1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
Lib/test/test_strtod.py
# Tests for the correctly-rounded string -> float conversions
# introduced in Python 2.7 and 3.1.

import random
import struct
import unittest
import re
import sys
from test import test_support

if getattr(sys, 'float_repr_style', '') != 'short':
    raise unittest.SkipTest('correctly-rounded string->float conversions '
                            'not available on this system')

# Correctly rounded str -> float in pure Python, for comparison.

strtod_parser = re.compile(r"""    # A numeric string consists of:
    (?P<sign>[-+])?          # an optional sign, followed by
    (?=\d|\.\d)              # a number with at least one digit
    (?P<int>\d*)             # having a (possibly empty) integer part
    (?:\.(?P<frac>\d*))?     # followed by an optional fractional part
    (?:E(?P<exp>[-+]?\d+))?  # and an optional exponent
    \Z
""", re.VERBOSE | re.IGNORECASE).match

# Pure Python version of correctly rounded string->float conversion.
# Avoids any use of floating-point by returning the result as a hex string.
def strtod(s, mant_dig=53, min_exp = -1021, max_exp = 1024):
    """Convert a finite decimal string to a hex string representing an
    IEEE 754 binary64 float.  Return 'inf' or '-inf' on overflow.
    This function makes no use of floating-point arithmetic at any
    stage."""

    # parse string into a pair of integers 'a' and 'b' such that
    # abs(decimal value) = a/b, along with a boolean 'negative'.
    m = strtod_parser(s)
    if m is None:
        raise ValueError('invalid numeric string')
    fraction = m.group('frac') or ''
    intpart = int(m.group('int') + fraction)
    exp = int(m.group('exp') or '0') - len(fraction)
    negative = m.group('sign') == '-'
    a, b = intpart*10**max(exp, 0), 10**max(0, -exp)

    # quick return for zeros
    if not a:
        return '-0x0.0p+0' if negative else '0x0.0p+0'

    # compute exponent e for result; may be one too small in the case
    # that the rounded value of a/b lies in a different binade from a/b
    d = a.bit_length() - b.bit_length()
    d += (a >> d if d >= 0 else a << -d) >= b
    e = max(d, min_exp) - mant_dig

    # approximate a/b by number of the form q * 2**e; adjust e if necessary
    a, b = a << max(-e, 0), b << max(e, 0)
    q, r = divmod(a, b)
    if 2*r > b or 2*r == b and q & 1:
        q += 1
        if q.bit_length() == mant_dig+1:
            q //= 2
            e += 1

    # double check that (q, e) has the right form
    assert q.bit_length() <= mant_dig and e >= min_exp - mant_dig
    assert q.bit_length() == mant_dig or e == min_exp - mant_dig

    # check for overflow and underflow
    if e + q.bit_length() > max_exp:
        return '-inf' if negative else 'inf'
    if not q:
        return '-0x0.0p+0' if negative else '0x0.0p+0'

    # for hex representation, shift so # bits after point is a multiple of 4
    hexdigs = 1 + (mant_dig-2)//4
    shift = 3 - (mant_dig-2)%4
    q, e = q << shift, e - shift
    return '{}0x{:x}.{:0{}x}p{:+d}'.format(
        '-' if negative else '',
        q // 16**hexdigs,
        q % 16**hexdigs,
        hexdigs,
        e + 4*hexdigs)

TEST_SIZE = 10

class StrtodTests(unittest.TestCase):
    def check_strtod(self, s):
        """Compare the result of Python's builtin correctly rounded
        string->float conversion (using float) to a pure Python
        correctly rounded string->float implementation.  Fail if the
        two methods give different results."""

        try:
            fs = float(s)
        except OverflowError:
            got = '-inf' if s[0] == '-' else 'inf'
        except MemoryError:
            got = 'memory error'
        else:
            got = fs.hex()
        expected = strtod(s)
        self.assertEqual(expected, got,
                         "Incorrectly rounded str->float conversion for {}: "
                         "expected {}, got {}".format(s, expected, got))

    def test_short_halfway_cases(self):
        # exact halfway cases with a small number of significant digits
        for k in 0, 5, 10, 15, 20:
            # upper = smallest integer >= 2**54/5**k
            upper = -(-2**54//5**k)
            # lower = smallest odd number >= 2**53/5**k
            lower = -(-2**53//5**k)
            if lower % 2 == 0:
                lower += 1
            for i in xrange(TEST_SIZE):
                # Select a random odd n in [2**53/5**k,
                # 2**54/5**k). Then n * 10**k gives a halfway case
                # with small number of significant digits.
                n, e = random.randrange(lower, upper, 2), k

