1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 | Lib/test/test_generators.py
tutorial_tests = """ Let's try a simple generator: >>> def f(): ... yield 1 ... yield 2 >>> for i in f(): ... print i 1 2 >>> g = f() >>> g.next() 1 >>> g.next() 2 "Falling off the end" stops the generator: >>> g.next() Traceback (most recent call last): File "<stdin>", line 1, in ? File "<stdin>", line 2, in g StopIteration "return" also stops the generator: >>> def f(): ... yield 1 ... return ... yield 2 # never reached ... >>> g = f() >>> g.next() 1 >>> g.next() Traceback (most recent call last): File "<stdin>", line 1, in ? File "<stdin>", line 3, in f StopIteration >>> g.next() # once stopped, can't be resumed Traceback (most recent call last): File "<stdin>", line 1, in ? StopIteration "raise StopIteration" stops the generator too: >>> def f(): ... yield 1 ... raise StopIteration ... yield 2 # never reached ... >>> g = f() >>> g.next() 1 >>> g.next() Traceback (most recent call last): File "<stdin>", line 1, in ? StopIteration >>> g.next() Traceback (most recent call last): File "<stdin>", line 1, in ? StopIteration However, they are not exactly equivalent: >>> def g1(): ... try: ... return ... except: ... yield 1 ... >>> list(g1()) [] >>> def g2(): ... try: ... raise StopIteration ... except: ... yield 42 >>> print list(g2()) [42] This may be surprising at first: >>> def g3(): ... try: ... return ... finally: ... yield 1 ... >>> list(g3()) [1] Let's create an alternate range() function implemented as a generator: >>> def yrange(n): ... for i in range(n): ... yield i ... >>> list(yrange(5)) [0, 1, 2, 3, 4] Generators always return to the most recent caller: >>> def creator(): ... r = yrange(5) ... print "creator", r.next() ... return r ... >>> def caller(): ... r = creator() ... for i in r: ... print "caller", i ... >>> caller() creator 0 caller 1 caller 2 caller 3 caller 4 Generators can call other generators: >>> def zrange(n): ... for i in yrange(n): ... yield i ... >>> list(zrange(5)) [0, 1, 2, 3, 4] """ # The examples from PEP 255. pep_tests = """ Specification: Yield Restriction: A generator cannot be resumed while it is actively running: >>> def g(): ... i = me.next() ... yield i >>> me = g() >>> me.next() Traceback (most recent call last): ... File "<string>", line 2, in g ValueError: generator already executing Specification: Return Note that return isn't always equivalent to raising StopIteration: the difference lies in how enclosing try/except constructs are treated. For example, >>> def f1(): ... try: ... return ... except: ... yield 1 >>> print list(f1()) [] because, as in any function, return simply exits, but >>> def f2(): ... try: ... raise StopIteration ... except: ... yield 42 >>> print list(f2()) [42] because StopIteration is captured by a bare "except", as is any exception. Specification: Generators and Exception Propagation >>> def f(): ... return 1//0 >>> def g(): ... yield f() # the zero division exception propagates ... yield 42 # and we'll never get here >>> k = g() >>> k.next() Traceback (most recent call last): File "<stdin>", line 1, in ? File "<stdin>", line 2, in g File "<stdin>", line 2, in f ZeroDivisionError: integer division or modulo by zero >>> k.next() # and the generator cannot be resumed Traceback (most recent call last): File "<stdin>", line 1, in ? StopIteration >>> Specification: Try/Except/Finally >>> def f(): ... try: ... yield 1 ... try: ... yield 2 ... 1//0 ... yield 3 # never get here ... except ZeroDivisionError: ... yield 4 ... yield 5 ... raise ... except: ... yield 6 ... yield 7 # the "raise" above stops this ... except: ... yield 8 ... yield 9 ... try: ... x = 12 ... finally: ... yield 10 ... yield 11 >>> print list(f()) [1, 2, 4, 5, 8, 9, 10, 11] >>> Guido's binary tree example. >>> # A binary tree class. >>> class Tree: ... ... def __init__(self, label, left=None, right=None): ... self.label = label ... self.left = left ... self.right = right ... ... def __repr__(self, level=0, indent=" "): ... s = level*indent + repr(self.label) ... if self.left: ... s = s + "\\n" + self.left.__repr__(level+1, indent) ... if self.right: ... s = s + "\\n" + self.right.__repr__(level+1, indent) ... return s ... ... def __iter__(self): ... return inorder(self) >>> # Create a Tree from a list. >>> def tree(list): ... n = len(list) ... if n == 0: ... return [] ... i = n // 2 ... return Tree(list[i], tree(list[:i]), tree(list[i+1:])) >>> # Show it off: create a tree. >>> t = tree("ABCDEFGHIJKLMNOPQRSTUVWXYZ") >>> # A recursive generator that generates Tree labels in in-order. >>> def inorder(t): ... if t: ... for x in inorder(t.left): ... yield x ... yield t.label ... for x in inorder(t.right): ... yield x >>> # Show it off: create a tree. >>> t = tree("ABCDEFGHIJKLMNOPQRSTUVWXYZ") >>> # Print the nodes of the tree in in-order. >>> for x in t: ... print x, A B C D E F G H I J K L M N O P Q R S T U V W X Y Z >>> # A non-recursive generator. >>> def inorder(node): ... stack = [] ... while node: ... while node.left: ... stack.append(node) ... node = node.left ... yield node.label ... while not node.right: ... try: ... node = stack.pop() ... except IndexError: ... return ... yield node.label ... node = node.right >>> # Exercise the non-recursive generator. >>> for x in t: ... print x, A B C D E F G H I J K