1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
Lib/pickle.py
"""Create portable serialized representations of Python objects.

See module cPickle for a (much) faster implementation.
See module copy_reg for a mechanism for registering custom picklers.
See module pickletools source for extensive comments.

Classes:

    Pickler
    Unpickler

Functions:

    dump(object, file)
    dumps(object) -> string
    load(file) -> object
    loads(string) -> object

Misc variables:

    __version__
    format_version
    compatible_formats

"""

__version__ = "$Revision: 72223 $"       # Code version

from types import *
from copy_reg import dispatch_table
from copy_reg import _extension_registry, _inverted_registry, _extension_cache
import marshal
import sys
import struct
import re

__all__ = ["PickleError", "PicklingError", "UnpicklingError", "Pickler",
           "Unpickler", "dump", "dumps", "load", "loads"]

# These are purely informational; no code uses these.
format_version = "2.0"                  # File format version we write
compatible_formats = ["1.0",            # Original protocol 0
                      "1.1",            # Protocol 0 with INST added
                      "1.2",            # Original protocol 1
                      "1.3",            # Protocol 1 with BINFLOAT added
                      "2.0",            # Protocol 2
                      ]                 # Old format versions we can read

# Keep in synch with cPickle.  This is the highest protocol number we
# know how to read.
HIGHEST_PROTOCOL = 2

# Why use struct.pack() for pickling but marshal.loads() for
# unpickling?  struct.pack() is 40% faster than marshal.dumps(), but
# marshal.loads() is twice as fast as struct.unpack()!
mloads = marshal.loads

class PickleError(Exception):
    """A common base class for the other pickling exceptions."""
    pass

class PicklingError(PickleError):
    """This exception is raised when an unpicklable object is passed to the
    dump() method.

    """
    pass

class UnpicklingError(PickleError):
    """This exception is raised when there is a problem unpickling an object,
    such as a security violation.

    Note that other exceptions may also be raised during unpickling, including
    (but not necessarily limited to) AttributeError, EOFError, ImportError,
    and IndexError.

    """
    pass

# An instance of _Stop is raised by Unpickler.load_stop() in response to
# the STOP opcode, passing the object that is the result of unpickling.
class _Stop(Exception):
    def __init__(self, value):
        self.value = value

# Jython has PyStringMap; it's a dict subclass with string keys
try:
    from org.python.core import PyStringMap
except ImportError:
    PyStringMap = None

# UnicodeType may or may not be exported (normally imported from types)
try:
    UnicodeType
except NameError:
    UnicodeType = None

# Pickle opcodes.  See pickletools.py for extensive docs.  The listing
# here is in kind-of alphabetical order of 1-character pickle code.
# pickletools groups them by purpose.

MARK            = '('   # push special markobject on stack
STOP            = '.'   # every pickle ends with STOP
POP             = '0'   # discard topmost stack item
POP_MARK        = '1'   # discard stack top through topmost markobject
DUP             = '2'   # duplicate top stack item
FLOAT           = 'F'   # push float object; decimal string argument
INT             = 'I'   # push integer or bool; decimal string argument
BININT          = 'J'   # push four-byte signed int
BININT1         = 'K'   # push 1-byte unsigned int
LONG            = 'L'   # push long; decimal string argument
BININT2         = 'M'   # push 2-byte unsigned int
NONE            = 'N'   # push None
PERSID          = 'P'   # push persistent object; id is taken from string arg
BINPERSID       = 'Q'   #  "       "         "  ;  "  "   "     "  stack
REDUCE          = 'R'   # apply callable to argtuple, both on stack
STRING          = 'S'   # push string; NL-terminated string argument
BINSTRING       = 'T'   # push string; counted binary string argument
SHORT_BINSTRING = 'U'   #  "     "   ;    "      "       "      " < 256 bytes
UNICODE         = 'V'   # push Unicode string; raw-unicode-escaped'd argument
BINUNICODE      = 'X'   #   "     "       "  ; counted UTF-8 string argument
APPEND          = 'a'   # append stack top to list below it
BUILD           = 'b'   # call __setstate__ or __dict__.update()
GLOBAL          = 'c'   # push self.find_class(modname, name); 2 string args
DICT            = 'd'   # build a dict from stack items
EMPTY_DICT      = '}'   # push empty dict
APPENDS         = 'e'   # extend list on stack by topmost stack slice
GET             = 'g'   # push item from memo on stack; index is string arg
BINGET          = 'h'   #   "    "    "    "   "   "  ;   "    " 1-byte arg
INST            = 'i'   # build & push class instance
LONG_BINGET     = 'j'   # push item from memo on stack; index is 4-byte arg
LIST            = 'l'   # build list from topmost stack items
EMPTY_LIST      = ']'   # push empty list
OBJ             = 'o'   # build & push class instance
PUT             = 'p'   # store stack top in memo; index is string arg
BINPUT          = 'q'   #   "     "    "   "   " ;   "    " 1-byte arg
LONG_BINPUT     = 'r'   #   "     "    "   "   " ;   "    " 4-byte arg
SETITEM         = 's'   # add key+value pair to dict
TUPLE           = 't'   # build tuple from topmost stack items
EMPTY_TUPLE     = ')'   # push empty tuple
SETITEMS        = 'u'   # modify dict by adding topmost key+value pairs
BINFLOAT        = 'G'   # push float; arg is 8-byte float encoding

