1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 | Modules/mathmodule.c
/* Math module -- standard C math library functions, pi and e */ /* Here are some comments from Tim Peters, extracted from the discussion attached to http://bugs.python.org/issue1640. They describe the general aims of the math module with respect to special values, IEEE-754 floating-point exceptions, and Python exceptions. These are the "spirit of 754" rules: 1. If the mathematical result is a real number, but of magnitude too large to approximate by a machine float, overflow is signaled and the result is an infinity (with the appropriate sign). 2. If the mathematical result is a real number, but of magnitude too small to approximate by a machine float, underflow is signaled and the result is a zero (with the appropriate sign). 3. At a singularity (a value x such that the limit of f(y) as y approaches x exists and is an infinity), "divide by zero" is signaled and the result is an infinity (with the appropriate sign). This is complicated a little by that the left-side and right-side limits may not be the same; e.g., 1/x approaches +inf or -inf as x approaches 0 from the positive or negative directions. In that specific case, the sign of the zero determines the result of 1/0. 4. At a point where a function has no defined result in the extended reals (i.e., the reals plus an infinity or two), invalid operation is signaled and a NaN is returned. And these are what Python has historically /tried/ to do (but not always successfully, as platform libm behavior varies a lot): For #1, raise OverflowError. For #2, return a zero (with the appropriate sign if that happens by accident ;-)). For #3 and #4, raise ValueError. It may have made sense to raise Python's ZeroDivisionError in #3, but historically that's only been raised for division by zero and mod by zero. */ /* In general, on an IEEE-754 platform the aim is to follow the C99 standard, including Annex 'F', whenever possible. Where the standard recommends raising the 'divide-by-zero' or 'invalid' floating-point exceptions, Python should raise a ValueError. Where the standard recommends raising 'overflow', Python should raise an OverflowError. In all other circumstances a value should be returned. */ #include "Python.h" #include "_math.h" #ifdef _OSF_SOURCE /* OSF1 5.1 doesn't make this available with XOPEN_SOURCE_EXTENDED defined */ extern double copysign(double, double); #endif /* sin(pi*x), giving accurate results for all finite x (especially x integral or close to an integer). This is here for use in the reflection formula for the gamma function. It conforms to IEEE 754-2008 for finite arguments, but not for infinities or nans. */ static const double pi = 3.141592653589793238462643383279502884197; static const double sqrtpi = 1.772453850905516027298167483341145182798; static double sinpi(double x) { double y, r; int n; /* this function should only ever be called for finite arguments */ assert(Py_IS_FINITE(x)); y = fmod(fabs(x), 2.0); n = (int)round(2.0*y); assert(0 <= n && n <= 4); switch (n) { case 0: r = sin(pi*y); break; case 1: r = cos(pi*(y-0.5)); break; case 2: /* N.B. -sin(pi*(y-1.0)) is *not* equivalent: it would give -0.0 instead of 0.0 when y == 1.0. */ r = sin(pi*(1.0-y)); break; case 3: r = -cos(pi*(y-1.5)); break; case 4: r = sin(pi*(y-2.0)); break; default: assert(0); /* should never get here */ r = -1.23e200; /* silence gcc warning */ } return copysign(1.0, x)*r; } /* Implementation of the real gamma function. In extensive but non-exhaustive random tests, this function proved accurate to within <= 10 ulps across the entire float domain. Note that accuracy may depend on the quality of the system math functions, the pow function in particular. Special cases follow C99 annex F. The parameters and method are tailored to platforms whose double format is the IEEE 754 binary64 format. Method: for x > 0.0 we use the Lanczos approximation with parameters N=13 and g=6.024680040776729583740234375; these parameters are amongst those used by the Boost library. Following Boost (again), we re-express the Lanczos sum as a rational function, and compute it that way. The coefficients below were computed independently using MPFR, and have been double-checked against the coefficients in the Boost source code. For x < 0.0 we use the reflection formula. There's one minor tweak that deserves explanation: Lanczos' formula for Gamma(x) involves computing pow(x+g-0.5, x-0.5) / exp(x+g-0.5). For many x values, x+g-0.5 can be represented exactly. However, in cases where it can't be represented exactly the small error in x+g-0.5 can be magnified significantly by the pow and exp calls, especially for large x. A cheap correction is to multiply by (1 + e*g/(x+g-0.5)), where e is the error involved in the computation of x+g-0.5 (that is, e = computed value of x+g-0.5 - exact value of x+g-0.5). Here's the proof: Correction factor ----------------- Write x+g-0.5 = y-e, where y is exactly representable as an IEEE 754 double, and e is tiny. Then: pow(x+g-0.5,x-0.5)/exp(x+g-0.5) = pow(y-e, x-0.5)/exp(y-e) = pow(y, x-0.5)/exp(y) * C, where the correction_factor C is given by C = pow(1-e/y, x-0.5) * exp(e) Since e is tiny, pow(1-e/y, x-0.5) ~ 1-(x-0.5)*e/y, and exp(x) ~ 1+e, so: C ~ (1-(x-0.5)*e/y) * (1+e) ~ 1 + e*(y-(x-0.5))/y But y-(x-0.5) = g+e, and g+e ~ g. So we get C ~ 1 + e*g/y, and pow(x+g-0.5,x-0.5)/exp(x+g-0.5) ~ pow(y, x-0.5)/exp(y) * (1 + e*g/y), Note that for accuracy, when computing r*C it's better to do r + e*g/y*r; than r * (1 + e*g/y); since the addition in the latter throws away most of the bits of information in e*g/y. */ #define LANCZOS_N 13 static const double lanczos_g = 6.024680040776729583740234375; static const double lanczos_g_minus_half = 5.524680040776729583740234375; static const double lanczos_num_coeffs[LANCZOS_N] = { 23531376880.410759688572007674451636754734846804940, 42919803642.649098768957899047001988850926355848959, 35711959237.355668049440185451547166705960488635843, 17921034426.037209699919755754458931112671403265390, 6039542586.3520280050642916443072979210699388420708, 1439720407.3117216736632230727949123939715485786772, 248874557.86205415651146038641322942321632125127801, 31426415.585400194380614231628318205362874684987640, 2876370.6289353724412254090516208496135991145378768, 186056.26539522349504029498971604569928220784236328, 8071.6720023658162106380029022722506138218516325024, 210.82427775157934587250973392071336271166969580291, 2.5066282746310002701649081771338373386264310793408 }; /* denominator is x*(x+1)*...*(x+LANCZOS_N-2) */ static const double lanczos_den_coeffs[LANCZOS_N] = { 0.0, 39916800.0, 120543840.0, 150917976.0, 105258076.0, 45995730.0, 13339535.0, 2637558.0, 357423.0, 32670.0, 1925.0, 66.0, 1.0}; /* gamma values for small positive integers, 1 though NGAMMA_INTEGRAL */ #define NGAMMA_INTEGRAL 23 static const double gamma_integral[NGAMMA_INTEGRAL] = { 1.0, 1.0, 2.0, 6.0, 24.0, 120.0, 720.0, 5040.0, 40320.0, 362880.0, 3628800.0, 39916800.0, 479001600.0, 6227020800.0, 87178291200.0, 1307674368000.0, 20922789888000.0, 355687428096000.0, 6402373705728000.0, 121645100408832000.0, 2432902008176640000.0, 51090942171709440000.0, 1124000727777607680000.0, }; /* Lanczos' sum L_g(x), for positive x */ static double lanczos_sum(double x) { double num = 0.0, den = 0.0; int i; assert(x > 0.0); /* evaluate the rational function lanczos_sum(x). For large x, the obvious algorithm risks overflow, so we instead rescale the denominator and numerator of the rational function by x**(1-LANCZOS_N) and treat this as a rational function in 1/x. This also reduces the error for larger x values. The choice of cutoff point (5.0 below) is somewhat arbitrary; in tests, smaller cutoff values than this resulted in lower accuracy. */ if (x < 5.0) { for (i = LANCZOS_N; --i >= 0; ) { num = num * x + lanczos_num_coeffs[i]; den = den * x + lanczos_den_coeffs[i]; } } else { for (i = 0; i < LANCZOS_N; i++) { num = num / x + lanczos_num_coeffs[i]; den = den / x + lanczos_den_coeffs[i]; } } return num/den; } static double m_tgamma(double x) { double absx, r, y, z, sqrtpow; /* special cases */ if (!Py_IS_FINITE(x)) { if (Py_IS_NAN(x) || x > 0.0) return x; /* tgamma(nan) = nan, tgamma(inf) = inf */ else { errno = EDOM; return Py_NAN; /* tgamma(-inf) = nan, invalid */ } } if (x == 0.0) { errno = EDOM; return 1.0/x; /* tgamma(+-0.0) = +-inf, divide-by-zero */ } /* integer arguments */ if (x == floor(x)) { if (x < 0.0) { errno = EDOM; /* tgamma(n) = nan, invalid for */ return Py_NAN; /* negative integers n */ } if (x <= NGAMMA_INTEGRAL) return gamma_integral[(int)x - 1]; } absx = fabs(x); /* tiny arguments: tgamma(x) ~ 1/x for x near 0 */ if (absx < 1e-20) { r = 1.0/x; if (Py_IS_INFINITY(r)) errno = ERANGE; return r; } /* large arguments: assuming IEEE 754 doubles, tgamma(x) overflows for x > 200, and underflows to +-0.0 for x < -200, not a negative integer. */ if (absx > 200.0) { if (x < 0.0) { return 0.0/sinpi(x); } else { errno = ERANGE; return Py_HUGE_VAL; } } y = absx + lanczos_g_minus_half; /* compute error in sum */ if (absx > lanczos_g_minus_half) { /* note: the correction can be foiled by an optimizing compiler that (incorrectly) thinks that an expression like a + b - a - b can be optimized to 0.0. This shouldn't happen in a standards-conforming compiler. */ double q = y - absx; z = q - lanczos_g_minus_half; } else { double q = y - lanczos_g_minus_half; z = q - absx; } z = z * lanczos_g / y; if (x < 0.0) { r = -pi / sinpi(absx) / absx * exp(y) / lanczos_sum(absx); r -= z * r; if (absx < 140.0) { r /= pow(y, absx - 0.5); } else { sqrtpow = pow(y, absx / 2.0 - 0.25); r /= sqrtpow; r /= sqrtpow; } } else { r = lanczos_sum(absx) / exp(y); r += z * r; if (absx < 140.0) { r *= pow(y, absx - 0.5); } else { sqrtpow = pow(y, absx / 2.0 - 0.25); r *= sqrtpow; r *= sqrtpow; } } if (Py_IS_INFINITY(r)) errno = ERANGE; return r; } /* lgamma: natural log of the absolute value of the Gamma function. For large arguments, Lanczos' formula works extremely well here. */ static double m_lgamma(double x) { double r, absx; /* special cases */ if (!Py_IS_FINITE(x)) { if (Py_IS_NAN(x)) return x; /* lgamma(nan) = nan */ else return Py_HUGE_VAL; /* lgamma(+-inf) = +inf */ } /* integer arguments */ if (x == floor(x) && x <= 2.0) { if (x <= 0.0) { errno = EDOM; /* lgamma(n) = inf, divide-by-zero for */ return Py_HUGE_VAL; /* integers n <= 0 */ } else { return 0.0; /* lgamma(1) = lgamma(2) = 0.0 */ } } absx = fabs(x); /* tiny arguments: lgamma(x) ~ -log(fabs(x)) for small x */ if (absx < 1e-20) return -log(absx); /* Lanczos' formula */ if (x > 0.0) { /* we could save a fraction of a ulp in accuracy by having a second set of numerator coefficients for lanczos_sum that absorbed the exp(-lanczos_g) term, and throwing out the lanczos_g subtraction below; it's probably not worth it. */ r = log(lanczos_sum(x)) - lanczos_g + (x-0.5)*(log(x+lanczos_g-0.5)-1); } else { r = log(pi) - log(fabs(sinpi(absx))) - log(absx) - (log(lanczos_sum(absx)) - lanczos_g + (absx-0.5)*(log(absx+lanczos_g-0.5)-1)); } if (Py_IS_INFINITY(r)) errno = ERANGE; return r; } /* Implementations of the error function erf(x) and the complementary error function erfc(x). Method: following 'Numerical Recipes' by Flannery, Press et. al. (2nd ed., Cambridge University Press), we use a series approximation for erf for small x, and a continued fraction approximation for erfc(x) for larger x; combined with the relations erf(-x) = -erf(x) and erfc(x) = 1.0 - erf(x), this gives us erf(x) and erfc(x) for all x. The series expansion used is: erf(x) = x*exp(-x*x)/sqrt(pi) * [ 2/1 + 4/3 x**2 + 8/15 x**4 + 16/105 x**6 + ...] The coefficient of x**(2k-2) here is 4**k*factorial(k)/factorial(2*k). This series converges well for smallish x, but slowly for larger x. The continued fraction expansion used is: erfc(x) = x*exp(-x*x)/sqrt(pi) * [1/(0.5 + x**2 -) 0.5/(2.5 + x**2 - ) 3.0/(4.5 + x**2 - ) 7.5/(6.5 + x**2 - ) ...] after the first term, the general term has the form: k*(k-0.5)/(2*k+0.5 + x**2 - ...). This expansion converges fast for larger x, but convergence becomes infinitely slow as x approaches 0.0. The (somewhat naive) continued fraction evaluation algorithm used below also risks overflow for large x; but for large x, erfc(x) == 0.0 to within machine precision. (For example, erfc(30.0) is approximately 2.56e-393). Parameters: use series expansion for abs(x) < ERF_SERIES_CUTOFF and continued fraction expansion for ERF_SERIES_CUTOFF <= abs(x) < ERFC_CONTFRAC_CUTOFF. ERFC_SERIES_TERMS and ERFC_CONTFRAC_TERMS are the numbers of terms to use for the relevant expansions. */ #define ERF_SERIES_CUTOFF 1.5 #define ERF_SERIES_TERMS 25 #define ERFC_CONTFRAC_CUTOFF 30.0 #define ERFC_CONTFRAC_TERMS 50 /* Error function, via power series. Given a finite float x, return an approximation to erf(x). Converges reasonably fast for small x. */ static double m_erf_series(double x) { double x2, acc, fk, result; int i, saved_errno; x2 = x * x; acc = 0.0; fk = (double)ERF_SERIES_TERMS + 0.5; for (i = 0; i < ERF_SERIES_TERMS; i++) { acc = 2.0 + x2 * acc / fk; fk -= 1.0; } /* Make sure the exp call doesn't affect errno; see m_erfc_contfrac for more. */ saved_errno = errno; result = acc * x * exp(-x2) / sqrtpi; errno = saved_errno; return result; } /* Complementary error function, via continued fraction expansion. Given a positive float x, return an approximation to erfc(x). Converges reasonably fast for x large (say, x > 2.0), and should be safe from overflow if x and nterms are not too large. On an IEEE 754 machine, with x <= 30.0, we're safe up to nterms = 100. For x >= 30.0, erfc(x) is smaller than the smallest representable nonzero float. */ static double m_erfc_contfrac(double x) { double x2, a, da, p, p_last, q, q_last, b, result; int i, saved_errno; if (x >= ERFC_CONTFRAC_CUTOFF) return 0.0; x2 = x*x; a = 0.0; da = 0.5; p = 1.0; p_last = 0.0; q = da + x2; q_last = 1.0; for (i = 0; i < ERFC_CONTFRAC_TERMS; i++) { double temp; a += da; da += 2.0; b = da + x2; temp = p; p = b*p - a*p_last; p_last = temp; temp = q; q = b*q - a*q_last; q_last = temp; } /* Issue #8986: On some platforms, exp sets errno on underflow to zero; save the current errno value so that we can restore it later. */ saved_errno = errno; result = p / q * x * exp(-x2) / sqrtpi; errno = saved_errno; return result; } /* Error function erf(x), for general x */ static double m_erf(double x) { double absx, cf; if (Py_IS_NAN(x)) return x; absx = fabs(x); if (absx < ERF_SERIES_CUTOFF) return m_erf_series(x); else { cf = m_erfc_contfrac(absx); return x > 0.0 ? 1.0 - cf : cf - 1.0; } } /* Complementary error function erfc(x), for general x. */ static double m_erfc(double x) { double absx, cf; if (Py_IS_NAN(x)) return x; absx = fabs(x); if (absx < ERF_SERIES_CUTOFF) return 1.0 - m_erf_series(x); else { cf = m_erfc_contfrac(absx); return x > 0.0 ? cf : 2.0 - cf; } } /* wrapper for atan2 that deals directly with special cases before delegating to the platform libm for the remaining cases. This is necessary to get consistent behaviour across platforms. Windows, FreeBSD and alpha Tru64 are amongst platforms that don't always follow C99. */ static double m_atan2(double y, double x) { if (Py_IS_NAN(x) || Py_IS_NAN(y)) return Py_NAN; if (Py_IS_INFINITY(y)) { if (Py_IS_INFINITY(x)) { if (copysign(1., x) == 1.) /* atan2(+-inf, +inf) == +-pi/4 */ return copysign(0.25*Py_MATH_PI, y); else /* atan2(+-inf, -inf) == +-pi*3/4 */ return copysign(0.75*Py_MATH_PI, y); } /* atan2(+-inf, x) == +-pi/2 for finite x */ return copysign(0.5*Py_MATH_PI, y); } if (Py_IS_INFINITY(x) || y == 0.) { if (copysign(1., x) == 1.) /* atan2(+-y, +inf) = atan2(+-0, +x) = +-0. */ return copysign(0., y); else /* atan2(+-y, -inf) = atan2(+-0., -x) = +-pi. */ return copysign(Py_MATH_PI, y); } return atan2(y, x); } /* Various platforms (Solaris, OpenBSD) do nonstandard things for log(0), log(-ve), log(NaN). Here are wrappers for log and log10 that deal with special values directly, passing positive non-special values through to the system log/log10. */ static double m_log(double x) { if (Py_IS_FINITE(x)) { if (x > 0.0) return log(x); errno = EDOM; if (x == 0.0) return -Py_HUGE_VAL; /* log(0) = -inf */ else return Py_NAN; /* log(-ve) = nan */ } else if (Py_IS_NAN(x)) return x; /* log(nan) = nan */ else if (x > 0.0) return x; /* log(inf) = inf */ else { errno = EDOM; return Py_NAN; /* log(-inf) = nan */ } } static double m_log10(double x) { if (Py_IS_FINITE(x)) { if (x > 0.0) return log10(x); errno = EDOM; if (x == 0.0) return -Py_HUGE_VAL; /* log10(0) = -inf */ else return