L M N O P Q R S T U V W X Y Z """ # Examples from Iterator-List and Python-Dev and c.l.py. email_tests = """ The difference between yielding None and returning it. >>> def g(): ... for i in range(3): ... yield None ... yield None ... return >>> list(g()) [None, None, None, None] Ensure that explicitly raising StopIteration acts like any other exception in try/except, not like a return. >>> def g(): ... yield 1 ... try: ... raise StopIteration ... except: ... yield 2 ... yield 3 >>> list(g()) [1, 2, 3] Next one was posted to c.l.py. >>> def gcomb(x, k): ... "Generate all combinations of k elements from list x." ... ... if k > len(x): ... return ... if k == 0: ... yield [] ... else: ... first, rest = x[0], x[1:] ... # A combination does or doesn't contain first. ... # If it does, the remainder is a k-1 comb of rest. ... for c in gcomb(rest, k-1): ... c.insert(0, first) ... yield c ... # If it doesn't contain first, it's a k comb of rest. ... for c in gcomb(rest, k): ... yield c >>> seq = range(1, 5) >>> for k in range(len(seq) + 2): ... print "%d-combs of %s:" % (k, seq) ... for c in gcomb(seq, k): ... print " ", c 0-combs of [1, 2, 3, 4]: [] 1-combs of [1, 2, 3, 4]: [1] [2] [3] [4] 2-combs of [1, 2, 3, 4]: [1, 2] [1, 3] [1, 4] [2, 3] [2, 4] [3, 4] 3-combs of [1, 2, 3, 4]: [1, 2, 3] [1, 2, 4] [1, 3, 4] [2, 3, 4] 4-combs of [1, 2, 3, 4]: [1, 2, 3, 4] 5-combs of [1, 2, 3, 4]: From the Iterators list, about the types of these things. >>> def g(): ... yield 1 ... >>> type(g) <type 'function'> >>> i = g() >>> type(i) <type 'generator'> >>> [s for s in dir(i) if not s.startswith('_')] ['close', 'gi_code', 'gi_frame', 'gi_running', 'next', 'send', 'throw'] >>> from test.test_support import HAVE_DOCSTRINGS >>> print(i.next.__doc__ if HAVE_DOCSTRINGS else 'x.next() -> the next value, or raise StopIteration') x.next() -> the next value, or raise StopIteration >>> iter(i) is i True >>> import types >>> isinstance(i, types.GeneratorType) True And more, added later. >>> i.gi_running 0 >>> type(i.gi_frame) <type 'frame'> >>> i.gi_running = 42 Traceback (most recent call last): ... TypeError: readonly attribute >>> def g(): ... yield me.gi_running >>> me = g() >>> me.gi_running 0 >>> me.next() 1 >>> me.gi_running 0 A clever union-find implementation from c.l.py, due to David Eppstein. Sent: Friday, June 29, 2001 12:16 PM To: python-list@python.org Subject: Re: PEP 255: Simple Generators >>> class disjointSet: ... def __init__(self, name): ... self.name = name ... self.parent = None ... self.generator = self.generate() ... ... def generate(self): ... while not self.parent: ... yield self ... for x in self.parent.generator: ... yield x ... ... def find(self): ... return self.generator.next() ... ... def union(self, parent): ... if self.parent: ... raise ValueError("Sorry, I'm not a root!") ... self.parent = parent ... ... def __str__(self): ... return self.name >>> names = "ABCDEFGHIJKLM" >>> sets = [disjointSet(name) for name in names] >>> roots = sets[:] >>> import random >>> gen = random.WichmannHill(42) >>> while 1: ... for s in sets: ... print "%s->%s" % (s, s.find()), ... print ... if len(roots) > 1: ... s1 = gen.choice(roots) ... roots.remove(s1) ... s2 = gen.choice(roots) ... s1.union(s2) ... print "merged", s1, "into", s2 ... else: ... break A->A B->B C->C D->D E->E F->F G->G H->H I->I J->J K->K L->L M->M merged D into G A->A B->B C->C D->G E->E F->F G->G H->H I->I J->J K->K L->L M->M merged C into F A->A B->B C->F D->G E->E F->F G->G H->H I->I J->J K->K L->L M->M merged L into A A->A B->B C->F D->G E->E F->F G->G H->H I->I J->J K->K L->A M->M merged H into E A->A B->B C->F D->G E->E F->F G->G H->E I->I J->J K->K L->A M->M merged B into E A->A B->E C->F D->G E->E F->F G->G H->E I->I J->J K->K L->A M->M merged J into G A->A B->E C->F D->G E->E F->F G->G H->E I->I J->G K->K L->A M->M merged E into G A->A B->G C->F D->G E->G F->F G->G H->G I->I J->G K->K L->A M->M merged M into G A->A B->G C->F D->G E->G F->F G->G H->G I->I J->G K->K L->A M->G merged I into K A->A B->G C->F D->G E->G F->F G->G H->G I->K J->G K->K L->A M->G merged K into A A->A B->G C->F D->G E->G F->F G->G H->G I->A J->G K->A L->A M->G merged F into A A->A B->G C->A D->G E->G F->A G->G H->G I->A J->G K->A L->A M->G merged A into G A->G B->G C->G D->G E->G F->G G->G H->G I->G J->G K->G L->G M->G """ # Emacs turd ' # Fun tests (for sufficiently warped notions of "fun"). fun_tests = """ Build up to a recursive Sieve of Eratosthenes generator. >>> def firstn(g, n): ... return [g.next() for i in range(n)] >>> def intsfrom(i): ... while 1: ... yield i ... i += 1 >>> firstn(intsfrom(5), 7) [5, 6, 7, 8, 9, 10, 11] >>> def exclude_multiples(n, ints): ... for i in ints: ... if i % n: ... yield i >>> firstn(exclude_multiples(3, intsfrom(1)), 6) [1, 2, 4, 5, 7, 8] >>> def sieve(ints): ... prime = ints.next() ... yield prime ... not_divisible_by_prime = exclude_multiples(prime, ints) ... for p in sieve(not_divisible_by_prime): ... yield p >>> primes = sieve(intsfrom(2)) >>> firstn(primes, 20) [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71] Another famous problem: generate all integers of the form 2**i * 3**j * 5**k in increasing order, where i,j,k >= 0. Trickier than it may look at first! Try writing it without generators, and correctly, and without generating 3 internal