1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 | Lib/test/test_strtod.py
# Tests for the correctly-rounded string -> float conversions # introduced in Python 2.7 and 3.1. import random import struct import unittest import re import sys from test import test_support if getattr(sys, 'float_repr_style', '') != 'short': raise unittest.SkipTest('correctly-rounded string->float conversions ' 'not available on this system') # Correctly rounded str -> float in pure Python, for comparison. strtod_parser = re.compile(r""" # A numeric string consists of: (?P<sign>[-+])? # an optional sign, followed by (?=\d|\.\d) # a number with at least one digit (?P<int>\d*) # having a (possibly empty) integer part (?:\.(?P<frac>\d*))? # followed by an optional fractional part (?:E(?P<exp>[-+]?\d+))? # and an optional exponent \Z """, re.VERBOSE | re.IGNORECASE).match # Pure Python version of correctly rounded string->float conversion. # Avoids any use of floating-point by returning the result as a hex string. def strtod(s, mant_dig=53, min_exp = -1021, max_exp = 1024): """Convert a finite decimal string to a hex string representing an IEEE 754 binary64 float. Return 'inf' or '-inf' on overflow. This function makes no use of floating-point arithmetic at any stage.""" # parse string into a pair of integers 'a' and 'b' such that # abs(decimal value) = a/b, along with a boolean 'negative'. m = strtod_parser(s) if m is None: raise ValueError('invalid numeric string') fraction = m.group('frac') or '' intpart = int(m.group('int') + fraction) exp = int(m.group('exp') or '0') - len(fraction) negative = m.group('sign') == '-' a, b = intpart*10**max(exp, 0), 10**max(0, -exp) # quick return for zeros if not a: return '-0x0.0p+0' if negative else '0x0.0p+0' # compute exponent e for result; may be one too small in the case # that the rounded value of a/b lies in a different binade from a/b d = a.bit_length() - b.bit_length() d += (a >> d if d >= 0 else a << -d) >= b e = max(d, min_exp) - mant_dig # approximate a/b by number of the form q * 2**e; adjust e if necessary a, b = a << max(-e, 0), b << max(e, 0) q, r = divmod(a, b) if 2*r > b or 2*r == b and q & 1: q += 1 if q.bit_length() == mant_dig+1: q //= 2 e += 1 # double check that (q, e) has the right form assert q.bit_length() <= mant_dig and e >= min_exp - mant_dig assert q.bit_length() == mant_dig or e == min_exp - mant_dig # check for overflow and underflow if e + q.bit_length() > max_exp: return '-inf' if negative else 'inf' if not q: return '-0x0.0p+0' if negative else '0x0.0p+0' # for hex representation, shift so # bits after point is a multiple of 4 hexdigs = 1 + (mant_dig-2)//4 shift = 3 - (mant_dig-2)%4 q, e = q << shift, e - shift return '{}0x{:x}.{:0{}x}p{:+d}'.format( '-' if negative else '', q // 16**hexdigs, q % 16**hexdigs, hexdigs, e + 4*hexdigs) TEST_SIZE = 10 class StrtodTests(unittest.TestCase): def check_strtod(self, s): """Compare the result of Python's builtin correctly rounded string->float conversion (using float) to a pure Python correctly rounded string->float implementation. Fail if the two methods give different results.""" try: fs = float(s) except OverflowError: got = '-inf' if s[0] == '-' else 'inf' except MemoryError: got = 'memory error' else: got = fs.hex() expected = strtod(s) self.assertEqual(expected, got, "Incorrectly rounded str->float conversion for {}: " "expected {}, got {}".format(s, expected, got)) def test_short_halfway_cases(self): # exact halfway cases with a small number of significant digits for k in 0, 5, 10, 15, 20: # upper = smallest integer >= 2**54/5**k upper = -(-2**54//5**k) # lower = smallest odd number >= 2**53/5**k lower = -(-2**53//5**k) if lower % 2 == 0: lower += 1 for i in xrange(TEST_SIZE): # Select a random odd n in [2**53/5**k, # 2**54/5**k). Then n * 10**k gives a halfway case # with small number of significant digits. n, e = random.randrange(lower, upper, 2), k # Remove any additional powers of 5. while n % 