rv) & Exp_mask) >= Exp_msk1*(DBL_MAX_EXP+Bias-P)) { if (word0(&rv0) == Big0 && word1(&rv0) == Big1) { Bfree(bb); Bfree(bd); Bfree(bs); Bfree(bd0); Bfree(delta); goto ovfl; } word0(&rv) = Big0; word1(&rv) = Big1; goto cont; } else word0(&rv) += P*Exp_msk1; } else { if (bc.scale && y <= 2*P*Exp_msk1) { if (aadj <= 0x7fffffff) { if ((z = (ULong)aadj) <= 0) z = 1; aadj = z; aadj1 = dsign ? aadj : -aadj; } dval(&aadj2) = aadj1; word0(&aadj2) += (2*P+1)*Exp_msk1 - y; aadj1 = dval(&aadj2); } adj.d = aadj1 * ulp(&rv); dval(&rv) += adj.d; } z = word0(&rv) & Exp_mask; if (bc.nd == nd) { if (!bc.scale) if (y == z) { /* Can we stop now? */ L = (Long)aadj; aadj -= L; /* The tolerances below are conservative. */ if (dsign || word1(&rv) || word0(&rv) & Bndry_mask) { if (aadj < .4999999 || aadj > .5000001) break; } else if (aadj < .4999999/FLT_RADIX) break; } } cont: Bfree(bb); Bfree(bd); Bfree(bs); Bfree(delta); } Bfree(bb); Bfree(bd); Bfree(bs); Bfree(bd0); Bfree(delta); if (bc.nd > nd) { error = bigcomp(&rv, s0, &bc); if (error) goto failed_malloc; } if (bc.scale) { word0(&rv0) = Exp_1 - 2*P*Exp_msk1; word1(&rv0) = 0; dval(&rv) *= dval(&rv0); } ret: return sign ? -dval(&rv) : dval(&rv); parse_error: return 0.0; failed_malloc: errno = ENOMEM; return -1.0; undfl: return sign ? -0.0 : 0.0; ovfl: errno = ERANGE; /* Can't trust HUGE_VAL */ word0(&rv) = Exp_mask; word1(&rv) = 0; return sign ? -dval(&rv) : dval(&rv); } static char * rv_alloc(int i) { int j, k, *r; j = sizeof(ULong); for(k = 0; sizeof(Bigint) - sizeof(ULong) - sizeof(int) + j <= (unsigned)i; j <<= 1) k++; r = (int*)Balloc(k); if (r == NULL) return NULL; *r = k; return (char *)(r+1); } static char * nrv_alloc(char *s, char **rve, int n) { char *rv, *t; rv = rv_alloc(n); if (rv == NULL) return NULL; t = rv; while((*t = *s++)) t++; if (rve) *rve = t; return rv; } /* freedtoa(s) must be used to free values s returned by dtoa * when MULTIPLE_THREADS is #defined. It should be used in all cases, * but for consistency with earlier versions of dtoa, it is optional * when MULTIPLE_THREADS is not defined. */ void _Py_dg_freedtoa(char *s) { Bigint *b = (Bigint *)((int *)s - 1); b->maxwds = 1 << (b->k = *(int*)b); Bfree(b); } /* dtoa for IEEE arithmetic (dmg): convert double to ASCII string. * * Inspired by "How to Print Floating-Point Numbers Accurately" by * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 112-126]. * * Modifications: * 1. Rather than iterating, we use a simple numeric overestimate * to determine k = floor(log10(d)). We scale relevant * quantities using O(log2(k)) rather than O(k) multiplications. * 2. For some modes > 2 (corresponding to ecvt and fcvt), we don't * try to generate digits strictly left to right. Instead, we * compute with fewer bits and propagate the carry if necessary * when rounding the final digit up. This is often faster. * 3. Under the assumption that input will be rounded nearest, * mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22. * That is, we allow equality in stopping tests when the * round-nearest rule will give the same floating-point value * as would satisfaction of the stopping test with strict * inequality. * 4. We remove common factors of powers of 2 from relevant * quantities. * 5. When converting floating-point integers less than 1e16, * we use floating-point arithmetic rather than resorting * to multiple-precision integers. * 6. When asked to produce fewer than 15 digits, we first try * to get by with floating-point arithmetic; we resort to * multiple-precision integer arithmetic only if we cannot * guarantee that the floating-point calculation has given * the correctly rounded result. For k requested digits and * "uniformly" distributed input, the probability is * something like 10^(k-15) that