TRUE            = 'I01\n'  # not an opcode; see INT docs in pickletools.py
FALSE           = 'I00\n'  # not an opcode; see INT docs in pickletools.py

# Protocol 2

PROTO           = '\x80'  # identify pickle protocol
NEWOBJ          = '\x81'  # build object by applying cls.__new__ to argtuple
EXT1            = '\x82'  # push object from extension registry; 1-byte index
EXT2            = '\x83'  # ditto, but 2-byte index
EXT4            = '\x84'  # ditto, but 4-byte index
TUPLE1          = '\x85'  # build 1-tuple from stack top
TUPLE2          = '\x86'  # build 2-tuple from two topmost stack items
TUPLE3          = '\x87'  # build 3-tuple from three topmost stack items
NEWTRUE         = '\x88'  # push True
NEWFALSE        = '\x89'  # push False
LONG1           = '\x8a'  # push long from < 256 bytes
LONG4           = '\x8b'  # push really big long

_tuplesize2code = [EMPTY_TUPLE, TUPLE1, TUPLE2, TUPLE3]


__all__.extend([x for x in dir() if re.match("[A-Z][A-Z0-9_]+$",x)])
del x


# Pickling machinery

class Pickler:

    def __init__(self, file, protocol=None):
        """This takes a file-like object for writing a pickle data stream.

        The optional protocol argument tells the pickler to use the
        given protocol; supported protocols are 0, 1, 2.  The default
        protocol is 0, to be backwards compatible.  (Protocol 0 is the
        only protocol that can be written to a file opened in text
        mode and read back successfully.  When using a protocol higher
        than 0, make sure the file is opened in binary mode, both when
        pickling and unpickling.)

        Protocol 1 is more efficient than protocol 0; protocol 2 is
        more efficient than protocol 1.

        Specifying a negative protocol version selects the highest
        protocol version supported.  The higher the protocol used, the
        more recent the version of Python needed to read the pickle
        produced.

        The file parameter must have a write() method that accepts a single
        string argument.  It can thus be an open file object, a StringIO
        object, or any other custom object that meets this interface.

        """
        if protocol is None:
            protocol = 0
        if protocol < 0:
            protocol = HIGHEST_PROTOCOL
        elif not 0 <= protocol <= HIGHEST_PROTOCOL:
            raise ValueError("pickle protocol must be <= %d" % HIGHEST_PROTOCOL)
        self.write = file.write
        self.memo = {}
        self.proto = int(protocol)
        self.bin = protocol >= 1
        self.fast = 0

    def clear_memo(self):
        """Clears the pickler's "memo".

        The memo is the data structure that remembers which objects the
        pickler has already seen, so that shared or recursive objects are
        pickled by reference and not by value.  This method is useful when
        re-using picklers.

        """
        self.memo.clear()

    def dump(self, obj):
        """Write a pickled representation of obj to the open file."""
        if self.proto >= 2:
            self.write(PROTO + chr(self.proto))
        self.save(obj)
        self.write(STOP)

    def memoize(self, obj):
        """Store an object in the memo."""

        # The Pickler memo is a dictionary mapping object ids to 2-tuples
        # that contain the Unpickler memo key and the object being memoized.
        # The memo key is written to the pickle and will become
        # the key in the Unpickler's memo.  The object is stored in the
        # Pickler memo so that transient objects are kept alive during
        # pickling.

        # The use of the Unpickler memo length as the memo key is just a
        # convention.  The only requirement is that the memo values be unique.
        # But there appears no advantage to any other scheme, and this
        # scheme allows the Unpickler memo to be implemented as a plain (but
        # growable) array, indexed by memo key.
        if self.fast:
            return
        assert id(obj) not in self.memo
        memo_len = len(self.memo)
        self.write(self.put(memo_len))
        self.memo[id(obj)] = memo_len, obj

    # Return a PUT (BINPUT, LONG_BINPUT) opcode string, with argument i.
    def put(self, i, pack=struct.pack):
        if self.bin:
            if i < 256:
                return BINPUT + chr(i)
            else:
                return LONG_BINPUT + pack("<i", i)

        return PUT + repr(i) + '\n'

    # Return a GET (BINGET, LONG_BINGET) opcode string, with argument i.
    def get(self, i, pack=struct.pack):
        if self.bin:
            if i < 256:
                return BINGET + chr(i)
            else:
                return LONG_BINGET + pack("<i", i)

        return GET + repr(i) + '\n'

    def save(self, obj):
        # Check for persistent id (defined by a subclass)
        pid = self.persistent_id(obj)
        if pid is not None:
            self.save_pers(pid)
            return

        # Check the memo
        x = self.memo.get(id(obj))
        if x:
            self.write(self.get(x[0]))
            return

        # Check the type dispatch table
        t = type(obj)
        f = self.dispatch.get(t)
        if f:
            f(self, obj) # Call unbound method with explicit self
            return

        # Check copy_reg.dispatch_table
        reduce = dispatch_table.get(t)
        if reduce:
            rv = reduce(obj)
        else:
            # Check for a class with a custom metaclass; treat as regular class
            try:
                issc = issubclass(t, TypeType)
            except TypeError: # t is not a class (old Boost; see SF #502085)
                issc = 0
            if issc:
                self.save_global(obj)
                return