results for each result output. >>> def times(n, g): ... for i in g: ... yield n * i >>> firstn(times(10, intsfrom(1)), 10) [10, 20, 30, 40, 50, 60, 70, 80, 90, 100] >>> def merge(g, h): ... ng = g.next() ... nh = h.next() ... while 1: ... if ng < nh: ... yield ng ... ng = g.next() ... elif ng > nh: ... yield nh ... nh = h.next() ... else: ... yield ng ... ng = g.next() ... nh = h.next() The following works, but is doing a whale of a lot of redundant work -- it's not clear how to get the internal uses of m235 to share a single generator. Note that me_times2 (etc) each need to see every element in the result sequence. So this is an example where lazy lists are more natural (you can look at the head of a lazy list any number of times). >>> def m235(): ... yield 1 ... me_times2 = times(2, m235()) ... me_times3 = times(3, m235()) ... me_times5 = times(5, m235()) ... for i in merge(merge(me_times2, ... me_times3), ... me_times5): ... yield i Don't print "too many" of these -- the implementation above is extremely inefficient: each call of m235() leads to 3 recursive calls, and in turn each of those 3 more, and so on, and so on, until we've descended enough levels to satisfy the print stmts. Very odd: when I printed 5 lines of results below, this managed to screw up Win98's malloc in "the usual" way, i.e. the heap grew over 4Mb so Win98 started fragmenting address space, and it *looked* like a very slow leak. >>> result = m235() >>> for i in range(3): ... print firstn(result, 15) [1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24] [25, 27, 30, 32, 36, 40, 45, 48, 50, 54, 60, 64, 72, 75, 80] [81, 90, 96, 100, 108, 120, 125, 128, 135, 144, 150, 160, 162, 180, 192] Heh. Here's one way to get a shared list, complete with an excruciating namespace renaming trick. The *pretty* part is that the times() and merge() functions can be reused as-is, because they only assume their stream arguments are iterable -- a LazyList is the same as a generator to times(). >>> class LazyList: ... def __init__(self, g): ... self.sofar = [] ... self.fetch = g.next ... ... def __getitem__(self, i): ... sofar, fetch = self.sofar, self.fetch ... while i >= len(sofar): ... sofar.append(fetch()) ... return sofar[i] >>> def m235(): ... yield 1 ... # Gack: m235 below actually refers to a LazyList. ... me_times2 = times(2, m235) ... me_times3 = times(3, m235) ... me_times5 = times(5, m235) ... for i in merge(merge(me_times2, ... me_times3), ... me_times5): ... yield i Print as many of these as you like -- *this* implementation is memory- efficient. >>> m235 = LazyList(m235()) >>> for i in range(5): ... print [m235[j] for j in range(15*i, 15*(i+1))] [1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24] [25, 27, 30, 32, 36, 40, 45, 48, 50, 54, 60, 64, 72, 75, 80] [81, 90, 96, 100, 108, 120, 125, 128, 135, 144, 150, 160, 162, 180, 192] [200, 216, 225, 240, 243, 250, 256, 270, 288, 300, 320, 324, 360, 375, 384] [400, 405, 432, 450, 480, 486, 500, 512, 540, 576, 600, 625, 640, 648, 675] Ye olde Fibonacci generator, LazyList style. >>> def fibgen(a, b): ... ... def sum(g, h): ... while 1: ... yield g.next() + h.next() ... ... def tail(g): ... g.next() # throw first away ... for x in g: ... yield x ... ... yield a ... yield b ... for s in sum(iter(fib), ... tail(iter(fib))): ... yield s >>> fib = LazyList(fibgen(1, 2)) >>> firstn(iter(fib), 17) [1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584] Running after your tail with itertools.tee (new in version 2.4) The algorithms "m235" (Hamming) and Fibonacci presented above are both examples of a whole family of FP (functional programming) algorithms where a function produces and returns a list while the production algorithm suppose the list as already produced by recursively calling itself. For these algorithms to work, they must: - produce at least a first element without presupposing the existence of the rest of the list - produce their elements in a lazy manner To work efficiently, the beginning of the list must not be recomputed over and over again. This is ensured in most FP languages as a built-in feature. In python, we have to explicitly maintain a list of already computed results and abandon genuine recursivity. This is what had been attempted above with the LazyList class. One problem with that class is that it keeps a list of all of the generated results and therefore continually grows. This partially defeats the goal of the generator concept, viz. produce the results only as needed instead of producing them all and thereby wasting memory. Thanks to itertools.tee, it is now clear "how to get the internal uses of m235 to share a single generator". >>> from itertools import tee >>> def m235(): ... def _m235(): ... yield 1 ... for n in merge(times(2, m2), ... merge(times(3, m3), ... times(5, m5))): ... yield n ... m1 = _m235() ... m2, m3, m5, mRes = tee(m1, 4) ... return mRes >>> it = m235() >>> for i in range(5): ... print firstn(it, 15) [1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24] [25, 27, 30, 32, 36, 40, 45, 48, 50, 54, 60, 64, 72, 75, 80] [81, 90, 96, 100, 108, 120, 125, 128, 135, 144, 150, 160, 162, 180, 192] [200, 216, 225, 240, 243, 250, 256, 270, 288, 300, 320, 324, 360, 375, 384] [400, 405, 432, 450, 480, 486, 500, 512, 540, 576, 600, 625, 640, 648, 675] The "tee" function