                # Remove any additional powers of 5.
                while n % 5 == 0:
                    n, e = n // 5, e + 1
                assert n % 10 in (1, 3, 7, 9)

                # Try numbers of the form n * 2**p2 * 10**e, p2 >= 0,
                # until n * 2**p2 has more than 20 significant digits.
                digits, exponent = n, e
                while digits < 10**20:
                    s = '{}e{}'.format(digits, exponent)
                    self.check_strtod(s)
                    # Same again, but with extra trailing zeros.
                    s = '{}e{}'.format(digits * 10**40, exponent - 40)
                    self.check_strtod(s)
                    digits *= 2

                # Try numbers of the form n * 5**p2 * 10**(e - p5), p5
                # >= 0, with n * 5**p5 < 10**20.
                digits, exponent = n, e
                while digits < 10**20:
                    s = '{}e{}'.format(digits, exponent)
                    self.check_strtod(s)
                    # Same again, but with extra trailing zeros.
                    s = '{}e{}'.format(digits * 10**40, exponent - 40)
                    self.check_strtod(s)
                    digits *= 5
                    exponent -= 1

    def test_halfway_cases(self):
        # test halfway cases for the round-half-to-even rule
        for i in xrange(100 * TEST_SIZE):
            # bit pattern for a random finite positive (or +0.0) float
            bits = random.randrange(2047*2**52)

            # convert bit pattern to a number of the form m * 2**e
            e, m = divmod(bits, 2**52)
            if e:
                m, e = m + 2**52, e - 1
            e -= 1074

            # add 0.5 ulps
            m, e = 2*m + 1, e - 1

            # convert to a decimal string
            if e >= 0:
                digits = m << e
                exponent = 0
            else:
                # m * 2**e = (m * 5**-e) * 10**e
                digits = m * 5**-e
                exponent = e
            s = '{}e{}'.format(digits, exponent)
            self.check_strtod(s)

    def test_boundaries(self):
        # boundaries expressed as triples (n, e, u), where
        # n*10**e is an approximation to the boundary value and
        # u*10**e is 1ulp
        boundaries = [
            (10000000000000000000, -19, 1110),   # a power of 2 boundary (1.0)
            (17976931348623159077, 289, 1995),   # overflow boundary (2.**1024)
            (22250738585072013831, -327, 4941),  # normal/subnormal (2.**-1022)
            (0, -327, 4941),                     # zero
            ]
        for n, e, u in boundaries:
            for j in xrange(1000):
                digits = n + random.randrange(-3*u, 3*u)
                exponent = e
                s = '{}e{}'.format(digits, exponent)
                self.check_strtod(s)
                n *= 10
                u *= 10
                e -= 1

    def test_underflow_boundary(self):
        # test values close to 2**-1075, the underflow boundary; similar
        # to boundary_tests, except that the random error doesn't scale
        # with n
        for exponent in xrange(-400, -320):
            base = 10**-exponent // 2**1075
            for j in xrange(TEST_SIZE):
                digits = base + random.randrange(-1000, 1000)
                s = '{}e{}'.format(digits, exponent)
                self.check_strtod(s)

    def test_bigcomp(self):
        for ndigs in 5, 10, 14, 15, 16, 17, 18, 19, 20, 40, 41, 50:
            dig10 = 10**ndigs
            for i in xrange(10 * TEST_SIZE):
                digits = random.randrange(dig10)
                exponent = random.randrange(-400, 400)
                s = '{}e{}'.format(digits, exponent)
                self.check_strtod(s)

    def test_parsing(self):
        # make '0' more likely to be chosen than other digits
        digits = '000000123456789'
        signs = ('+', '-', '')

        # put together random short valid strings
        # \d*[.\d*]?e
        for i in xrange(1000):
            for j in xrange(TEST_SIZE):
                s = random.choice(signs)
                intpart_len = random.randrange(5)
                s += ''.join(random.choice(digits) for _ in xrange(intpart_len))
                if random.choice([True, False]):
                    s += '.'
                    fracpart_len = random.randrange(5)
                    s += ''.join(random.choice(digits)
                                 for _ in xrange(fracpart_len))
                else:
                    fracpart_len = 0
                if random.choice([True, False]):
                    s += random.choice(['e', 'E'])
                    s += random.choice(signs)
                    exponent_len = random.randrange(1, 4)
                    s += ''.join(random.choice(digits)
                                 for _ in xrange(exponent_len))

                if intpart_len + fracpart_len:
                    self.check_strtod(s)
                else:
                    try:
                        float(s)
                    except ValueError:
                        pass
                    else:
                        assert False, "expected ValueError"