            # Check for a __reduce_ex__ method, fall back to __reduce__
            reduce = getattr(obj, "__reduce_ex__", None)
            if reduce:
                rv = reduce(self.proto)
            else:
                reduce = getattr(obj, "__reduce__", None)
                if reduce:
                    rv = reduce()
                else:
                    raise PicklingError("Can't pickle %r object: %r" %
                                        (t.__name__, obj))

        # Check for string returned by reduce(), meaning "save as global"
        if type(rv) is StringType:
            self.save_global(obj, rv)
            return

        # Assert that reduce() returned a tuple
        if type(rv) is not TupleType:
            raise PicklingError("%s must return string or tuple" % reduce)

        # Assert that it returned an appropriately sized tuple
        l = len(rv)
        if not (2 <= l <= 5):
            raise PicklingError("Tuple returned by %s must have "
                                "two to five elements" % reduce)

        # Save the reduce() output and finally memoize the object
        self.save_reduce(obj=obj, *rv)

    def persistent_id(self, obj):
        # This exists so a subclass can override it
        return None

    def save_pers(self, pid):
        # Save a persistent id reference
        if self.bin:
            self.save(pid)
            self.write(BINPERSID)
        else:
            self.write(PERSID + str(pid) + '\n')

    def save_reduce(self, func, args, state=None,
                    listitems=None, dictitems=None, obj=None):
        # This API is called by some subclasses

        # Assert that args is a tuple or None
        if not isinstance(args, TupleType):
            raise PicklingError("args from reduce() should be a tuple")

        # Assert that func is callable
        if not hasattr(func, '__call__'):
            raise PicklingError("func from reduce should be callable")

        save = self.save
        write = self.write

        # Protocol 2 special case: if func's name is __newobj__, use NEWOBJ
        if self.proto >= 2 and getattr(func, "__name__", "") == "__newobj__":
            # A __reduce__ implementation can direct protocol 2 to
            # use the more efficient NEWOBJ opcode, while still
            # allowing protocol 0 and 1 to work normally.  For this to
            # work, the function returned by __reduce__ should be
            # called __newobj__, and its first argument should be a
            # new-style class.  The implementation for __newobj__
            # should be as follows, although pickle has no way to
            # verify this:
            #
            # def __newobj__(cls, *args):
            #     return cls.__new__(cls, *args)
            #
            # Protocols 0 and 1 will pickle a reference to __newobj__,
            # while protocol 2 (and above) will pickle a reference to
            # cls, the remaining args tuple, and the NEWOBJ code,
            # which calls cls.__new__(cls, *args) at unpickling time
            # (see load_newobj below).  If __reduce__ returns a
            # three-tuple, the state from the third tuple item will be
            # pickled regardless of the protocol, calling __setstate__
            # at unpickling time (see load_build below).
            #
            # Note that no standard __newobj__ implementation exists;
            # you have to provide your own.  This is to enforce
            # compatibility with Python 2.2 (pickles written using
            # protocol 0 or 1 in Python 2.3 should be unpicklable by
            # Python 2.2).
            cls = args[0]
            if not hasattr(cls, "__new__"):
                raise PicklingError(
                    "args[0] from __newobj__ args has no __new__")
            if obj is not None and cls is not obj.__class__:
                raise PicklingError(
                    "args[0] from __newobj__ args has the wrong class")
            args = args[1:]
            save(cls)
            save(args)
            write(NEWOBJ)
        else:
            save(func)
            save(args)
            write(REDUCE)

        if obj is not None:
            # If the object is already in the memo, this means it is
            # recursive. In this case, throw away everything we put on the
            # stack, and fetch the object back from the memo.
            if id(obj) in self.memo:
                write(POP + self.get(self.memo[id(obj)][0]))
            else:
                self.memoize(obj)

        # More new special cases (that work with older protocols as
        # well): when __reduce__ returns a tuple with 4 or 5 items,
        # the 4th and 5th item should be iterators that provide list
        # items and dict items (as (key, value) tuples), or None.

        if listitems is not None:
            self._batch_appends(listitems)

        if dictitems is not None:
            self._batch_setitems(dictitems)

        if state is not None:
            save(state)
            write(BUILD)

    # Methods below this point are dispatched through the dispatch table

    dispatch = {}

    def save_none(self, obj):
        self.write(NONE)
    dispatch[NoneType] = save_none

    def save_bool(self, obj):
        if self.proto >= 2:
            self.write(obj and NEWTRUE or NEWFALSE)
        else:
            self.write(obj and TRUE or FALSE)
    dispatch[bool] = save_bool

    def save_int(self, obj, pack=struct.pack):
        if self.bin:
            # If the int is small enough to fit in a signed 4-byte 2's-comp
            # format, we can store it more efficiently than the general
            # case.
            # First one- and two-byte unsigned ints:
            if obj >= 0:
                if obj <= 0xff:
                    self.write(BININT1 + chr(obj))
                    return
                if obj <= 0xffff:
                    self.write("%c%c%c" % (BININT2, obj&0xff, obj>>8))
                    return
            # Next check for 4-byte signed ints:
            high_bits = obj >> 31  # note that Python shift sign-extends
            if high_bits == 0 or high_bits == -1:
                # All high bits are copies of bit 2**31, so the value
                # fits in a 4-byte signed int.
                self.write(BININT + pack("<i", obj))
                return
        # Text pickle, or int too big to fit in signed 4-byte format.
        self.write(INT + repr(obj) + '\n')
    dispatch[IntType] = save_int