does just what we want. It internally keeps a generated result for as long as it has not been "consumed" from all of the duplicated iterators, whereupon it is deleted. You can therefore print the hamming sequence during hours without increasing memory usage, or very little. The beauty of it is that recursive running-after-their-tail FP algorithms are quite straightforwardly expressed with this Python idiom. Ye olde Fibonacci generator, tee style. >>> def fib(): ... ... def _isum(g, h): ... while 1: ... yield g.next() + h.next() ... ... def _fib(): ... yield 1 ... yield 2 ... fibTail.next() # throw first away ... for res in _isum(fibHead, fibTail): ... yield res ... ... realfib = _fib() ... fibHead, fibTail, fibRes = tee(realfib, 3) ... return fibRes >>> firstn(fib(), 17) [1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584] """ # syntax_tests mostly provokes SyntaxErrors. Also fiddling with #if 0 # hackery. syntax_tests = """ >>> def f(): ... return 22 ... yield 1 Traceback (most recent call last): .. SyntaxError: 'return' with argument inside generator (<doctest test.test_generators.__test__.syntax[0]>, line 3) >>> def f(): ... yield 1 ... return 22 Traceback (most recent call last): .. SyntaxError: 'return' with argument inside generator (<doctest test.test_generators.__test__.syntax[1]>, line 3) "return None" is not the same as "return" in a generator: >>> def f(): ... yield 1 ... return None Traceback (most recent call last): .. SyntaxError: 'return' with argument inside generator (<doctest test.test_generators.__test__.syntax[2]>, line 3) These are fine: >>> def f(): ... yield 1 ... return >>> def f(): ... try: ... yield 1 ... finally: ... pass >>> def f(): ... try: ... try: ... 1//0 ... except ZeroDivisionError: ... yield 666 ... except: ... pass ... finally: ... pass >>> def f(): ... try: ... try: ... yield 12 ... 1//0 ... except ZeroDivisionError: ... yield 666 ... except: ... try: ... x = 12 ... finally: ... yield 12 ... except: ... return >>> list(f()) [12, 666] >>> def f(): ... yield >>> type(f()) <type 'generator'> >>> def f(): ... if 0: ... yield >>> type(f()) <type 'generator'> >>> def f(): ... if 0: ... yield 1 >>> type(f()) <type 'generator'> >>> def f(): ... if "": ... yield None >>> type(f()) <type 'generator'> >>> def f(): ... return ... try: ... if x==4: ... pass ... elif 0: ... try: ... 1//0 ... except SyntaxError: ... pass ... else: ... if 0: ... while 12: ... x += 1 ... yield 2 # don't blink ... f(a, b, c, d, e) ... else: ... pass ... except: ... x = 1 ... return >>> type(f()) <type 'generator'> >>> def f(): ... if 0: ... def g(): ... yield 1 ... >>> type(f()) <type 'NoneType'> >>> def f(): ... if 0: ... class C: ... def __init__(self): ... yield 1 ... def f(self): ... yield 2 >>> type(f()) <type 'NoneType'> >>> def f(): ... if 0: ... return ... if 0: ... yield 2 >>> type(f()) <type 'generator'> >>> def f(): ... if 0: ... lambda x: x # shouldn't trigger here ... return # or here ... def f(i): ... return 2*i # or here ... if 0: ... return 3 # but *this* sucks (line 8) ... if 0: ... yield 2 # because it's a generator (line 10) Traceback (most recent call last): SyntaxError: 'return' with argument inside generator (<doctest test.test_generators.__test__.syntax[24]>, line 10) This one caused a crash (see SF bug 567538): >>> def f(): ... for i in range(3): ... try: ... continue ... finally: ... yield i ... >>> g = f() >>> print g.next() 0 >>> print g.next() 1 >>> print g.next() 2 >>> print g.next() Traceback (most recent call last): StopIteration Test the gi_code attribute >>> def f(): ... yield 5 ... >>> g = f() >>> g.gi_code is f.func_code True >>> g.next() 5 >>> g.next() Traceback (most recent call last): StopIteration >>> g.gi_code is f.func_code True Test the __name__ attribute and the repr() >>> def f(): ... yield 5 ... >>> g = f() >>> g.__name__ 'f' >>> repr(g) # doctest: +ELLIPSIS '<generator object f at ...>' Lambdas shouldn't have their usual return behavior. >>> x = lambda: (yield 1) >>> list(x()) [1] >>> x = lambda: ((yield 1), (yield 2)) >>> list(x()) [1, 2] """ # conjoin is a simple backtracking generator, named in honor of Icon's # "conjunction" control structure. Pass a list of no-argument functions # that return iterable objects. Easiest to explain by example: assume the # function list [x, y, z] is passed. Then conjoin acts like: # # def g(): # values = [None] * 3 # for values[0] in x(): # for values[1] in y(): # for values[2] in z(): # yield values # # So some 3-lists of values *may* be generated, each time we successfully # get into the innermost loop. If an iterator fails (is exhausted) before # then, it "backtracks" to get the next value from the nearest enclosing # iterator (the one "to the left"), and starts all over again at the next # slot (pumps a fresh iterator). Of course this is most useful when the # iterators have side-effects, so that which values *can* be generated at # each slot depend on the values iterated at previous slots. def simple_conjoin(gs): values = [None] * len(gs) def gen(i): if i >= len(gs): yield values else: for values[i] in gs[i](): for x in gen(i+1): yield x for x in gen(0): yield x # That works fine, but recursing a level and checking i against len(gs) for # each item produced is inefficient. By doing manual loop unrolling across # generator