we must resort to the Long * calculation. */ /* Additional notes (METD): (1) returns NULL on failure. (2) to avoid memory leakage, a successful call to _Py_dg_dtoa should always be matched by a call to _Py_dg_freedtoa. */ char * _Py_dg_dtoa(double dd, int mode, int ndigits, int *decpt, int *sign, char **rve) { /* Arguments ndigits, decpt, sign are similar to those of ecvt and fcvt; trailing zeros are suppressed from the returned string. If not null, *rve is set to point to the end of the return value. If d is +-Infinity or NaN, then *decpt is set to 9999. mode: 0 ==> shortest string that yields d when read in and rounded to nearest. 1 ==> like 0, but with Steele & White stopping rule; e.g. with IEEE P754 arithmetic , mode 0 gives 1e23 whereas mode 1 gives 9.999999999999999e22. 2 ==> max(1,ndigits) significant digits. This gives a return value similar to that of ecvt, except that trailing zeros are suppressed. 3 ==> through ndigits past the decimal point. This gives a return value similar to that from fcvt, except that trailing zeros are suppressed, and ndigits can be negative. 4,5 ==> similar to 2 and 3, respectively, but (in round-nearest mode) with the tests of mode 0 to possibly return a shorter string that rounds to d. With IEEE arithmetic and compilation with -DHonor_FLT_ROUNDS, modes 4 and 5 behave the same as modes 2 and 3 when FLT_ROUNDS != 1. 6-9 ==> Debugging modes similar to mode - 4: don't try fast floating-point estimate (if applicable). Values of mode other than 0-9 are treated as mode 0. Sufficient space is allocated to the return value to hold the suppressed trailing zeros. */ int bbits, b2, b5, be, dig, i, ieps, ilim, ilim0, ilim1, j, j1, k, k0, k_check, leftright, m2, m5, s2, s5, spec_case, try_quick; Long L; int denorm; ULong x; Bigint *b, *b1, *delta, *mlo, *mhi, *S; U d2, eps, u; double ds; char *s, *s0; /* set pointers to NULL, to silence gcc compiler warnings and make cleanup easier on error */ mlo = mhi = S = 0; s0 = 0; u.d = dd; if (word0(&u) & Sign_bit) { /* set sign for everything, including 0's and NaNs */ *sign = 1; word0(&u) &= ~Sign_bit; /* clear sign bit */ } else *sign = 0; /* quick return for Infinities, NaNs and zeros */ if ((word0(&u) & Exp_mask) == Exp_mask) { /* Infinity or NaN */ *decpt = 9999; if (!word1(&u) && !(word0(&u) & 0xfffff)) return nrv_alloc("Infinity", rve, 8); return nrv_alloc("NaN", rve, 3); } if (!dval(&u)) { *decpt = 1; return nrv_alloc("0", rve, 1); } /* compute k = floor(log10(d)). The computation may leave k one too large, but should never leave k too small. */ b = d2b(&u, &be, &bbits); if (b == NULL) goto failed_malloc; if ((i = (int)(word0(&u) >> Exp_shift1 & (Exp_mask>>Exp_shift1)))) { dval(&d2) = dval(&u); word0(&d2) &= Frac_mask1; word0(&d2) |= Exp_11; /* log(x) ~=~ log(1.5) + (x-1.5)/1.5 * log10(x) = log(x) / log(10) * ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10)) * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2) * * This suggests computing an approximation k to log10(d) by * * k = (i - Bias)*0.301029995663981 * + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 ); * * We want k to be too large rather than too small. * The error in the first-order Taylor series approximation * is in our favor, so we just round up the constant enough * to compensate for any error in the multiplication of * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077, * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14, * adding 1e-13 to the constant term more than suffices. * Hence we adjust the constant term to 0.1760912590558. * (We could get a more accurate k by invoking log10, * but this is probably not worthwhile.) */ i -= Bias; denorm = 0; } else { /* d is denormalized */ i = bbits + be + (Bias + (P-1) - 