    def save_long(self, obj, pack=struct.pack):
        if self.proto >= 2:
            bytes = encode_long(obj)
            n = len(bytes)
            if n < 256:
                self.write(LONG1 + chr(n) + bytes)
            else:
                self.write(LONG4 + pack("<i", n) + bytes)
            return
        self.write(LONG + repr(obj) + '\n')
    dispatch[LongType] = save_long

    def save_float(self, obj, pack=struct.pack):
        if self.bin:
            self.write(BINFLOAT + pack('>d', obj))
        else:
            self.write(FLOAT + repr(obj) + '\n')
    dispatch[FloatType] = save_float

    def save_string(self, obj, pack=struct.pack):
        if self.bin:
            n = len(obj)
            if n < 256:
                self.write(SHORT_BINSTRING + chr(n) + obj)
            else:
                self.write(BINSTRING + pack("<i", n) + obj)
        else:
            self.write(STRING + repr(obj) + '\n')
        self.memoize(obj)
    dispatch[StringType] = save_string

    def save_unicode(self, obj, pack=struct.pack):
        if self.bin:
            encoding = obj.encode('utf-8')
            n = len(encoding)
            self.write(BINUNICODE + pack("<i", n) + encoding)
        else:
            obj = obj.replace("\\", "\\u005c")
            obj = obj.replace("\n", "\\u000a")
            self.write(UNICODE + obj.encode('raw-unicode-escape') + '\n')
        self.memoize(obj)
    dispatch[UnicodeType] = save_unicode

    if StringType is UnicodeType:
        # This is true for Jython
        def save_string(self, obj, pack=struct.pack):
            unicode = obj.isunicode()

            if self.bin:
                if unicode:
                    obj = obj.encode("utf-8")
                l = len(obj)
                if l < 256 and not unicode:
                    self.write(SHORT_BINSTRING + chr(l) + obj)
                else:
                    s = pack("<i", l)
                    if unicode:
                        self.write(BINUNICODE + s + obj)
                    else:
                        self.write(BINSTRING + s + obj)
            else:
                if unicode:
                    obj = obj.replace("\\", "\\u005c")
                    obj = obj.replace("\n", "\\u000a")
                    obj = obj.encode('raw-unicode-escape')
                    self.write(UNICODE + obj + '\n')
                else:
                    self.write(STRING + repr(obj) + '\n')
            self.memoize(obj)
        dispatch[StringType] = save_string

    def save_tuple(self, obj):
        write = self.write
        proto = self.proto

        n = len(obj)
        if n == 0:
            if proto:
                write(EMPTY_TUPLE)
            else:
                write(MARK + TUPLE)
            return

        save = self.save
        memo = self.memo
        if n <= 3 and proto >= 2:
            for element in obj:
                save(element)
            # Subtle.  Same as in the big comment below.
            if id(obj) in memo:
                get = self.get(memo[id(obj)][0])
                write(POP * n + get)
            else:
                write(_tuplesize2code[n])
                self.memoize(obj)
            return

        # proto 0 or proto 1 and tuple isn't empty, or proto > 1 and tuple
        # has more than 3 elements.
        write(MARK)
        for element in obj:
            save(element)

        if id(obj) in memo:
            # Subtle.  d was not in memo when we entered save_tuple(), so
            # the process of saving the tuple's elements must have saved
            # the tuple itself:  the tuple is recursive.  The proper action
            # now is to throw away everything we put on the stack, and
            # simply GET the tuple (it's already constructed).  This check
            # could have been done in the "for element" loop instead, but
            # recursive tuples are a rare thing.
            get = self.get(memo[id(obj)][0])
            if proto:
                write(POP_MARK + get)
            else:   # proto 0 -- POP_MARK not available
                write(POP * (n+1) + get)
            return

        # No recursion.
        self.write(TUPLE)
        self.memoize(obj)

    dispatch[TupleType] = save_tuple

    # save_empty_tuple() isn't used by anything in Python 2.3.  However, I
    # found a Pickler subclass in Zope3 that calls it, so it's not harmless
    # to remove it.
    def save_empty_tuple(self, obj):
        self.write(EMPTY_TUPLE)

    def save_list(self, obj):
        write = self.write

        if self.bin:
            write(EMPTY_LIST)
        else:   # proto 0 -- can't use EMPTY_LIST
            write(MARK + LIST)

        self.memoize(obj)
        self._batch_appends(iter(obj))

    dispatch[ListType] = save_list

    # Keep in synch with cPickle's BATCHSIZE.  Nothing will break if it gets
    # out of synch, though.
    _BATCHSIZE = 1000

    def _batch_appends(self, items):
        # Helper to batch up APPENDS sequences
        save = self.save
        write = self.write

        if not self.bin:
            for x in items:
                save(x)
                write(APPEND)
            return