    @test_support.precisionbigmemtest(size=test_support._2G, memuse=3,
                                      dry_run=False)
    def test_oversized_digit_strings(self, maxsize):
        # Input string whose length doesn't fit in an INT.
        s = "1." + "1" * int(2.2e9)
        with self.assertRaises(ValueError):
            float(s)
        del s

        s = "0." + "0" * int(2.2e9) + "1"
        with self.assertRaises(ValueError):
            float(s)
        del s

    def test_large_exponents(self):
        # Verify that the clipping of the exponent in strtod doesn't affect the
        # output values.
        def positive_exp(n):
            """ Long string with value 1.0 and exponent n"""
            return '0.{}1e+{}'.format('0'*(n-1), n)

        def negative_exp(n):
            """ Long string with value 1.0 and exponent -n"""
            return '1{}e-{}'.format('0'*n, n)

        self.assertEqual(float(positive_exp(10000)), 1.0)
        self.assertEqual(float(positive_exp(20000)), 1.0)
        self.assertEqual(float(positive_exp(30000)), 1.0)
        self.assertEqual(float(negative_exp(10000)), 1.0)
        self.assertEqual(float(negative_exp(20000)), 1.0)
        self.assertEqual(float(negative_exp(30000)), 1.0)

    def test_particular(self):
        # inputs that produced crashes or incorrectly rounded results with
        # previous versions of dtoa.c, for various reasons
        test_strings = [
            # issue 7632 bug 1, originally reported failing case
            '2183167012312112312312.23538020374420446192e-370',
            # 5 instances of issue 7632 bug 2
            '12579816049008305546974391768996369464963024663104e-357',
            '17489628565202117263145367596028389348922981857013e-357',
            '18487398785991994634182916638542680759613590482273e-357',
            '32002864200581033134358724675198044527469366773928e-358',
            '94393431193180696942841837085033647913224148539854e-358',
            '73608278998966969345824653500136787876436005957953e-358',
            '64774478836417299491718435234611299336288082136054e-358',
            '13704940134126574534878641876947980878824688451169e-357',
            '46697445774047060960624497964425416610480524760471e-358',
            # failing case for bug introduced by METD in r77451 (attempted
            # fix for issue 7632, bug 2), and fixed in r77482.
            '28639097178261763178489759107321392745108491825303e-311',
            # two numbers demonstrating a flaw in the bigcomp 'dig == 0'
            # correction block (issue 7632, bug 3)
            '1.00000000000000001e44',
            '1.0000000000000000100000000000000000000001e44',
            # dtoa.c bug for numbers just smaller than a power of 2 (issue
            # 7632, bug 4)
            '99999999999999994487665465554760717039532578546e-47',
            # failing case for off-by-one error introduced by METD in
            # r77483 (dtoa.c cleanup), fixed in r77490
            '965437176333654931799035513671997118345570045914469' #...
            '6213413350821416312194420007991306908470147322020121018368e0',
            # incorrect lsb detection for round-half-to-even when
            # bc->scale != 0 (issue 7632, bug 6).
            '104308485241983990666713401708072175773165034278685' #...
            '682646111762292409330928739751702404658197872319129' #...
            '036519947435319418387839758990478549477777586673075' #...
            '945844895981012024387992135617064532141489278815239' #...
            '849108105951619997829153633535314849999674266169258' #...
            '928940692239684771590065027025835804863585454872499' #...
            '320500023126142553932654370362024104462255244034053' #...
            '203998964360882487378334860197725139151265590832887' #...
            '433736189468858614521708567646743455601905935595381' #...
            '852723723645799866672558576993978025033590728687206' #...
            '296379801363024094048327273913079612469982585674824' #...
            '156000783167963081616214710691759864332339239688734' #...
            '656548790656486646106983450809073750535624894296242' #...
            '072010195710276073042036425579852459556183541199012' #...
            '652571123898996574563824424330960027873516082763671875e-1075',
            # demonstration that original fix for issue 7632 bug 1 was
            # buggy; the exit condition was too strong
            '247032822920623295e-341',
            # demonstrate similar problem to issue 7632 bug1: crash
            # with 'oversized quotient in quorem' message.
            '99037485700245683102805043437346965248029601286431e-373',
            '99617639833743863161109961162881027406769510558457e-373',
            '98852915025769345295749278351563179840130565591462e-372',
            '99059944827693569659153042769690930905148015876788e-373',
            '98914979205069368270421829889078356254059760327101e-372',
            # issue 7632 bug 5: the following 2 strings convert differently
            '1000000000000000000000000000000000000000e-16',
            '10000000000000000000000000000000000000000e-17',
            # issue 7632 bug 7
            '991633793189150720000000000000000000000000000000000000000e-33',
            # And another, similar, failing halfway case
            '4106250198039490000000000000000000000000000000000000000e-38',
            # issue 7632 bug 8:  the following produced 10.0
            '10.900000000000000012345678912345678912345',