boundaries, it's possible to eliminate most of that overhead. # This isn't worth the bother *in general* for generators, but conjoin() is # a core building block for some CPU-intensive generator applications. def conjoin(gs): n = len(gs) values = [None] * n # Do one loop nest at time recursively, until the # of loop nests # remaining is divisible by 3. def gen(i): if i >= n: yield values elif (n-i) % 3: ip1 = i+1 for values[i] in gs[i](): for x in gen(ip1): yield x else: for x in _gen3(i): yield x # Do three loop nests at a time, recursing only if at least three more # remain. Don't call directly: this is an internal optimization for # gen's use. def _gen3(i): assert i < n and (n-i) % 3 == 0 ip1, ip2, ip3 = i+1, i+2, i+3 g, g1, g2 = gs[i : ip3] if ip3 >= n: # These are the last three, so we can yield values directly. for values[i] in g(): for values[ip1] in g1(): for values[ip2] in g2(): yield values else: # At least 6 loop nests remain; peel off 3 and recurse for the # rest. for values[i] in g(): for values[ip1] in g1(): for values[ip2] in g2(): for x in _gen3(ip3): yield x for x in gen(0): yield x # And one more approach: For backtracking apps like the Knight's Tour # solver below, the number of backtracking levels can be enormous (one # level per square, for the Knight's Tour, so that e.g. a 100x100 board # needs 10,000 levels). In such cases Python is likely to run out of # stack space due to recursion. So here's a recursion-free version of # conjoin too. # NOTE WELL: This allows large problems to be solved with only trivial # demands on stack space. Without explicitly resumable generators, this is # much harder to achieve. OTOH, this is much slower (up to a factor of 2) # than the fancy unrolled recursive conjoin. def flat_conjoin(gs): # rename to conjoin to run tests with this instead n = len(gs) values = [None] * n iters = [None] * n _StopIteration = StopIteration # make local because caught a *lot* i = 0 while 1: # Descend. try: while i < n: it = iters[i] = gs[i]().next values[i] = it() i += 1 except _StopIteration: pass else: assert i == n yield values # Backtrack until an older iterator can be resumed. i -= 1 while i >= 0: try: values[i] = iters[i]() # Success! Start fresh at next level. i += 1 break except _StopIteration: # Continue backtracking. i -= 1 else: assert i < 0 break # A conjoin-based N-Queens solver. class Queens: def __init__(self, n): self.n = n rangen = range(n) # Assign a unique int to each column and diagonal. # columns: n of those, range(n). # NW-SE diagonals: 2n-1 of these, i-j unique and invariant along # each, smallest i-j is 0-(n-1) = 1-n, so add n-1 to shift to 0- # based. # NE-SW diagonals: 2n-1 of these, i+j unique and invariant along # each, smallest i+j is 0, largest is 2n-2. # For each square, compute a bit vector of the columns and # diagonals it covers, and for each row compute a function that # generates the possiblities for the columns in that row. self.rowgenerators = [] for i in rangen: rowuses = [(1L << j) | # column ordinal (1L << (n + i-j + n-1)) | # NW-SE ordinal (1L << (n + 2*n-1 + i+j)) # NE-SW ordinal for j in rangen] def rowgen(rowuses=rowuses): for j in rangen: uses = rowuses[j] if uses & self.used == 0: self.used |= uses yield j self.used &= ~uses self.rowgenerators.append(rowgen) # Generate solutions. def solve(self): self.used = 0 for row2col in conjoin(self.rowgenerators): yield row2col def printsolution(self, row2col): n = self.n assert n == len(row2col) sep = "+" + "-+" * n print sep for i in range(n): squares = [" " for j in range(n)] squares[row2col[i]] = "Q" print "|" + "|".join(squares) + "|" print sep # A conjoin-based Knight's Tour solver. This is pretty sophisticated # (e.g., when used with flat_conjoin above, and passing hard=1 to the # constructor, a 200x200 Knight's Tour was found quickly -- note that we're # creating 10s of thousands of generators then!), and is lengthy. class Knights: def __init__(self, m, n, hard=0): self.m, self.n = m, n # solve() will set up succs[i] to be a list of square #i's # successors. succs = self.succs = [] # Remove i0 from each of its successor's successor lists, i.e. # successors can't go back to i0 again. Return 0 if we can # detect this makes a solution impossible, else return 1. def remove_from_successors(i0, len=len): # If we remove all exits from a free square, we're dead: # even if we move to it next, we can't leave it again. # If we create a square with one exit, we must visit it next; # else somebody else will have to visit it, and since there's # only one adjacent, there won't be a way to leave it again. # Finelly, if we create more than one free square with a # single exit, we can only move to one of them next, leaving # the other one a dead end. ne0 = ne1 = 0 for i in succs[i0]: s = succs[i] s.remove(i0) e = len(s) if e == 0: ne0 += 1 elif e == 1: ne1 += 1 return ne0 == 0 and ne1 < 2 # Put i0 back in each of its successor's successor lists. def add_to_successors(i0): for i in succs[i0]: succs[i].append(i0) # Generate the first move. def first(): if m < 1 or n < 1: return # Since we're looking for a cycle, it doesn't matter where we # start. Starting in a corner makes the 2nd move easy. corner = self.coords2index(0, 0) remove_from_successors(corner) self.lastij = corner yield corner add_to_successors(corner) # Generate