        r = xrange(self._BATCHSIZE)
        while items is not None:
            tmp = []
            for i in r:
                try:
                    x = items.next()
                    tmp.append(x)
                except StopIteration:
                    items = None
                    break
            n = len(tmp)
            if n > 1:
                write(MARK)
                for x in tmp:
                    save(x)
                write(APPENDS)
            elif n:
                save(tmp[0])
                write(APPEND)
            # else tmp is empty, and we're done

    def save_dict(self, obj):
        write = self.write

        if self.bin:
            write(EMPTY_DICT)
        else:   # proto 0 -- can't use EMPTY_DICT
            write(MARK + DICT)

        self.memoize(obj)
        self._batch_setitems(obj.iteritems())

    dispatch[DictionaryType] = save_dict
    if not PyStringMap is None:
        dispatch[PyStringMap] = save_dict

    def _batch_setitems(self, items):
        # Helper to batch up SETITEMS sequences; proto >= 1 only
        save = self.save
        write = self.write

        if not self.bin:
            for k, v in items:
                save(k)
                save(v)
                write(SETITEM)
            return

        r = xrange(self._BATCHSIZE)
        while items is not None:
            tmp = []
            for i in r:
                try:
                    tmp.append(items.next())
                except StopIteration:
                    items = None
                    break
            n = len(tmp)
            if n > 1:
                write(MARK)
                for k, v in tmp:
                    save(k)
                    save(v)
                write(SETITEMS)
            elif n:
                k, v = tmp[0]
                save(k)
                save(v)
                write(SETITEM)
            # else tmp is empty, and we're done

    def save_inst(self, obj):
        cls = obj.__class__

        memo  = self.memo
        write = self.write
        save  = self.save

        if hasattr(obj, '__getinitargs__'):
            args = obj.__getinitargs__()
            len(args) # XXX Assert it's a sequence
            _keep_alive(args, memo)
        else:
            args = ()

        write(MARK)

        if self.bin:
            save(cls)
            for arg in args:
                save(arg)
            write(OBJ)
        else:
            for arg in args:
                save(arg)
            write(INST + cls.__module__ + '\n' + cls.__name__ + '\n')

        self.memoize(obj)

        try:
            getstate = obj.__getstate__
        except AttributeError:
            stuff = obj.__dict__
        else:
            stuff = getstate()
            _keep_alive(stuff, memo)
        save(stuff)
        write(BUILD)

    dispatch[InstanceType] = save_inst

    def save_global(self, obj, name=None, pack=struct.pack):
        write = self.write
        memo = self.memo

        if name is None:
            name = obj.__name__

        module = getattr(obj, "__module__", None)
        if module is None:
            module = whichmodule(obj, name)

        try:
            __import__(module)
            mod = sys.modules[module]
            klass = getattr(mod, name)
        except (ImportError, KeyError, AttributeError):
            raise PicklingError(
                "Can't pickle %r: it's not found as %s.%s" %
                (obj, module, name))
        else:
            if klass is not obj:
                raise PicklingError(
                    "Can't pickle %r: it's not the same object as %s.%s" %
                    (obj, module, name))

        if self.proto >= 2:
            code = _extension_registry.get((module, name))
            if code:
                assert code > 0
                if code <= 0xff:
                    write(EXT1 + chr(code))
                elif code <= 0xffff:
                    write("%c%c%c" % (EXT2, code&0xff, code>>8))
                else:
                    write(EXT4 + pack("<i", code))
                return

        write(GLOBAL + module + '\n' + name + '\n')
        self.memoize(obj)

    dispatch[ClassType] = save_global
    dispatch[FunctionType] = save_global
    dispatch[BuiltinFunctionType] = save_global
    dispatch[TypeType] = save_global

# Pickling helpers

def _keep_alive(x, memo):
    """Keeps a reference to the object x in the memo.

    Because we remember objects by their id, we have
    to assure that possibly temporary objects are kept
    alive by referencing them.
    We store a reference at the id of the memo, which should
    normally not be used unless someone tries to deepcopy
    the memo itself...
    """
    try:
        memo[id(memo)].append(x)
    except KeyError:
        # aha, this is the first one :-)
        memo[id(memo)]=[x]


# A cache for whichmodule(), mapping a function object to the name of
# the module in which the function was found.

classmap = {} # called classmap for backwards compatibility

def whichmodule(func, funcname):
    """Figure out the module in which a function occurs.

    Search sys.modules for the module.
    Cache in classmap.
    Return a module name.
    If the function cannot be found, return "__main__".
    """
    # Python functions should always get an __module__ from their globals.
    mod = getattr(func, "__module__", None)
    if mod is not None:
        return mod
    if func in classmap:
        return classmap[func]

    for name, module in sys.modules.items():
        if module is None:
            continue # skip dummy package entries
        if name != '__main__' and getattr(module, funcname, None) is func:
            break
    else:
        name = '__main__'
    classmap[func] = name
    return name


# Unpickling machinery

class Unpickler:

    def __init__(self, file):
        """This takes a file-like object for reading a pickle data stream.

        The protocol version of the pickle is detected automatically, so no
        proto argument is needed.

        The file-like object must have two methods, a read() method that
        takes an integer argument, and a readline() method that requires no
        arguments.  Both methods should return a string.  Thus file-like
        object can be a file object opened for reading, a StringIO object,
        or any other custom object that meets this interface.
        """
        self.readline = file.readline
        self.read = file.read
        self.memo = {}

    def load(self):
        """Read a pickled object representation from the open file.