Py_NAN; /* log10(-ve) = nan */ } else if (Py_IS_NAN(x)) return x; /* log10(nan) = nan */ else if (x > 0.0) return x; /* log10(inf) = inf */ else { errno = EDOM; return Py_NAN; /* log10(-inf) = nan */ } } /* Call is_error when errno != 0, and where x is the result libm * returned. is_error will usually set up an exception and return * true (1), but may return false (0) without setting up an exception. */ static int is_error(double x) { int result = 1; /* presumption of guilt */ assert(errno); /* non-zero errno is a precondition for calling */ if (errno == EDOM) PyErr_SetString(PyExc_ValueError, "math domain error"); else if (errno == ERANGE) { /* ANSI C generally requires libm functions to set ERANGE * on overflow, but also generally *allows* them to set * ERANGE on underflow too. There's no consistency about * the latter across platforms. * Alas, C99 never requires that errno be set. * Here we suppress the underflow errors (libm functions * should return a zero on underflow, and +- HUGE_VAL on * overflow, so testing the result for zero suffices to * distinguish the cases). * * On some platforms (Ubuntu/ia64) it seems that errno can be * set to ERANGE for subnormal results that do *not* underflow * to zero. So to be safe, we'll ignore ERANGE whenever the * function result is less than one in absolute value. */ if (fabs(x) < 1.0) result = 0; else PyErr_SetString(PyExc_OverflowError, "math range error"); } else /* Unexpected math error */ PyErr_SetFromErrno(PyExc_ValueError); return result; } /* math_1 is used to wrap a libm function f that takes a double arguments and returns a double. The error reporting follows these rules, which are designed to do the right thing on C89/C99 platforms and IEEE 754/non IEEE 754 platforms. - a NaN result from non-NaN inputs causes ValueError to be raised - an infinite result from finite inputs causes OverflowError to be raised if can_overflow is 1, or raises ValueError if can_overflow is 0. - if the result is finite and errno == EDOM then ValueError is raised - if the result is finite and nonzero and errno == ERANGE then OverflowError is raised The last rule is used to catch overflow on platforms which follow C89 but for which HUGE_VAL is not an infinity. For the majority of one-argument functions these rules are enough to ensure that Python's functions behave as specified in 'Annex F' of the C99 standard, with the 'invalid' and 'divide-by-zero' floating-point exceptions mapping to Python's ValueError and the 'overflow' floating-point exception mapping to OverflowError. math_1 only works for functions that don't have singularities *and* the possibility of overflow; fortunately, that covers everything we care about right now. */ static PyObject * math_1(PyObject *arg, double (*func) (double), int can_overflow) { double x, r; x = PyFloat_AsDouble(arg); if (x == -1.0 && PyErr_Occurred()) return NULL; errno = 0; PyFPE_START_PROTECT("in math_1", return 0); r = (*func)(x); PyFPE_END_PROTECT(r); if (Py_IS_NAN(r)) { if (!Py_IS_NAN(x)) errno = EDOM; else errno = 0; } else if (Py_IS_INFINITY(r)) { if (Py_IS_FINITE(x)) errno = can_overflow ? ERANGE : EDOM; else errno = 0; } if (errno && is_error(r)) return NULL; else return PyFloat_FromDouble(r); } /* variant of math_1, to be used when the function being wrapped is known to set errno properly (that is, errno = EDOM for invalid or divide-by-zero, errno = ERANGE for overflow). */ static PyObject * math_1a(PyObject *arg, double (*func) (double)) { double x, r; x = PyFloat_AsDouble(arg); if (x == -1.0 && PyErr_Occurred()) return NULL; errno = 0; PyFPE_START_PROTECT("in math_1a", return 0); r = (*func)(x); PyFPE_END_PROTECT(r); if (errno && is_error(r)) return NULL; return PyFloat_FromDouble(r); } /* math_2 is used to wrap a libm function f that takes two double arguments and returns a double. The error reporting follows these rules, which are designed to do the right thing on C89/C99 platforms and IEEE 754/non IEEE 754 platforms. - a NaN result from non-NaN inputs causes ValueError to be raised - an infinite result from finite inputs causes OverflowError to be raised. - if the result is finite and errno == EDOM then ValueError is raised - if the result is finite and nonzero and errno == ERANGE then OverflowError is raised The last rule is used to catch overflow on platforms which follow C89 but for which HUGE_VAL is not an infinity. For most two-argument functions (copysign, fmod, hypot, atan2) these rules are enough to ensure that Python's functions behave as specified in 'Annex F' of the C99 standard, with the 'invalid' and 'divide-by-zero' floating-point exceptions mapping to Python's ValueError and the 'overflow' floating-point exception mapping to OverflowError. */ static PyObject * math_2(PyObject *args, double (*func) (double, double), char *funcname) { PyObject *ox, *oy; double x, y, r; if (! PyArg_UnpackTuple(args, funcname, 2, 2, &ox, &oy)) return NULL; x = PyFloat_AsDouble(ox); y = PyFloat_AsDouble(oy); if ((x == -1.0 || y == -1.0) && PyErr_Occurred()) return NULL; errno = 0; PyFPE_START_PROTECT("in math_2", return 0); r = (*func)(x, y); PyFPE_END_PROTECT(r); if (Py_IS_NAN(r)) { if (!Py_IS_NAN(x) && !Py_IS_NAN(y)) errno = EDOM; else errno = 0; } else if (Py_IS_INFINITY(r)) { if (Py_IS_FINITE(x) && Py_IS_FINITE(y)) errno = ERANGE; else errno = 0; } if (errno && is_error(r)) return NULL; else return PyFloat_FromDouble(r); } #define FUNC1(funcname, func, can_overflow, docstring) \ static PyObject * math_##funcname(PyObject *self, PyObject *args) { \ return