1); x = i > 32 ? word0(&u) << (64 - i) | word1(&u) >> (i - 32) : word1(&u) << (32 - i); dval(&d2) = x; word0(&d2) -= 31*Exp_msk1; /* adjust exponent */ i -= (Bias + (P-1) - 1) + 1; denorm = 1; } ds = (dval(&d2)-1.5)*0.289529654602168 + 0.1760912590558 + i*0.301029995663981; k = (int)ds; if (ds < 0. && ds != k) k--; /* want k = floor(ds) */ k_check = 1; if (k >= 0 && k <= Ten_pmax) { if (dval(&u) < tens[k]) k--; k_check = 0; } j = bbits - i - 1; if (j >= 0) { b2 = 0; s2 = j; } else { b2 = -j; s2 = 0; } if (k >= 0) { b5 = 0; s5 = k; s2 += k; } else { b2 -= k; b5 = -k; s5 = 0; } if (mode < 0 || mode > 9) mode = 0; try_quick = 1; if (mode > 5) { mode -= 4; try_quick = 0; } leftright = 1; ilim = ilim1 = -1; /* Values for cases 0 and 1; done here to */ /* silence erroneous "gcc -Wall" warning. */ switch(mode) { case 0: case 1: i = 18; ndigits = 0; break; case 2: leftright = 0; /* no break */ case 4: if (ndigits <= 0) ndigits = 1; ilim = ilim1 = i = ndigits; break; case 3: leftright = 0; /* no break */ case 5: i = ndigits + k + 1; ilim = i; ilim1 = i - 1; if (i <= 0) i = 1; } s0 = rv_alloc(i); if (s0 == NULL) goto failed_malloc; s = s0; if (ilim >= 0 && ilim <= Quick_max && try_quick) { /* Try to get by with floating-point arithmetic. */ i = 0; dval(&d2) = dval(&u); k0 = k; ilim0 = ilim; ieps = 2; /* conservative */ if (k > 0) { ds = tens[k&0xf]; j = k >> 4; if (j & Bletch) { /* prevent overflows */ j &= Bletch - 1; dval(&u) /= bigtens[n_bigtens-1]; ieps++; } for(; j; j >>= 1, i++) if (j & 1) { ieps++; ds *= bigtens[i]; } dval(&u) /= ds; } else if ((j1 = -k)) { dval(&u) *= tens[j1 & 0xf]; for(j = j1 >> 4; j; j >>= 1, i++) if (j & 1) { ieps++; dval(&u) *= bigtens[i]; } } if (k_check && dval(&u) < 1. && ilim > 0) { if (ilim1 <= 0) goto fast_failed; ilim = ilim1; k--; dval(&u) *= 10.; ieps++; } dval(&eps) = ieps*dval(&u) + 7.; word0(&eps) -= (P-1)*Exp_msk1; if (ilim == 0) { S = mhi = 0; dval(&u) -= 5.; if (dval(&u) > dval(&eps)) goto one_digit; if (dval(&u) < -dval(&eps)) goto no_digits; goto fast_failed; } if (leftright) { /* Use Steele & White method of only * generating digits needed. */ dval(&eps) = 0.5/tens[ilim-1] - dval(&eps); for(i = 0;;) { L = (Long)dval(&u); dval(&u) -= L; *s++ = '0' + (int)L; if (dval(&u) < dval(&eps)) goto ret1; if (1. - dval(&u) < dval(&eps)) goto bump_up; if (++i >= ilim) break; dval(&eps) *= 10.; dval(&u) *= 10.; } } else { /* Generate ilim digits, then fix them up. */ dval(&eps) *= tens[ilim-1]; for(i = 1;; i++, dval(&u) *= 10.) { L = (Long)(dval(&u)); if (!(dval(&u) -= L)) ilim = i; *s++ = '0' + (int)L; if (i == ilim) { if (dval(&u) > 0.5 + dval(&eps)) goto bump_up; else if (dval(&u) < 0.5 - dval(&eps)) { while(*--s == '0'); s++; goto ret1; } break; } } } fast_failed: s = s0; dval(&u) = dval(&d2); k = k0; ilim = ilim0; } /* Do we have a "small" integer? */ if (be >= 0 && k <= Int_max) { /* Yes. */ ds = tens[k]; if (ndigits < 0 && ilim <= 0) { S = mhi = 0; if (ilim < 0 || dval(&u) <= 5*ds) goto no_digits; goto one_digit; } for(i = 1;; i++, dval(&u) *= 10.) { L = (Long)(dval(&u) / ds); dval(&u) -= L*ds; *s++ = '0' + (int)L; if (!dval(&u)) { break; } if (i == ilim) { dval(&u) += dval(&u); if (dval(&u) > ds || (dval(&u) == ds && L & 1)) { bump_up: while(*--s == '9') if (s == s0) { k++; *s = '0'; break; } ++*s++; } break; } } goto ret1; } m2 = b2; m5 = b5; if (leftright) { i = denorm ? be + (Bias + (P-1) - 1 + 1) : 1 + P - bbits; b2 += i; s2 += i; mhi = i2b(1); if (mhi == NULL) goto failed_malloc; } if (m2 > 0 && s2 > 0) { i = m2 < s2 ? m2 : s2; b2 -= i; m2 -= i; s2 -= i; } if (b5 > 0) { if (leftright) { if (m5 > 0) { mhi = pow5mult(mhi, m5); if (mhi == NULL) goto failed_malloc; b1 = mult(mhi, b); Bfree(b); b = b1; if (b == NULL) goto failed_malloc; } if ((j = b5 - m5)) { b = pow5mult(b, j); if (b == NULL) goto failed_malloc; } } else { b = pow5mult(b, b5); if (b == NULL) goto failed_malloc; } } S = i2b(1); if (S == NULL) goto failed_malloc; if (s5 > 0) { S = pow5mult(S, s5); if (S == NULL) goto failed_malloc; } /* Check for special case that d is a normalized power of 2. */ spec_case = 0; if ((mode < 2 || leftright) ) { if (!word1(&u) && !