        Return the reconstituted object hierarchy specified in the file.
        """
        self.mark = object() # any new unique object
        self.stack = []
        self.append = self.stack.append
        read = self.read
        dispatch = self.dispatch
        try:
            while 1:
                key = read(1)
                dispatch[key](self)
        except _Stop, stopinst:
            return stopinst.value

    # Return largest index k such that self.stack[k] is self.mark.
    # If the stack doesn't contain a mark, eventually raises IndexError.
    # This could be sped by maintaining another stack, of indices at which
    # the mark appears.  For that matter, the latter stack would suffice,
    # and we wouldn't need to push mark objects on self.stack at all.
    # Doing so is probably a good thing, though, since if the pickle is
    # corrupt (or hostile) we may get a clue from finding self.mark embedded
    # in unpickled objects.
    def marker(self):
        stack = self.stack
        mark = self.mark
        k = len(stack)-1
        while stack[k] is not mark: k = k-1
        return k

    dispatch = {}

    def load_eof(self):
        raise EOFError
    dispatch[''] = load_eof

    def load_proto(self):
        proto = ord(self.read(1))
        if not 0 <= proto <= 2:
            raise ValueError, "unsupported pickle protocol: %d" % proto
    dispatch[PROTO] = load_proto

    def load_persid(self):
        pid = self.readline()[:-1]
        self.append(self.persistent_load(pid))
    dispatch[PERSID] = load_persid

    def load_binpersid(self):
        pid = self.stack.pop()
        self.append(self.persistent_load(pid))
    dispatch[BINPERSID] = load_binpersid

    def load_none(self):
        self.append(None)
    dispatch[NONE] = load_none

    def load_false(self):
        self.append(False)
    dispatch[NEWFALSE] = load_false

    def load_true(self):
        self.append(True)
    dispatch[NEWTRUE] = load_true

    def load_int(self):
        data = self.readline()
        if data == FALSE[1:]:
            val = False
        elif data == TRUE[1:]:
            val = True
        else:
            try:
                val = int(data)
            except ValueError:
                val = long(data)
        self.append(val)
    dispatch[INT] = load_int

    def load_binint(self):
        self.append(mloads('i' + self.read(4)))
    dispatch[BININT] = load_binint

    def load_binint1(self):
        self.append(ord(self.read(1)))
    dispatch[BININT1] = load_binint1

    def load_binint2(self):
        self.append(mloads('i' + self.read(2) + '\000\000'))
    dispatch[BININT2] = load_binint2

    def load_long(self):
        self.append(long(self.readline()[:-1], 0))
    dispatch[LONG] = load_long

    def load_long1(self):
        n = ord(self.read(1))
        bytes = self.read(n)
        self.append(decode_long(bytes))
    dispatch[LONG1] = load_long1

    def load_long4(self):
        n = mloads('i' + self.read(4))
        bytes = self.read(n)
        self.append(decode_long(bytes))
    dispatch[LONG4] = load_long4

    def load_float(self):
        self.append(float(self.readline()[:-1]))
    dispatch[FLOAT] = load_float

    def load_binfloat(self, unpack=struct.unpack):
        self.append(unpack('>d', self.read(8))[0])
    dispatch[BINFLOAT] = load_binfloat

    def load_string(self):
        rep = self.readline()[:-1]
        for q in "\"'": # double or single quote
            if rep.startswith(q):
                if len(rep) < 2 or not rep.endswith(q):
                    raise ValueError, "insecure string pickle"
                rep = rep[len(q):-len(q)]
                break
        else:
            raise ValueError, "insecure string pickle"
        self.append(rep.decode("string-escape"))
    dispatch[STRING] = load_string

    def load_binstring(self):
        len = mloads('i' + self.read(4))
        self.append(self.read(len))
    dispatch[BINSTRING] = load_binstring

    def load_unicode(self):
        self.append(unicode(self.readline()[:-1],'raw-unicode-escape'))
    dispatch[UNICODE] = load_unicode

    def load_binunicode(self):
        len = mloads('i' + self.read(4))
        self.append(unicode(self.read(len),'utf-8'))
    dispatch[BINUNICODE] = load_binunicode

    def load_short_binstring(self):
        len = ord(self.read(1))
        self.append(self.read(len))
    dispatch[SHORT_BINSTRING] = load_short_binstring

    def load_tuple(self):
        k = self.marker()
        self.stack[k:] = [tuple(self.stack[k+1:])]
    dispatch[TUPLE] = load_tuple

    def load_empty_tuple(self):
        self.stack.append(())
    dispatch[EMPTY_TUPLE] = load_empty_tuple

    def load_tuple1(self):
        self.stack[-1] = (self.stack[-1],)
    dispatch[TUPLE1] = load_tuple1

    def load_tuple2(self):
        self.stack[-2:] = [(self.stack[-2], self.stack[-1])]
    dispatch[TUPLE2] = load_tuple2

    def load_tuple3(self):
        self.stack[-3:] = [(self.stack[-3], self.stack[-2], self.stack[-1])]
    dispatch[TUPLE3] = load_tuple3

    def load_empty_list(self):
        self.stack.append([])
    dispatch[EMPTY_LIST] = load_empty_list

    def load_empty_dictionary(self):
        self.stack.append({})
    dispatch[EMPTY_DICT] = load_empty_dictionary

    def load_list(self):
        k = self.marker()
        self.stack[k:] = [self.stack[k+1:]]
    dispatch[LIST] = load_list

    def load_dict(self):
        k = self.marker()
        d = {}
        items = self.stack[k+1:]
        for i in range(0, len(items), 2):
            key = items[i]
            value = items[i+1]
            d[key] = value
        self.stack[k:] = [d]
    dispatch[DICT] = load_dict