math_1(args, func, can_overflow); \ }\ PyDoc_STRVAR(math_##funcname##_doc, docstring); #define FUNC1A(funcname, func, docstring) \ static PyObject * math_##funcname(PyObject *self, PyObject *args) { \ return math_1a(args, func); \ }\ PyDoc_STRVAR(math_##funcname##_doc, docstring); #define FUNC2(funcname, func, docstring) \ static PyObject * math_##funcname(PyObject *self, PyObject *args) { \ return math_2(args, func, #funcname); \ }\ PyDoc_STRVAR(math_##funcname##_doc, docstring); FUNC1(acos, acos, 0, "acos(x)\n\nReturn the arc cosine (measured in radians) of x.") FUNC1(acosh, m_acosh, 0, "acosh(x)\n\nReturn the inverse hyperbolic cosine of x.") FUNC1(asin, asin, 0, "asin(x)\n\nReturn the arc sine (measured in radians) of x.") FUNC1(asinh, m_asinh, 0, "asinh(x)\n\nReturn the inverse hyperbolic sine of x.") FUNC1(atan, atan, 0, "atan(x)\n\nReturn the arc tangent (measured in radians) of x.") FUNC2(atan2, m_atan2, "atan2(y, x)\n\nReturn the arc tangent (measured in radians) of y/x.\n" "Unlike atan(y/x), the signs of both x and y are considered.") FUNC1(atanh, m_atanh, 0, "atanh(x)\n\nReturn the inverse hyperbolic tangent of x.") FUNC1(ceil, ceil, 0, "ceil(x)\n\nReturn the ceiling of x as a float.\n" "This is the smallest integral value >= x.") FUNC2(copysign, copysign, "copysign(x, y)\n\nReturn x with the sign of y.") FUNC1(cos, cos, 0, "cos(x)\n\nReturn the cosine of x (measured in radians).") FUNC1(cosh, cosh, 1, "cosh(x)\n\nReturn the hyperbolic cosine of x.") FUNC1A(erf, m_erf, "erf(x)\n\nError function at x.") FUNC1A(erfc, m_erfc, "erfc(x)\n\nComplementary error function at x.") FUNC1(exp, exp, 1, "exp(x)\n\nReturn e raised to the power of x.") FUNC1(expm1, m_expm1, 1, "expm1(x)\n\nReturn exp(x)-1.\n" "This function avoids the loss of precision involved in the direct " "evaluation of exp(x)-1 for small x.") FUNC1(fabs, fabs, 0, "fabs(x)\n\nReturn the absolute value of the float x.") FUNC1(floor, floor, 0, "floor(x)\n\nReturn the floor of x as a float.\n" "This is the largest integral value <= x.") FUNC1A(gamma, m_tgamma, "gamma(x)\n\nGamma function at x.") FUNC1A(lgamma, m_lgamma, "lgamma(x)\n\nNatural logarithm of absolute value of Gamma function at x.") FUNC1(log1p, m_log1p, 1, "log1p(x)\n\nReturn the natural logarithm of 1+x (base e).\n" "The result is computed in a way which is accurate for x near zero.") FUNC1(sin, sin, 0, "sin(x)\n\nReturn the sine of x (measured in radians).") FUNC1(sinh, sinh, 1, "sinh(x)\n\nReturn the hyperbolic sine of x.") FUNC1(sqrt, sqrt, 0, "sqrt(x)\n\nReturn the square root of x.") FUNC1(tan, tan, 0, "tan(x)\n\nReturn the tangent of x (measured in radians).") FUNC1(tanh, tanh, 0, "tanh(x)\n\nReturn the hyperbolic tangent of x.") /* Precision summation function as msum() by Raymond Hettinger in <http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/393090>, enhanced with the exact partials sum and roundoff from Mark Dickinson's post at <http://bugs.python.org/file10357/msum4.py>. See those links for more details, proofs and other references. Note 1: IEEE 754R floating point semantics are assumed, but the current implementation does not re-establish special value semantics across iterations (i.e. handling -Inf + Inf). Note 2: No provision is made for intermediate overflow handling; therefore, sum([1e+308, 1e-308, 1e+308]) returns 1e+308 while sum([1e+308, 1e+308, 1e-308]) raises an OverflowError due to the overflow of the first partial sum. Note 3: The intermediate values lo, yr, and hi are declared volatile so aggressive compilers won't algebraically reduce lo to always be exactly 0.0. Also, the volatile declaration forces the values to be stored in memory as regular doubles instead of extended long precision (80-bit) values. This prevents double rounding because any addition or subtraction of two doubles can be resolved exactly into double-sized hi and lo values. As long as the hi value gets forced into a double before yr and lo are computed, the extra bits in downstream extended precision operations (x87 for example) will be exactly zero and therefore can be losslessly stored back into a double, thereby preventing double rounding. Note 4: A similar implementation is in Modules/cmathmodule.c. Be sure to update both when making changes. Note 5: The signature of math.fsum() differs from __builtin__.sum() because the start argument doesn't make sense in the context of accurate summation. Since the partials table is collapsed before returning a result, sum(seq2, start=sum(seq1)) may not equal the accurate result returned by sum(itertools.chain(seq1, seq2)). */ #define NUM_PARTIALS 32 /* initial partials array size, on stack */ /* Extend the partials array p[] by doubling its size. */ static int /* non-zero on error */ _fsum_realloc(double **p_ptr, Py_ssize_t n, double *ps, Py_ssize_t *m_ptr) { void *v = NULL; Py_ssize_t m = *m_ptr; m += m; /* double */ if (n < m && m < (PY_SSIZE_T_MAX / sizeof(double))) { double *p = *p_ptr; if (p == ps) { v = PyMem_Malloc(sizeof(double) * m); if (v != NULL) memcpy(v, ps, sizeof(double) * n); } else v = PyMem_Realloc(p, sizeof(double) * m); } if (v == NULL) { /* size overflow or no memory */ PyErr_SetString(PyExc_MemoryError, "math.fsum partials"); return 1; } *p_ptr = (double*) v; *m_ptr = m; return 0; } /* Full precision summation of a sequence of floats. def msum(iterable): partials = [] # sorted, non-overlapping partial sums for x in iterable: i = 0 for y in partials: if abs(x) < abs(y): x, y = y, x hi = x + y lo = y - (hi - x) if lo: partials[i] = lo i += 1 x = hi