5 == 0: n, e = n // 5, e + 1 assert n % 10 in (1, 3, 7, 9) # Try numbers of the form n * 2**p2 * 10**e, p2 >= 0, # until n * 2**p2 has more than 20 significant digits. digits, exponent = n, e while digits < 10**20: s = '{}e{}'.format(digits, exponent) self.check_strtod(s) # Same again, but with extra trailing zeros. s = '{}e{}'.format(digits * 10**40, exponent - 40) self.check_strtod(s) digits *= 2 # Try numbers of the form n * 5**p2 * 10**(e - p5), p5 # >= 0, with n * 5**p5 < 10**20. digits, exponent = n, e while digits < 10**20: s = '{}e{}'.format(digits, exponent) self.check_strtod(s) # Same again, but with extra trailing zeros. s = '{}e{}'.format(digits * 10**40, exponent - 40) self.check_strtod(s) digits *= 5 exponent -= 1 def test_halfway_cases(self): # test halfway cases for the round-half-to-even rule for i in xrange(100 * TEST_SIZE): # bit pattern for a random finite positive (or +0.0) float bits = random.randrange(2047*2**52) # convert bit pattern to a number of the form m * 2**e e, m = divmod(bits, 2**52) if e: m, e = m + 2**52, e - 1 e -= 1074 # add 0.5 ulps m, e = 2*m + 1, e - 1 # convert to a decimal string if e >= 0: digits = m << e exponent = 0 else: # m * 2**e = (m * 5**-e) * 10**e digits = m * 5**-e exponent = e s = '{}e{}'.format(digits, exponent) self.check_strtod(s) def test_boundaries(self): # boundaries expressed as triples (n, e, u), where # n*10**e is an approximation to the boundary value and # u*10**e is 1ulp boundaries = [ (10000000000000000000, -19, 1110), # a power of 2 boundary (1.0) (17976931348623159077, 289, 1995), # overflow boundary (2.**1024) (22250738585072013831, -327, 4941), # normal/subnormal (2.**-1022) (0, -327, 4941), # zero ] for n, e, u in boundaries: for j in xrange(1000): digits = n + random.randrange(-3*u, 3*u) exponent = e s = '{}e{}'.format(digits, exponent) self.check_strtod(s) n *= 10 u *= 10 e -= 1 def test_underflow_boundary(self): # test values close to 2**-1075, the underflow boundary; similar # to boundary_tests, except that the random error doesn't scale # with n for exponent in xrange(-400, -320): base = 10**-exponent // 2**1075 for j in xrange(TEST_SIZE): digits = base + random.randrange(-1000, 1000) s = '{}e{}'.format(digits, exponent) self.check_strtod(s) def test_bigcomp(self): for ndigs in 5, 10, 14, 15, 16, 17, 18, 19, 20, 40, 41, 50: dig10 = 10**ndigs for i in xrange(10 * TEST_SIZE): digits = random.randrange(dig10) exponent = random.randrange(-400, 400) s = '{}e{}'.format(digits, exponent) self.check_strtod(s) def test_parsing(self): # make '0' more likely to be chosen than other digits digits = '000000123456789' signs = ('+', '-', '') # put together random short valid strings # \d*[.\d*]?e for i in xrange(1000): for j in xrange(TEST_SIZE): s = random.choice(signs) intpart_len = random.randrange(5) s += ''.join(random.choice(digits) for _ in xrange(intpart_len)) if random.choice([True, False]): s += '.' fracpart_len = random.randrange(5) s += ''.join(random.choice(digits) for _ in xrange(fracpart_len)) else: fracpart_len = 0 if random.choice([True, False]): s += random.choice(['e', 'E']) s += random.choice(signs) exponent_len = random.randrange(1, 4) s += ''.join(random.choice(digits) for _ in xrange(exponent_len)) if intpart_len + fracpart_len: self.check_strtod(s) else: try: float(s) except ValueError: pass else: assert False, "expected ValueError" @test_support.precisionbigmemtest(size=test_support._2G, memuse=3, dry_run=False) def test_oversized_digit_strings(self, maxsize): # Input string whose length doesn't fit in an INT. s = "1." + "1" * int(2.2e9) with self.assertRaises(ValueError): float(s) del s s = "0." + "0" * int(2.2e9) + "1" with self.assertRaises(ValueError): float(s) del s def test_large_exponents(self): # Verify that the clipping of the exponent in strtod doesn't affect the # output values. def positive_exp(n): """ Long string with value 1.0 and exponent n""" return '0.