    # INST and OBJ differ only in how they get a class object.  It's not
    # only sensible to do the rest in a common routine, the two routines
    # previously diverged and grew different bugs.
    # klass is the class to instantiate, and k points to the topmost mark
    # object, following which are the arguments for klass.__init__.
    def _instantiate(self, klass, k):
        args = tuple(self.stack[k+1:])
        del self.stack[k:]
        instantiated = 0
        if (not args and
                type(klass) is ClassType and
                not hasattr(klass, "__getinitargs__")):
            try:
                value = _EmptyClass()
                value.__class__ = klass
                instantiated = 1
            except RuntimeError:
                # In restricted execution, assignment to inst.__class__ is
                # prohibited
                pass
        if not instantiated:
            try:
                value = klass(*args)
            except TypeError, err:
                raise TypeError, "in constructor for %s: %s" % (
                    klass.__name__, str(err)), sys.exc_info()[2]
        self.append(value)

    def load_inst(self):
        module = self.readline()[:-1]
        name = self.readline()[:-1]
        klass = self.find_class(module, name)
        self._instantiate(klass, self.marker())
    dispatch[INST] = load_inst

    def load_obj(self):
        # Stack is ... markobject classobject arg1 arg2 ...
        k = self.marker()
        klass = self.stack.pop(k+1)
        self._instantiate(klass, k)
    dispatch[OBJ] = load_obj

    def load_newobj(self):
        args = self.stack.pop()
        cls = self.stack[-1]
        obj = cls.__new__(cls, *args)
        self.stack[-1] = obj
    dispatch[NEWOBJ] = load_newobj

    def load_global(self):
        module = self.readline()[:-1]
        name = self.readline()[:-1]
        klass = self.find_class(module, name)
        self.append(klass)
    dispatch[GLOBAL] = load_global

    def load_ext1(self):
        code = ord(self.read(1))
        self.get_extension(code)
    dispatch[EXT1] = load_ext1

    def load_ext2(self):
        code = mloads('i' + self.read(2) + '\000\000')
        self.get_extension(code)
    dispatch[EXT2] = load_ext2

    def load_ext4(self):
        code = mloads('i' + self.read(4))
        self.get_extension(code)
    dispatch[EXT4] = load_ext4

    def get_extension(self, code):
        nil = []
        obj = _extension_cache.get(code, nil)
        if obj is not nil:
            self.append(obj)
            return
        key = _inverted_registry.get(code)
        if not key:
            raise ValueError("unregistered extension code %d" % code)
        obj = self.find_class(*key)
        _extension_cache[code] = obj
        self.append(obj)

    def find_class(self, module, name):
        # Subclasses may override this
        __import__(module)
        mod = sys.modules[module]
        klass = getattr(mod, name)
        return klass

    def load_reduce(self):
        stack = self.stack
        args = stack.pop()
        func = stack[-1]
        value = func(*args)
        stack[-1] = value
    dispatch[REDUCE] = load_reduce

    def load_pop(self):
        del self.stack[-1]
    dispatch[POP] = load_pop

    def load_pop_mark(self):
        k = self.marker()
        del self.stack[k:]
    dispatch[POP_MARK] = load_pop_mark

    def load_dup(self):
        self.append(self.stack[-1])
    dispatch[DUP] = load_dup

    def load_get(self):
        self.append(self.memo[self.readline()[:-1]])
    dispatch[GET] = load_get

    def load_binget(self):
        i = ord(self.read(1))
        self.append(self.memo[repr(i)])
    dispatch[BINGET] = load_binget

    def load_long_binget(self):
        i = mloads('i' + self.read(4))
        self.append(self.memo[repr(i)])
    dispatch[LONG_BINGET] = load_long_binget

    def load_put(self):
        self.memo[self.readline()[:-1]] = self.stack[-1]
    dispatch[PUT] = load_put

    def load_binput(self):
        i = ord(self.read(1))
        self.memo[repr(i)] = self.stack[-1]
    dispatch[BINPUT] = load_binput

    def load_long_binput(self):
        i = mloads('i' + self.read(4))
        self.memo[repr(i)] = self.stack[-1]
    dispatch[LONG_BINPUT] = load_long_binput

    def load_append(self):
        stack = self.stack
        value = stack.pop()
        list = stack[-1]
        list.append(value)
    dispatch[APPEND] = load_append

    def load_appends(self):
        stack = self.stack
        mark = self.marker()
        list = stack[mark - 1]
        list.extend(stack[mark + 1:])
        del stack[mark:]
    dispatch[APPENDS] = load_appends

    def load_setitem(self):
        stack = self.stack
        value = stack.pop()
        key = stack.pop()
        dict = stack[-1]
        dict[key] = value
    dispatch[SETITEM] = load_setitem