partials[i:] = [x] return sum_exact(partials) Rounded x+y stored in hi with the roundoff stored in lo. Together hi+lo are exactly equal to x+y. The inner loop applies hi/lo summation to each partial so that the list of partial sums remains exact. Sum_exact() adds the partial sums exactly and correctly rounds the final result (using the round-half-to-even rule). The items in partials remain non-zero, non-special, non-overlapping and strictly increasing in magnitude, but possibly not all having the same sign. Depends on IEEE 754 arithmetic guarantees and half-even rounding. */ static PyObject* math_fsum(PyObject *self, PyObject *seq) { PyObject *item, *iter, *sum = NULL; Py_ssize_t i, j, n = 0, m = NUM_PARTIALS; double x, y, t, ps[NUM_PARTIALS], *p = ps; double xsave, special_sum = 0.0, inf_sum = 0.0; volatile double hi, yr, lo; iter = PyObject_GetIter(seq); if (iter == NULL) return NULL; PyFPE_START_PROTECT("fsum", Py_DECREF(iter); return NULL) for(;;) { /* for x in iterable */ assert(0 <= n && n <= m); assert((m == NUM_PARTIALS && p == ps) || (m > NUM_PARTIALS && p != NULL)); item = PyIter_Next(iter); if (item == NULL) { if (PyErr_Occurred()) goto _fsum_error; break; } x = PyFloat_AsDouble(item); Py_DECREF(item); if (PyErr_Occurred()) goto _fsum_error; xsave = x; for (i = j = 0; j < n; j++) { /* for y in partials */ y = p[j]; if (fabs(x) < fabs(y)) { t = x; x = y; y = t; } hi = x + y; yr = hi - x; lo = y - yr; if (lo != 0.0) p[i++] = lo; x = hi; } n = i; /* ps[i:] = [x] */ if (x != 0.0) { if (! Py_IS_FINITE(x)) { /* a nonfinite x could arise either as a result of intermediate overflow, or as a result of a nan or inf in the summands */ if (Py_IS_FINITE(xsave)) { PyErr_SetString(PyExc_OverflowError, "intermediate overflow in fsum"); goto _fsum_error; } if (Py_IS_INFINITY(xsave)) inf_sum += xsave; special_sum += xsave; /* reset partials */ n = 0; } else if (n >= m && _fsum_realloc(&p, n, ps, &m)) goto _fsum_error; else p[n++] = x; } } if (special_sum != 0.0) { if (Py_IS_NAN(inf_sum)) PyErr_SetString(PyExc_ValueError, "-inf + inf in fsum"); else sum = PyFloat_FromDouble(special_sum); goto _fsum_error; } hi = 0.0; if (n > 0) { hi = p[--n]; /* sum_exact(ps, hi) from the top, stop when the sum becomes inexact. */ while (n > 0) { x = hi; y = p[--n]; assert(fabs(y) < fabs(x)); hi = x + y; yr = hi - x; lo = y - yr; if (lo != 0.0) break; } /* Make half-even rounding work across multiple partials. Needed so that sum([1e-16, 1, 1e16]) will round-up the last digit to two instead of down to zero (the 1e-16 makes the 1 slightly closer to two). With a potential 1 ULP rounding error fixed-up, math.fsum() can guarantee commutativity. */ if (n > 0 && ((lo < 0.0 && p[n-1] < 0.0) || (lo > 0.0 && p[n-1] > 0.0))) { y = lo * 2.0; x = hi + y; yr = x - hi; if (y == yr) hi = x; } } sum = PyFloat_FromDouble(hi); _fsum_error: PyFPE_END_PROTECT(hi) Py_DECREF(iter); if (p != ps) PyMem_Free(p); return sum; } #undef NUM_PARTIALS PyDoc_STRVAR(math_fsum_doc, "fsum(iterable)\n\n\ Return an accurate floating point sum of values in the iterable.\n\ Assumes IEEE-754 floating point arithmetic."); static PyObject * math_factorial(PyObject *self, PyObject *arg) { long i, x; PyObject *result, *iobj, *newresult; if (PyFloat_Check(arg)) { PyObject *lx; double dx = PyFloat_AS_DOUBLE((PyFloatObject *)arg); if (!(Py_IS_FINITE(dx) && dx == floor(dx))) { PyErr_SetString(PyExc_ValueError, "factorial() only accepts integral values"); return NULL; } lx = PyLong_FromDouble(dx); if (lx == NULL) return NULL; x = PyLong_AsLong(lx); Py_DECREF(lx); } else x = PyInt_AsLong(arg); if (x == -1 && PyErr_Occurred()) return NULL; if (x < 0) { PyErr_SetString(PyExc_ValueError, "factorial() not defined for negative values"); return NULL; } result = (PyObject *)PyInt_FromLong(1); if (result == NULL) return NULL; for (i=1 ; i<=x ; i++) { iobj = (PyObject *)PyInt_FromLong(i); if (iobj == NULL) goto error; newresult = PyNumber_Multiply(result, iobj); Py_DECREF(iobj); if (newresult == NULL) goto error; Py_DECREF(result); result = newresult; } return result; error: Py_DECREF(result); return NULL; } PyDoc_STRVAR(math_factorial_doc, "factorial(x) -> Integral\n" "\n" "Find x!. Raise a ValueError if x is negative or non-integral."); static PyObject * math_trunc(PyObject *self, PyObject *number) { return PyObject_CallMethod(number, "__trunc__", NULL); } PyDoc_STRVAR(math_trunc_doc, "trunc(x:Real) -> Integral\n" "\n" "Truncates x to the nearest Integral toward 0. Uses the __trunc__ magic method."); static PyObject * math_frexp(PyObject *self, PyObject *arg) { int i; double x = PyFloat_AsDouble(arg); if (x == -1.0 && PyErr_Occurred()) return NULL; /* deal with special cases directly, to sidestep platform differences */ if (Py_IS_NAN(x) || Py_IS_INFINITY(x) || !x) { i = 0; } else { PyFPE_START_PROTECT("in math_frexp", return 0); x = frexp(x, &i); PyFPE_END_PROTECT(x); } return Py_BuildValue("(di)", x, i); } PyDoc_STRVAR(math_frexp_doc, "frexp(x)\n" "\n" "Return the mantissa and exponent of x, as pair (m, e).\n" "m is a float and e is an int, such that x = m * 2.**e.