the second moves. def second(): corner = self.coords2index(0, 0) assert self.lastij == corner # i.e., we started in the corner if m < 3 or n < 3: return assert len(succs[corner]) == 2 assert self.coords2index(1, 2) in succs[corner] assert self.coords2index(2, 1) in succs[corner] # Only two choices. Whichever we pick, the other must be the # square picked on move m*n, as it's the only way to get back # to (0, 0). Save its index in self.final so that moves before # the last know it must be kept free. for i, j in (1, 2), (2, 1): this = self.coords2index(i, j) final = self.coords2index(3-i, 3-j) self.final = final remove_from_successors(this) succs[final].append(corner) self.lastij = this yield this succs[final].remove(corner) add_to_successors(this) # Generate moves 3 thru m*n-1. def advance(len=len): # If some successor has only one exit, must take it. # Else favor successors with fewer exits. candidates = [] for i in succs[self.lastij]: e = len(succs[i]) assert e > 0, "else remove_from_successors() pruning flawed" if e == 1: candidates = [(e, i)] break candidates.append((e, i)) else: candidates.sort() for e, i in candidates: if i != self.final: if remove_from_successors(i): self.lastij = i yield i add_to_successors(i) # Generate moves 3 thru m*n-1. Alternative version using a # stronger (but more expensive) heuristic to order successors. # Since the # of backtracking levels is m*n, a poor move early on # can take eons to undo. Smallest square board for which this # matters a lot is 52x52. def advance_hard(vmid=(m-1)/2.0, hmid=(n-1)/2.0, len=len): # If some successor has only one exit, must take it. # Else favor successors with fewer exits. # Break ties via max distance from board centerpoint (favor # corners and edges whenever possible). candidates = [] for i in succs[self.lastij]: e = len(succs[i]) assert e > 0, "else remove_from_successors() pruning flawed" if e == 1: candidates = [(e, 0, i)] break i1, j1 = self.index2coords(i) d = (i1 - vmid)**2 + (j1 - hmid)**2 candidates.append((e, -d, i)) else: candidates.sort() for e, d, i in candidates: if i != self.final: if remove_from_successors(i): self.lastij = i yield i add_to_successors(i) # Generate the last move. def last(): assert self.final in succs[self.lastij] yield self.final if m*n < 4: self.squaregenerators = [first] else: self.squaregenerators = [first, second] + \ [hard and advance_hard or advance] * (m*n - 3) + \ [last] def coords2index(self, i, j): assert 0 <= i < self.m assert 0 <= j < self.n return i * self.n + j def index2coords(self, index): assert 0 <= index < self.m * self.n return divmod(index, self.n) def _init_board(self): succs = self.succs del succs[:] m, n = self.m, self.n c2i = self.coords2index offsets = [( 1, 2), ( 2, 1), ( 2, -1), ( 1, -2), (-1, -2), (-2, -1), (-2, 1), (-1, 2)] rangen = range(n) for i in range(m): for j in rangen: s = [c2i(i+io, j+jo) for io, jo in offsets if 0 <= i+io < m and 0 <= j+jo < n] succs.append(s) # Generate solutions. def solve(self): self._init_board() for x in conjoin(self.squaregenerators): yield x def printsolution(self, x): m, n = self.m, self.n assert len(x) == m*n w = len(str(m*n)) format = "%" + str(w) + "d" squares = [[None] * n for i in range(m)] k = 1 for i in x: i1, j1 = self.index2coords(i) squares[i1][j1] = format % k k += 1 sep = "+" + ("-" * w + "+") * n print sep for i in range(m): row = squares[i] print "|" + "|".join(row) + "|" print sep conjoin_tests = """ Generate the 3-bit binary numbers in order. This illustrates dumbest- possible use of conjoin, just to generate the full cross-product. >>> for c in conjoin([lambda: iter((0, 1))] * 3): ... print c [0, 0, 0] [0, 0, 1] [0, 1, 0] [0, 1, 1] [1, 0, 0] [1, 0, 1] [1, 1, 0] [1, 1, 1] For efficiency in typical backtracking apps, conjoin() yields the same list object each time. So if you want to save away a full account of its generated sequence, you need to copy its results. >>> def gencopy(iterator): ... for x in iterator: ... yield x[:] >>> for n in range(10): ... all = list(gencopy(conjoin([lambda: iter((0, 1))] * n))) ... print n, len(all), all[0] == [0] * n, all[-1] == [1] * n 0 1 True True 1 2 True True 2 4 True True 3 8 True True 4 16 True True 5 32 True True 6 64 True True 7 128 True True 8 256 True True 9 512 True True And run an 8-queens solver. >>> q = Queens(8) >>> LIMIT = 2 >>> count = 0 >>> for row2col in q.solve(): ... count += 1 ... if count <= LIMIT: ... print "Solution", count ... q.printsolution(row2col) Solution 1 +-+-+-+-+-+-+-+-+ |Q| | | | | | | | +-+-+-+-+-+-+-+-+ | | | | |Q| | | | +-+-+-+-+-+-+-+-+ | | | | | | | |Q| +-+-+-+-+-+-+-+-+ | | | | | |Q| | | +-+-+-+-+-+-+-+-+ | | |Q| | | | | | +-+-+-+-+-+-+-+-+ | | | | | | |Q| | +-+-+-+-+-+-+-+-+ | |Q| | | | | | | +-+-+-+-+-+-+-+-+ | | | |Q| | | | | +-+-+-+-+-+-+-+-+ Solution 2 +-+-+-+-+-+-+-+-+ |Q| | | | | | | | +-+-+-+-+-+-+-+-+ | | | | | |Q| | | +-+-+-+-+-+-+-+-+ | | | | | | | |Q| +-+-+-+-+-+-+-+-+ | | |Q| | | | | | +-+-+-+-+-+-+-+-+ | | | | | | |Q| | +-+-+-+-+-+-+-+-+ | | | |Q| | | | | +-+-+-+-+-+-+-+-+ | |Q| | | | | | | +-+-+-+-+-+-+-+-+ | | | | |Q| | | | +-+-+-+-+-+-+-+-+ >>> print count, "solutions in all." 92 solutions in all. And run a Knight's Tour on a 10x10 board. Note that there are about 20,000 solutions even on a 6x6 board, so don't dare run this to exhaustion. >>> k = Knights(10, 10) >>> LIMIT = 2 >>> count = 0 >>> for x in k.solve(): ... count += 1 ... if count <= LIMIT: ... print "Solution", count ... k.printsolution(x) ... else: ... break Solution 1 +---+---+---+---+---+---+---+---+---+---+ | 1| 58| 27| 34| 3| 40| 29| 10| 5| 8| +---+---+---+---+---+---+---+---+---+---+ | 26| 35| 2| 57| 28| 33| 4| 7| 30| 11| +---+---+---+---+---+---+---+---+---+---+ | 59|100| 73| 36| 41| 56| 39| 32| 9| 6| +---+---+---+---+---+---+---+---+---+---+ | 74| 25| 60| 55| 72| 37| 42| 49| 12| 31| +---+---+---+---+---+---+---+---+---+---+ | 61| 86| 99| 76| 63| 52| 47| 38| 43| 50| +---+---+---+---+---+---+---+---+---+---+ | 24| 75| 62| 85| 54| 71| 64| 51| 48| 13| +---+---+---+---+---+---+---+---+---+---+ | 87| 98| 91| 80| 77| 84| 53| 46| 65| 44| +---+---+---+---+---+---+---+---+---+---+ | 90| 23| 88| 95| 70| 79| 68| 83| 14| 17| +---+---+---+---+---+---+---+---+---+---+ | 97| 92| 21| 78| 81| 94| 19| 16| 45| 66| +---+---+---+---+---+---+---+---+---+---+ | 22| 89| 96| 93| 20| 69| 82| 67| 18| 15| +---+---+---+---+---+---+---+---+---+---+ Solution 2 +---+---+---+---+---+---+---+---+---+---+ | 1| 58| 27| 34| 3| 40| 29| 10| 5| 8| +---+---+---+---+---+---+---+---+---+---+ | 26| 35| 2| 57| 28| 33| 4| 7| 30| 11| +---+---+---+---+---+---+---+---+---+---+ | 59|100| 73| 36| 41| 56| 39| 32| 9| 6| +---+---+---+---+---+---+---+---+---+---+ | 74| 25| 60| 55| 72| 37| 42| 49| 12| 31| +---+---+---+---+---+---+---+---+---+---+ | 61| 86| 99| 76| 63| 52| 47| 38| 43| 50| +---+---+---+---+---+---+---+---+---+---+ | 24| 75| 62| 85| 54| 71| 64| 51| 48| 13| +---+---+---+---+---+---+---+---+---+---+ | 87| 98| 89| 80| 77| 84| 53| 46| 65| 44| +---+---+---+---+---+---+---+---+---+---+ | 90| 23| 92| 95| 70| 79| 68| 83| 14| 17| +---+---+---+---+---+---+---+---+---+---+ | 97| 88| 21| 78| 81| 94| 19| 16| 45| 66| +---+---+---+---+---+---+---+---+---+---+ | 22| 91| 96| 93| 20| 69| 82| 67| 18| 15| +---+---+---+---+---+---+---+---+---+---+ """ weakref_tests = """\ Generators are weakly referencable: >>> import weakref >>> def gen(): ... yield 'foo!' ... >>> wr = weakref.ref(gen) >>> wr() is gen True >>> p = weakref.proxy(gen) Generator-iterators are weakly referencable as well: >>> gi = gen() >>> wr = weakref.ref(gi) >>> wr() is gi True >>> p = weakref.proxy(gi) >>> list(p) ['foo!'] """ coroutine_tests = """\ Sending a value into a started generator: >>> def f(): ... print (yield 1) ... yield 2 >>> g = f() >>> g.next() 1 >>> g.send(42) 42 2 Sending a value into a new generator produces a TypeError: >>> f().send("foo") Traceback (most recent call last): ... TypeError: can't send non-None value to a just-started generator Yield by itself yields None: >>> def f(): yield >>> list(f()) [None] An obscene abuse of a yield expression within a generator expression: >>> list((yield 21) for i in range(4)) [21, None, 21, None, 21, None, 21, None] And a more sane, but still weird usage: >>> def f(): list(i for i in [(yield 26)]) >>> type(f()) <type 'generator'> A yield expression with augmented assignment. >>> def coroutine(seq): ... count = 0 ... while count < 200: ... count += yield ... seq.append(count) >>> seq = [] >>> c = coroutine(seq) >>> c.next() >>> print seq [] >>> c.send(10) >>> print seq [10] >>> c.send(10) >>> print seq [10, 20] >>> c.send(10) >>> print seq [10, 20, 30] Check some syntax errors for yield expressions: >>> f=lambda: (yield 1),(yield 2) Traceback (most recent call last): ... File "<doctest test.test_generators.__test__.coroutine[21]>", line 1 SyntaxError: 'yield' outside function >>> def f(): return lambda x=(yield): 1 Traceback (most recent call last): ... SyntaxError: 'return' with argument inside generator (<doctest test.test_generators.__test__.coroutine[22]>, line 1) >>> def f(): x = yield = y Traceback (most recent call last): ... File "<doctest test.test_generators.__test__.coroutine[23]>", line 1 SyntaxError: assignment to yield expression not possible >>> def f(): (yield bar) = y Traceback (most recent call last): ... File "<doctest test.test_generators.__test__.coroutine[24]>", line 1 SyntaxError: can't assign to yield expression >>> def f(): (yield bar) += y Traceback (most recent call last): ... File "<doctest test.test_generators.__test__.coroutine[25]>", line 1 SyntaxError: can't assign to yield expression Now check some throw() conditions: >>> def f(): ... while True: ... try: ... print (yield) ... except ValueError,v: ... print "caught ValueError (%s)" % (v), >>> import sys >>> g = f() >>> g.next() >>> g.throw(ValueError) # type only caught ValueError () >>> g.throw(ValueError("xyz")) # value only caught ValueError (xyz) >>> g.throw(ValueError, ValueError(1)) # value+matching type caught ValueError (1) >>> g.throw(ValueError, TypeError(1)) # mismatched type, rewrapped caught ValueError (1) >>> g.throw(ValueError, ValueError(1), None) # explicit None traceback caught ValueError (1) >>> g.throw(ValueError(1), "foo") # bad args Traceback (most recent call last): ... TypeError: instance exception may not have a separate value >>> g.throw(ValueError, "foo", 23) # bad args Traceback (most recent call last): ... TypeError: throw() third argument must be a traceback object >>> def throw(g,exc): ... try: ... raise exc ... except: ... g.throw(*sys.exc_info()) >>> throw(g,ValueError) # do it with traceback included caught ValueError () >>> g.send(1) 1 >>> throw(g,TypeError) # terminate the generator Traceback (most recent call last): ... TypeError >>> print g.gi_frame None >>> g.send(2) Traceback (most recent call last): ... StopIteration >>> g.throw(ValueError,6) # throw on closed generator Traceback (most recent call last): ... ValueError: 6 >>> f().throw(ValueError,7) # throw on just-opened generator Traceback (most recent call last): ... ValueError: 7 >>> f().throw("abc") # throw on just-opened generator Traceback (most recent call last): ... TypeError: exceptions must be classes, or instances, not str Now let's try closing a generator: >>> def f(): ... try: yield ... except GeneratorExit: ... print "exiting" >>> g = f() >>> g.next() >>> g.close() exiting >>> g.close() # should be no-op now >>> f().close() # close on just-opened generator should be fine >>> def f(): yield # an even simpler generator >>> f().close() # close before opening >>> g = f() >>> g.next() >>> g.close() # close normally And finalization: >>> def f(): ... try: yield ... finally: ... print "exiting" >>> g = f() >>> g.next() >>> del g exiting >>> class context(object): ... def __enter__(self): pass ... def __exit__(self, *args): print 'exiting' >>> def f(): ... with context(): ... yield >>> g = f() >>> g.next() >>> del g exiting GeneratorExit is not caught by except Exception: >>> def f(): ... try: yield ... except Exception: print 'except' ... finally: print 'finally' >>> g = f() >>> g.next() >>> del g finally Now let's try some ill-behaved generators: >>> def f(): ... try: yield ... except GeneratorExit: ... yield "foo!" >>> g = f() >>> g.next() >>> g.close() Traceback (most recent call last): ... RuntimeError: generator ignored GeneratorExit >>> g.close() Our ill-behaved code should be invoked during GC: >>> import sys, StringIO >>> old, sys.stderr = sys.stderr, StringIO.StringIO() >>> g = f() >>> g.next() >>> del g >>> sys.stderr.getvalue().startswith( ... "Exception RuntimeError: 'generator ignored GeneratorExit' in " ... ) True >>> sys.stderr = old And errors thrown during closing should propagate: >>> def f(): ... try: yield ... except GeneratorExit: ... raise TypeError("fie!") >>> g = f() >>> g.next() >>> g.close() Traceback (most recent call last): ... TypeError: fie! Ensure that various yield expression constructs make their enclosing function a generator: >>> def f(): x += yield >>> type(f()) <type 'generator'> >>> def f(): x = yield >>> type(f()) <type 'generator'> >>> def f(): lambda x=(yield): 1 >>> type(f()) <type 'generator'> >>> def f(): x=(i for i in (yield) if (yield)) >>> type(f()) <type 'generator'> >>> def f(d): d[(yield "a")] = d[(yield "b")] = 27 >>> data = [1,2] >>> g = f(data) >>> type(g) <type 'generator'> >>> g.send(None) 'a' >>> data [1, 2] >>> g.send(0) 'b' >>> data [27, 2] >>> try: g.send(1) ... except StopIteration: pass >>> data [27, 27] """ refleaks_tests = """ Prior to adding cycle-GC support to itertools.tee, this code would leak references. We add it to the standard suite so the routine refleak-tests would trigger if it starts being uncleanable again. >>> import itertools >>> def leak(): ... class gen: ... def __iter__(self): ... return self ... def next(self): ... return self.item ... g = gen() ... head, tail = itertools.tee(g) ... g.item = head ... return head >>> it = leak() Make sure to also test the involvement of the tee-internal teedataobject, which stores returned items. >>> item = it.next() This test leaked at one point due to generator finalization/destruction. It was copied from Lib/test/leakers/test_generator_cycle.py before the file was removed. >>> def leak(): ... def gen(): ... while True: ... yield g ... g = gen() >>> leak() This test isn't really generator related, but rather exception-in-cleanup related. The coroutine tests (above) just happen to cause an exception in the generator's __del__ (tp_del) method. We can also test for this explicitly, without generators. We do have to redirect stderr to avoid printing warnings and to doublecheck that we actually tested what we wanted to test. >>> import sys, StringIO >>> old = sys.stderr >>> try: ... sys.stderr = StringIO.StringIO() ... class Leaker: ... def __del__(self): ... raise RuntimeError ... ... l = Leaker() ... del l ... err = sys.stderr.getvalue().strip() ... err.startswith( ... "Exception RuntimeError: RuntimeError() in <" ... ) ... err.endswith("> ignored") ... len(err.splitlines()) ... finally: ... sys.stderr = old True True 1 These refleak tests should perhaps be in a testfile of their own, test_generators just happened to be the test that drew these out. """ __test__ = {"tut": tutorial_tests, "pep": pep_tests, "email": email_tests, "fun": fun_tests, "syntax": syntax_tests, "conjoin": conjoin_tests, "weakref": weakref_tests, "coroutine": coroutine_tests, "refleaks": refleaks_tests, } # Magic test name that regrtest.py invokes *after* importing this module. # This worms around a bootstrap problem. # Note that doctest and regrtest both look in sys.argv for a "-v" argument, # so this works as expected in both ways of running regrtest. def test_main(verbose=None): from test import test_support, test_generators test_support.run_doctest(test_generators, verbose) # This part isn't needed for regrtest, but for running the test directly. if __name__ == "__main__": test_main(1) |