    def load_setitems(self):
        stack = self.stack
        mark = self.marker()
        dict = stack[mark - 1]
        for i in range(mark + 1, len(stack), 2):
            dict[stack[i]] = stack[i + 1]

        del stack[mark:]
    dispatch[SETITEMS] = load_setitems

    def load_build(self):
        stack = self.stack
        state = stack.pop()
        inst = stack[-1]
        setstate = getattr(inst, "__setstate__", None)
        if setstate:
            setstate(state)
            return
        slotstate = None
        if isinstance(state, tuple) and len(state) == 2:
            state, slotstate = state
        if state:
            try:
                d = inst.__dict__
                try:
                    for k, v in state.iteritems():
                        d[intern(k)] = v
                # keys in state don't have to be strings
                # don't blow up, but don't go out of our way
                except TypeError:
                    d.update(state)

            except RuntimeError:
                # XXX In restricted execution, the instance's __dict__
                # is not accessible.  Use the old way of unpickling
                # the instance variables.  This is a semantic
                # difference when unpickling in restricted
                # vs. unrestricted modes.
                # Note, however, that cPickle has never tried to do the
                # .update() business, and always uses
                #     PyObject_SetItem(inst.__dict__, key, value) in a
                # loop over state.items().
                for k, v in state.items():
                    setattr(inst, k, v)
        if slotstate:
            for k, v in slotstate.items():
                setattr(inst, k, v)
    dispatch[BUILD] = load_build

    def load_mark(self):
        self.append(self.mark)
    dispatch[MARK] = load_mark

    def load_stop(self):
        value = self.stack.pop()
        raise _Stop(value)
    dispatch[STOP] = load_stop

# Helper class for load_inst/load_obj

class _EmptyClass:
    pass

# Encode/decode longs in linear time.

import binascii as _binascii

def encode_long(x):
    r"""Encode a long to a two's complement little-endian binary string.
    Note that 0L is a special case, returning an empty string, to save a
    byte in the LONG1 pickling context.

    >>> encode_long(0L)
    ''
    >>> encode_long(255L)
    '\xff\x00'
    >>> encode_long(32767L)
    '\xff\x7f'
    >>> encode_long(-256L)
    '\x00\xff'
    >>> encode_long(-32768L)
    '\x00\x80'
    >>> encode_long(-128L)
    '\x80'
    >>> encode_long(127L)
    '\x7f'
    >>>
    """

    if x == 0:
        return ''
    if x > 0:
        ashex = hex(x)
        assert ashex.startswith("0x")
        njunkchars = 2 + ashex.endswith('L')
        nibbles = len(ashex) - njunkchars
        if nibbles & 1:
            # need an even # of nibbles for unhexlify
            ashex = "0x0" + ashex[2:]
        elif int(ashex[2], 16) >= 8:
            # "looks negative", so need a byte of sign bits
            ashex = "0x00" + ashex[2:]
    else:
        # Build the 256's-complement:  (1L << nbytes) + x.  The trick is
        # to find the number of bytes in linear time (although that should
        # really be a constant-time task).
        ashex = hex(-x)
        assert ashex.startswith("0x")
        njunkchars = 2 + ashex.endswith('L')
        nibbles = len(ashex) - njunkchars
        if nibbles & 1:
            # Extend to a full byte.
            nibbles += 1
        nbits = nibbles * 4
        x += 1L << nbits
        assert x > 0
        ashex = hex(x)
        njunkchars = 2 + ashex.endswith('L')
        newnibbles = len(ashex) - njunkchars
        if newnibbles < nibbles:
            ashex = "0x" + "0" * (nibbles - newnibbles) + ashex[2:]
        if int(ashex[2], 16) < 8:
            # "looks positive", so need a byte of sign bits
            ashex = "0xff" + ashex[2:]

    if ashex.endswith('L'):
        ashex = ashex[2:-1]
    else:
        ashex = ashex[2:]
    assert len(ashex) & 1 == 0, (x, ashex)
    binary = _binascii.unhexlify(ashex)
    return binary[::-1]

def decode_long(data):
    r"""Decode a long from a two's complement little-endian binary string.

    >>> decode_long('')
    0L
    >>> decode_long("\xff\x00")
    255L
    >>> decode_long("\xff\x7f")
    32767L
    >>> decode_long("\x00\xff")
    -256L
    >>> decode_long("\x00\x80")
    -32768L
    >>> decode_long("\x80")
    -128L
    >>> decode_long("\x7f")
    127L
    """

    nbytes = len(data)
    if nbytes == 0:
        return 0L
    ashex = _binascii.hexlify(data[::-1])
    n = long(ashex, 16) # quadratic time before Python 2.3; linear now
    if data[-1] >= '\x80':
        n -= 1L << (nbytes * 8)
    return n

# Shorthands

try:
    from cStringIO import StringIO
except ImportError:
    from StringIO import StringIO

def dump(obj, file, protocol=None):
    Pickler(file, protocol).dump(obj)

def dumps(obj, protocol=None):
    file = StringIO()
    Pickler(file, protocol).dump(obj)
    return file.getvalue()

def load(file):
    return Unpickler(file).load()

def loads(str):
    file = StringIO(str)
    return Unpickler(file).load()

# Doctest

def _test():
    import doctest
    return doctest.testmod()

if __name__ == "__main__":
    _test()