{}1e+{}'.format('0'*(n-1), n) def negative_exp(n): """ Long string with value 1.0 and exponent -n""" return '1{}e-{}'.format('0'*n, n) self.assertEqual(float(positive_exp(10000)), 1.0) self.assertEqual(float(positive_exp(20000)), 1.0) self.assertEqual(float(positive_exp(30000)), 1.0) self.assertEqual(float(negative_exp(10000)), 1.0) self.assertEqual(float(negative_exp(20000)), 1.0) self.assertEqual(float(negative_exp(30000)), 1.0) def test_particular(self): # inputs that produced crashes or incorrectly rounded results with # previous versions of dtoa.c, for various reasons test_strings = [ # issue 7632 bug 1, originally reported failing case '2183167012312112312312.23538020374420446192e-370', # 5 instances of issue 7632 bug 2 '12579816049008305546974391768996369464963024663104e-357', '17489628565202117263145367596028389348922981857013e-357', '18487398785991994634182916638542680759613590482273e-357', '32002864200581033134358724675198044527469366773928e-358', '94393431193180696942841837085033647913224148539854e-358', '73608278998966969345824653500136787876436005957953e-358', '64774478836417299491718435234611299336288082136054e-358', '13704940134126574534878641876947980878824688451169e-357', '46697445774047060960624497964425416610480524760471e-358', # failing case for bug introduced by METD in r77451 (attempted # fix for issue 7632, bug 2), and fixed in r77482. '28639097178261763178489759107321392745108491825303e-311', # two numbers demonstrating a flaw in the bigcomp 'dig == 0' # correction block (issue 7632, bug 3) '1.00000000000000001e44', '1.0000000000000000100000000000000000000001e44', # dtoa.c bug for numbers just smaller than a power of 2 (issue # 7632, bug 4) '99999999999999994487665465554760717039532578546e-47', # failing case for off-by-one error introduced by METD in # r77483 (dtoa.c cleanup), fixed in r77490 '965437176333654931799035513671997118345570045914469' #... '6213413350821416312194420007991306908470147322020121018368e0', # incorrect lsb detection for round-half-to-even when # bc->scale != 0 (issue 7632, bug 6). '104308485241983990666713401708072175773165034278685' #... '682646111762292409330928739751702404658197872319129' #... '036519947435319418387839758990478549477777586673075' #... '945844895981012024387992135617064532141489278815239' #... '849108105951619997829153633535314849999674266169258' #... '928940692239684771590065027025835804863585454872499' #... '320500023126142553932654370362024104462255244034053' #... '203998964360882487378334860197725139151265590832887' #... '433736189468858614521708567646743455601905935595381' #... '852723723645799866672558576993978025033590728687206' #... '296379801363024094048327273913079612469982585674824' #... '156000783167963081616214710691759864332339239688734' #... '656548790656486646106983450809073750535624894296242' #... '072010195710276073042036425579852459556183541199012' #... '652571123898996574563824424330960027873516082763671875e-1075', # demonstration that original fix for issue 7632 bug 1 was # buggy; the exit condition was too strong '247032822920623295e-341', # demonstrate similar problem to issue 7632 bug1: crash # with 'oversized quotient in quorem' message. '99037485700245683102805043437346965248029601286431e-373', '99617639833743863161109961162881027406769510558457e-373', '98852915025769345295749278351563179840130565591462e-372', '99059944827693569659153042769690930905148015876788e-373', '98914979205069368270421829889078356254059760327101e-372', # issue 7632 bug 5: the following 2 strings convert differently '1000000000000000000000000000000000000000e-16', '10000000000000000000000000000000000000000e-17', # issue 7632 bug 7 '991633793189150720000000000000000000000000000000000000000e-33', # And another, similar, failing halfway case '4106250198039490000000000000000000000000000000000000000e-38', # issue 7632 bug 8: the following produced 10.0 '10.900000000000000012345678912345678912345', # two humongous values from issue 7743 '116512874940594195638617907092569881519034793229385' #... '228569165191541890846564669771714896916084883987920' #... '473321268100296857636200926065340769682863349205363' #... '349247637660671783209907949273683040397979984107806' #... '461822693332712828397617946036239581632976585100633' #... '520260770761060725403904123144384571612073732754774' #... '588211944406465572591022081973828448927338602556287' #... '851831745419397433012491884869454462440536895047499' #... '436551974649731917170099387762871020403582994193439' #... '761933412166821484015883631622539314203799034497982' #... '130038741741727907429575673302461380386596501187482' #... '006257527709842179336488381672818798450229339123527' #... '858844448336815912020452294624916993546388956561522' #... '161875352572590420823607478788399460162228308693742' #... '05287663441403533948204085390898399055004119873046875e-1075', '525440653352955266109661060358202819561258984964913' #... '892256527849758956045218257059713765874251436193619' #... '443248205998870001633865657517447355992225852945912' #... '016668660000210283807209850662224417504752264995360' #... '631512007753855801075373057632157738752800840302596' #... '237050247910530538250008682272783660778181628040733' #... '653121492436408812668023478001208529190359254322340' #... '397575185248844788515410722958784640926528544043090' #... '115352513640884988017342469275006999104519620946430' #... '818767147966495485406577703972687838176778993472989' #... '561959000047036638938396333146685137903018376496408' #... '319705333868476925297317136513970189073693314710318' #... '991252811050501448326875232850600451776091303043715' #... '157191292827614046876950225714743118291034780466325' #... '085141343734564915193426994587206432697337118211527' #... '278968731294639353354774788602467795167875117481660' #... '4738791256853675690543663283782215866825e-1180', # exercise exit conditions in bigcomp comparison loop '2602129298404963083833853479113577253105939995688e2', '260212929840496308383385347911357725310593999568896e0', '26021292984049630838338534791135772531059399956889601e-2', '260212929840496308383385347911357725310593999568895e0', '260212929840496308383385347911357725310593999568897e0', '260212929840496308383385347911357725310593999568996e0', '260212929840496308383385347911357725310593999568866e0', # 2**53 '9007199254740992.00', # 2**1024 - 2**970: exact overflow boundary. All values # smaller than this should round to something finite; any value # greater than or equal to this one overflows. '179769313486231580793728971405303415079934132710037' #... '826936173778980444968292764750946649017977587207096' #... '330286416692887910946555547851940402630657488671505' #... '820681908902000708383676273854845817711531764475730' #... '270069855571366959622842914819860834936475292719074' #... '168444365510704342711559699508093042880177904174497792', # 2**1024 - 2**970 - tiny '179769313486231580793728971405303415079934132710037' #... '826936173778980444968292764750946649017977587207096' #... '330286416692887910946555547851940402630657488671505' #... '820681908902000708383676273854845817711531764475730' #... '270069855571366959622842914819860834936475292719074' #... '168444365510704342711559699508093042880177904174497791.999', # 2**1024 - 2**970 + tiny '179769313486231580793728971405303415079934132710037' #... '826936173778980444968292764750946649017977587207096' #... '330286416692887910946555547851940402630657488671505' #... '820681908902000708383676273854845817711531764475730' #... '270069855571366959622842914819860834936475292719074' #... '168444365510704342711559699508093042880177904174497792.001', # 1 - 2**-54, +-tiny '999999999999999944488848768742172978818416595458984375e-54', '9999999999999999444888487687421729788184165954589843749999999e-54', '9999999999999999444888487687421729788184165954589843750000001e-54', ] for s in test_strings: self.check_strtod(s) def test_main(): test_support.run_unittest(StrtodTests) if __name__ == "__main__": test_main() |