(word0(&u) & Bndry_mask) && word0(&u) & (Exp_mask & ~Exp_msk1) ) { /* The special case */ b2 += Log2P; s2 += Log2P; spec_case = 1; } } /* Arrange for convenient computation of quotients: * shift left if necessary so divisor has 4 leading 0 bits. * * Perhaps we should just compute leading 28 bits of S once * and for all and pass them and a shift to quorem, so it * can do shifts and ors to compute the numerator for q. */ #define iInc 28 i = dshift(S, s2); b2 += i; m2 += i; s2 += i; if (b2 > 0) { b = lshift(b, b2); if (b == NULL) goto failed_malloc; } if (s2 > 0) { S = lshift(S, s2); if (S == NULL) goto failed_malloc; } if (k_check) { if (cmp(b,S) < 0) { k--; b = multadd(b, 10, 0); /* we botched the k estimate */ if (b == NULL) goto failed_malloc; if (leftright) { mhi = multadd(mhi, 10, 0); if (mhi == NULL) goto failed_malloc; } ilim = ilim1; } } if (ilim <= 0 && (mode == 3 || mode == 5)) { if (ilim < 0) { /* no digits, fcvt style */ no_digits: k = -1 - ndigits; goto ret; } else { S = multadd(S, 5, 0); if (S == NULL) goto failed_malloc; if (cmp(b, S) <= 0) goto no_digits; } one_digit: *s++ = '1'; k++; goto ret; } if (leftright) { if (m2 > 0) { mhi = lshift(mhi, m2); if (mhi == NULL) goto failed_malloc; } /* Compute mlo -- check for special case * that d is a normalized power of 2. */ mlo = mhi; if (spec_case) { mhi = Balloc(mhi->k); if (mhi == NULL) goto failed_malloc; Bcopy(mhi, mlo); mhi = lshift(mhi, Log2P); if (mhi == NULL) goto failed_malloc; } for(i = 1;;i++) { dig = quorem(b,S) + '0'; /* Do we yet have the shortest decimal string * that will round to d? */ j = cmp(b, mlo); delta = diff(S, mhi); if (delta == NULL) goto failed_malloc; j1 = delta->sign ? 1 : cmp(b, delta); Bfree(delta); if (j1 == 0 && mode != 1 && !(word1(&u) & 1) ) { if (dig == '9') goto round_9_up; if (j > 0) dig++; *s++ = dig; goto ret; } if (j < 0 || (j == 0 && mode != 1 && !(word1(&u) & 1) )) { if (!b->x[0] && b->wds <= 1) { goto accept_dig; } if (j1 > 0) { b = lshift(b, 1); if (b == NULL) goto failed_malloc; j1 = cmp(b, S); if ((j1 > 0 || (j1 == 0 && dig & 1)) && dig++ == '9') goto round_9_up; } accept_dig: *s++ = dig; goto ret; } if (j1 > 0) { if (dig == '9') { /* possible if i == 1 */ round_9_up: *s++ = '9'; goto roundoff; } *s++ = dig + 1; goto ret; } *s++ = dig; if (i == ilim) break; b = multadd(b, 10, 0); if (b == NULL) goto failed_malloc; if (mlo == mhi) { mlo = mhi = multadd(mhi, 10, 0); if (mlo == NULL) goto failed_malloc; } else { mlo = multadd(mlo, 10, 0); if (mlo == NULL) goto failed_malloc; mhi = multadd(mhi, 10, 0); if (mhi == NULL) goto failed_malloc; } } } else for(i = 1;; i++) { *s++ = dig = quorem(b,S) + '0'; if (!b->x[0] && b->wds <= 1) { goto ret; } if (i >= ilim) break; b = multadd(b, 10, 0); if (b == NULL) goto failed_malloc; } /* Round off last digit */ b = lshift(b, 1); if (b == NULL) goto failed_malloc; j = cmp(b, S); if (j > 0 || (j == 0 && dig & 1)) { roundoff: while(*--s == '9') if (s == s0) { k++; *s++ = '1'; goto ret; } ++*s++; } else { while(*--s == '0'); s++; } ret: Bfree(S); if (mhi) { if (mlo && mlo != mhi) Bfree(mlo); Bfree(mhi); } ret1: Bfree(b); *s = 0; *decpt = k + 1; if (rve) *rve = s; return s0; failed_malloc: if (S) Bfree(S); if (mlo && mlo != mhi) Bfree(mlo); if (mhi) Bfree(mhi); if (b) Bfree(b); if (s0) _Py_dg_freedtoa(s0); return NULL; } #ifdef __cplusplus } #endif #endif /* PY_NO_SHORT_FLOAT_REPR */ |