            # two humongous values from issue 7743
            '116512874940594195638617907092569881519034793229385' #...
            '228569165191541890846564669771714896916084883987920' #...
            '473321268100296857636200926065340769682863349205363' #...
            '349247637660671783209907949273683040397979984107806' #...
            '461822693332712828397617946036239581632976585100633' #...
            '520260770761060725403904123144384571612073732754774' #...
            '588211944406465572591022081973828448927338602556287' #...
            '851831745419397433012491884869454462440536895047499' #...
            '436551974649731917170099387762871020403582994193439' #...
            '761933412166821484015883631622539314203799034497982' #...
            '130038741741727907429575673302461380386596501187482' #...
            '006257527709842179336488381672818798450229339123527' #...
            '858844448336815912020452294624916993546388956561522' #...
            '161875352572590420823607478788399460162228308693742' #...
            '05287663441403533948204085390898399055004119873046875e-1075',

            '525440653352955266109661060358202819561258984964913' #...
            '892256527849758956045218257059713765874251436193619' #...
            '443248205998870001633865657517447355992225852945912' #...
            '016668660000210283807209850662224417504752264995360' #...
            '631512007753855801075373057632157738752800840302596' #...
            '237050247910530538250008682272783660778181628040733' #...
            '653121492436408812668023478001208529190359254322340' #...
            '397575185248844788515410722958784640926528544043090' #...
            '115352513640884988017342469275006999104519620946430' #...
            '818767147966495485406577703972687838176778993472989' #...
            '561959000047036638938396333146685137903018376496408' #...
            '319705333868476925297317136513970189073693314710318' #...
            '991252811050501448326875232850600451776091303043715' #...
            '157191292827614046876950225714743118291034780466325' #...
            '085141343734564915193426994587206432697337118211527' #...
            '278968731294639353354774788602467795167875117481660' #...
            '4738791256853675690543663283782215866825e-1180',

            # exercise exit conditions in bigcomp comparison loop
            '2602129298404963083833853479113577253105939995688e2',
            '260212929840496308383385347911357725310593999568896e0',
            '26021292984049630838338534791135772531059399956889601e-2',
            '260212929840496308383385347911357725310593999568895e0',
            '260212929840496308383385347911357725310593999568897e0',
            '260212929840496308383385347911357725310593999568996e0',
            '260212929840496308383385347911357725310593999568866e0',
            # 2**53
            '9007199254740992.00',
            # 2**1024 - 2**970:  exact overflow boundary.  All values
            # smaller than this should round to something finite;  any value
            # greater than or equal to this one overflows.
            '179769313486231580793728971405303415079934132710037' #...
            '826936173778980444968292764750946649017977587207096' #...
            '330286416692887910946555547851940402630657488671505' #...
            '820681908902000708383676273854845817711531764475730' #...
            '270069855571366959622842914819860834936475292719074' #...
            '168444365510704342711559699508093042880177904174497792',
            # 2**1024 - 2**970 - tiny
            '179769313486231580793728971405303415079934132710037' #...
            '826936173778980444968292764750946649017977587207096' #...
            '330286416692887910946555547851940402630657488671505' #...
            '820681908902000708383676273854845817711531764475730' #...
            '270069855571366959622842914819860834936475292719074' #...
            '168444365510704342711559699508093042880177904174497791.999',
            # 2**1024 - 2**970 + tiny
            '179769313486231580793728971405303415079934132710037' #...
            '826936173778980444968292764750946649017977587207096' #...
            '330286416692887910946555547851940402630657488671505' #...
            '820681908902000708383676273854845817711531764475730' #...
            '270069855571366959622842914819860834936475292719074' #...
            '168444365510704342711559699508093042880177904174497792.001',
            # 1 - 2**-54, +-tiny
            '999999999999999944488848768742172978818416595458984375e-54',
            '9999999999999999444888487687421729788184165954589843749999999e-54',
            '9999999999999999444888487687421729788184165954589843750000001e-54',
            ]
        for s in test_strings:
            self.check_strtod(s)

def test_main():
    test_support.run_unittest(StrtodTests)

if __name__ == "__main__":
    test_main()