\n" "If x is 0, m and e are both 0. Else 0.5 <= abs(m) < 1.0."); static PyObject * math_ldexp(PyObject *self, PyObject *args) { double x, r; PyObject *oexp; long exp; int overflow; if (! PyArg_ParseTuple(args, "dO:ldexp", &x, &oexp)) return NULL; if (PyLong_Check(oexp) || PyInt_Check(oexp)) { /* on overflow, replace exponent with either LONG_MAX or LONG_MIN, depending on the sign. */ exp = PyLong_AsLongAndOverflow(oexp, &overflow); if (exp == -1 && PyErr_Occurred()) return NULL; if (overflow) exp = overflow < 0 ? LONG_MIN : LONG_MAX; } else { PyErr_SetString(PyExc_TypeError, "Expected an int or long as second argument " "to ldexp."); return NULL; } if (x == 0. || !Py_IS_FINITE(x)) { /* NaNs, zeros and infinities are returned unchanged */ r = x; errno = 0; } else if (exp > INT_MAX) { /* overflow */ r = copysign(Py_HUGE_VAL, x); errno = ERANGE; } else if (exp < INT_MIN) { /* underflow to +-0 */ r = copysign(0., x); errno = 0; } else { errno = 0; PyFPE_START_PROTECT("in math_ldexp", return 0); r = ldexp(x, (int)exp); PyFPE_END_PROTECT(r); if (Py_IS_INFINITY(r)) errno = ERANGE; } if (errno && is_error(r)) return NULL; return PyFloat_FromDouble(r); } PyDoc_STRVAR(math_ldexp_doc, "ldexp(x, i)\n\n\ Return x * (2**i)."); static PyObject * math_modf(PyObject *self, PyObject *arg) { double y, x = PyFloat_AsDouble(arg); if (x == -1.0 && PyErr_Occurred()) return NULL; /* some platforms don't do the right thing for NaNs and infinities, so we take care of special cases directly. */ if (!Py_IS_FINITE(x)) { if (Py_IS_INFINITY(x)) return Py_BuildValue("(dd)", copysign(0., x), x); else if (Py_IS_NAN(x)) return Py_BuildValue("(dd)", x, x); } errno = 0; PyFPE_START_PROTECT("in math_modf", return 0); x = modf(x, &y); PyFPE_END_PROTECT(x); return Py_BuildValue("(dd)", x, y); } PyDoc_STRVAR(math_modf_doc, "modf(x)\n" "\n" "Return the fractional and integer parts of x. Both results carry the sign\n" "of x and are floats."); /* A decent logarithm is easy to compute even for huge longs, but libm can't do that by itself -- loghelper can. func is log or log10, and name is "log" or "log10". Note that overflow of the result isn't possible: a long can contain no more than INT_MAX * SHIFT bits, so has value certainly less than 2**(2**64 * 2**16) == 2**2**80, and log2 of that is 2**80, which is small enough to fit in an IEEE single. log and log10 are even smaller. However, intermediate overflow is possible for a long if the number of bits in that long is larger than PY_SSIZE_T_MAX. */ static PyObject* loghelper(PyObject* arg, double (*func)(double), char *funcname) { /* If it is long, do it ourselves. */ if (PyLong_Check(arg)) { double x, result; Py_ssize_t e; /* Negative or zero inputs give a ValueError. */ if (Py_SIZE(arg) <= 0) { PyErr_SetString(PyExc_ValueError, "math domain error"); return NULL; } x = PyLong_AsDouble(arg); if (x == -1.0 && PyErr_Occurred()) { if (!PyErr_ExceptionMatches(PyExc_OverflowError)) return NULL; /* Here the conversion to double overflowed, but it's possible to compute the log anyway. Clear the exception and continue. */ PyErr_Clear(); x = _PyLong_Frexp((PyLongObject *)arg, &e); if (x == -1.0 && PyErr_Occurred()) return NULL; /* Value is ~= x * 2**e, so the log ~= log(x) + log(2) * e. */ result = func(x) + func(2.0) * e; } else /* Successfully converted x to a double. */ result = func(x); return PyFloat_FromDouble(result); } /* Else let libm handle it by itself. */ return math_1(arg, func, 0); } static PyObject * math_log(PyObject *self, PyObject *args) { PyObject *arg; PyObject *base = NULL; PyObject *num, *den; PyObject *ans; if (!PyArg_UnpackTuple(args, "log", 1, 2, &arg, &base)) return NULL; num = loghelper(arg, m_log, "log"); if (num == NULL || base == NULL) return num; den = loghelper(base, m_log, "log"); if (den == NULL) { Py_DECREF(num); return NULL; } ans = PyNumber_Divide(num, den); Py_DECREF(num); Py_DECREF(den); return ans; } PyDoc_STRVAR(math_log_doc, "log(x[, base])\n\n\ Return the logarithm of x to the given base.\n\ If the base not specified, returns the natural logarithm (base e) of x."); static PyObject * math_log10(PyObject *self, PyObject *arg) { return loghelper(arg, m_log10, "log10"); } PyDoc_STRVAR(math_log10_doc, "log10(x)\n\nReturn the base 10 logarithm of x."); static PyObject * math_fmod(PyObject *self, PyObject *args) { PyObject *ox, *oy; double r, x, y; if (! PyArg_UnpackTuple(args, "fmod", 2, 2, &ox, &oy)) return NULL; x = PyFloat_AsDouble(ox); y = PyFloat_AsDouble(oy); if ((x == -1.0 || y == -1.0) && PyErr_Occurred()) return NULL; /* fmod(x, +/-Inf) returns x for finite x. */ if (Py_IS_INFINITY(y) && Py_IS_FINITE(x)) return PyFloat_FromDouble(x); errno = 0; PyFPE_START_PROTECT("in math_fmod", return 0); r = fmod(x, y); PyFPE_END_PROTECT(r); if (Py_IS_NAN(r)) { if (!Py_IS_NAN(x) && !Py_IS_NAN(y)) errno = EDOM; else errno = 0; } if (errno && is_error(r)) return NULL; else return PyFloat_FromDouble(r); } PyDoc_STRVAR(math_fmod_doc, "fmod(x, y)\n\nReturn fmod(x, y), according to platform C." " x % y may differ."); static PyObject * math_hypot(PyObject *self, PyObject *args) { PyObject *ox, *oy; double r, x, y; if (! PyArg_UnpackTuple(args, "hypot", 2, 2, &ox, &oy)) return NULL; x = PyFloat_AsDouble(ox); y = PyFloat_AsDouble(oy); if ((x == -1.0 || y == -1.0) && PyErr_Occurred()) return NULL; /* hypot(x, +/-Inf) returns Inf, even if x is a NaN. */ if (Py_IS_INFINITY(x)) return PyFloat_FromDouble(fabs(x)); if (Py_IS_INFINITY(y)) return PyFloat_FromDouble(fabs(y)); errno = 0; PyFPE_START_PROTECT("in math_hypot", return 0); r = hypot(x, y); PyFPE_END_PROTECT(r); if (Py_IS_NAN(r)) { if (!Py_IS_NAN(x) && !Py_IS_NAN(y)) errno = EDOM; else errno = 0; } else if (Py_IS_INFINITY(r)) { if (Py_IS_FINITE(x) && Py_IS_FINITE(y)) errno = ERANGE; else errno = 0; } if (errno && is_error(r)) return NULL; else return PyFloat_FromDouble(r); } PyDoc_STRVAR(math_hypot_doc, "hypot(x, y)\n\nReturn the Euclidean distance, sqrt(x*x + y*y)."); /* pow can't use math_2, but needs its own wrapper: the problem is that an infinite result can arise either as a result of overflow (in which case OverflowError should be raised) or as a result of e.g. 0.**-5. (for which ValueError needs to be raised.) */ static PyObject * math_pow(PyObject *self, PyObject *args) { PyObject *ox, *oy; double r, x, y; int odd_y; if (! PyArg_UnpackTuple(args, "pow", 2, 2, &ox, &oy)) return NULL; x = PyFloat_AsDouble(ox); y = PyFloat_AsDouble(oy); if ((x == -1.0 || y == -1.0) && PyErr_Occurred()) return NULL; /* deal directly with IEEE specials, to cope with problems on various platforms whose semantics don't exactly match C99 */ r = 0.; /* silence compiler warning */ if (!Py_IS_FINITE(x) || !Py_IS_FINITE(y)) { errno = 0; if (Py_IS_NAN(x)) r = y == 0. ? 1. : x; /* NaN**0 = 1 */ else if (Py_IS_NAN(y)) r = x == 1. ? 1. : y; /* 1**NaN = 1 */ else if (Py_IS_INFINITY(x)) { odd_y = Py_IS_FINITE(y) && fmod(fabs(y), 2.0) == 1.0; if (y > 0.) r = odd_y ? x : fabs(x); else if (y == 0.) r = 1.; else /* y < 0. */ r = odd_y ? copysign(0., x) : 0.; } else if (Py_IS_INFINITY(y)) { if (fabs(x) == 1.0) r = 1.; else if (y > 0. && fabs(x) > 1.0) r = y; else if (y < 0. && fabs(x) < 1.0) { r = -y; /* result is +inf */ if (x == 0.) /* 0**-inf: divide-by-zero */ errno = EDOM; } else r = 0.; } } else { /* let libm handle finite**finite */ errno = 0; PyFPE_START_PROTECT("in math_pow", return 0); r = pow(x, y); PyFPE_END_PROTECT(r); /* a NaN result should arise only from (-ve)**(finite non-integer); in this case we want to raise ValueError. */ if (!Py_IS_FINITE(r)) { if (Py_IS_NAN(r)) { errno = EDOM; } /* an infinite result here arises either from: (A) (+/-0.)**negative (-> divide-by-zero) (B) overflow of x**y with x and y finite */ else if (Py_IS_INFINITY(r)) { if (x == 0.) errno = EDOM; else errno = ERANGE; } } } if (errno && is_error(r)) return NULL; else return PyFloat_FromDouble(r); } PyDoc_STRVAR(math_pow_doc, "pow(x, y)\n\nReturn x**y (x to the power of y)."); static const double degToRad = Py_MATH_PI / 180.0; static const double radToDeg = 180.0 / Py_MATH_PI; static PyObject * math_degrees(PyObject *self, PyObject *arg) { double x = PyFloat_AsDouble(arg); if (x == -1.0 && PyErr_Occurred()) return NULL; return PyFloat_FromDouble(x * radToDeg); } PyDoc_STRVAR(math_degrees_doc, "degrees(x)\n\n\ Convert angle x from radians to degrees."); static PyObject * math_radians(PyObject *self, PyObject *arg) { double x = PyFloat_AsDouble(arg); if (x == -1.0 && PyErr_Occurred()) return NULL; return PyFloat_FromDouble(x * degToRad); } PyDoc_STRVAR(math_radians_doc, "radians(x)\n\n\ Convert angle x from degrees to radians."); static PyObject * math_isnan(PyObject *self, PyObject *arg) { double x = PyFloat_AsDouble(arg); if (x == -1.0 && PyErr_Occurred()) return NULL; return PyBool_FromLong((long)Py_IS_NAN(x)); } PyDoc_STRVAR(math_isnan_doc, "isnan(x) -> bool\n\n\ Check if float x is not a number (NaN)."); static PyObject * math_isinf(PyObject *self, PyObject *arg) { double x = PyFloat_AsDouble(arg); if (x == -1.0 && PyErr_Occurred()) return NULL; return PyBool_FromLong((long)Py_IS_INFINITY(x)); } PyDoc_STRVAR(math_isinf_doc, "isinf(x) -> bool\n\n\ Check if float x is infinite (positive or negative)."); static PyMethodDef math_methods[] = { {"acos", math_acos, METH_O, math_acos_doc}, {"acosh", math_acosh, METH_O, math_acosh_doc}, {"asin", math_asin, METH_O, math_asin_doc}, {"asinh", math_asinh, METH_O, math_asinh_doc}, {"atan", math_atan, METH_O, math_atan_doc}, {"atan2", math_atan2, METH_VARARGS, math_atan2_doc}, {"atanh", math_atanh, METH_O, math_atanh_doc}, {"ceil", math_ceil, METH_O, math_ceil_doc}, {"copysign", math_copysign, METH_VARARGS, math_copysign_doc}, {"cos", math_cos, METH_O, math_cos_doc}, {"cosh", math_cosh, METH_O, math_cosh_doc}, {"degrees", math_degrees, METH_O, math_degrees_doc}, {"erf", math_erf, METH_O, math_erf_doc}, {"erfc", math_erfc, METH_O, math_erfc_doc}, {"exp", math_exp, METH_O, math_exp_doc}, {"expm1", math_expm1, METH_O, math_expm1_doc}, {"fabs", math_fabs, METH_O, math_fabs_doc}, {"factorial", math_factorial, METH_O, math_factorial_doc}, {"floor", math_floor, METH_O, math_floor_doc}, {"fmod", math_fmod, METH_VARARGS, math_fmod_doc}, {"frexp", math_frexp, METH_O, math_frexp_doc}, {"fsum", math_fsum, METH_O, math_fsum_doc}, {"gamma", math_gamma, METH_O, math_gamma_doc}, {"hypot", math_hypot, METH_VARARGS, math_hypot_doc}, {"isinf", math_isinf, METH_O, math_isinf_doc}, {"isnan", math_isnan, METH_O, math_isnan_doc}, {"ldexp", math_ldexp, METH_VARARGS, math_ldexp_doc}, {"lgamma", math_lgamma, METH_O, math_lgamma_doc}, {"log", math_log, METH_VARARGS, math_log_doc}, {"log1p", math_log1p, METH_O, math_log1p_doc}, {"log10", math_log10, METH_O, math_log10_doc}, {"modf", math_modf, METH_O, math_modf_doc}, {"pow", math_pow, METH_VARARGS, math_pow_doc}, {"radians", math_radians, METH_O, math_radians_doc}, {"sin", math_sin, METH_O, math_sin_doc}, {"sinh", math_sinh, METH_O, math_sinh_doc}, {"sqrt", math_sqrt, METH_O, math_sqrt_doc}, {"tan", math_tan, METH_O, math_tan_doc}, {"tanh", math_tanh, METH_O, math_tanh_doc}, {"trunc", math_trunc, METH_O, math_trunc_doc}, {NULL, NULL} /* sentinel */ }; PyDoc_STRVAR(module_doc, "This module is always available. It provides access to the\n" "mathematical functions defined by the C standard."); PyMODINIT_FUNC initmath(void) { PyObject *m; m = Py_InitModule3("math", math_methods, module_doc); if (m == NULL) goto finally; PyModule_AddObject(m, "pi", PyFloat_FromDouble(Py_MATH_PI)); PyModule_AddObject(m, "e", PyFloat_FromDouble(Py_MATH_E)); finally: return; } |