1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
Lib/test/test_generators.py
tutorial_tests = """
Let's try a simple generator:

    >>> def f():
    ...    yield 1
    ...    yield 2

    >>> for i in f():
    ...     print i
    1
    2
    >>> g = f()
    >>> g.next()
    1
    >>> g.next()
    2

"Falling off the end" stops the generator:

    >>> g.next()
    Traceback (most recent call last):
      File "<stdin>", line 1, in ?
      File "<stdin>", line 2, in g
    StopIteration

"return" also stops the generator:

    >>> def f():
    ...     yield 1
    ...     return
    ...     yield 2 # never reached
    ...
    >>> g = f()
    >>> g.next()
    1
    >>> g.next()
    Traceback (most recent call last):
      File "<stdin>", line 1, in ?
      File "<stdin>", line 3, in f
    StopIteration
    >>> g.next() # once stopped, can't be resumed
    Traceback (most recent call last):
      File "<stdin>", line 1, in ?
    StopIteration

"raise StopIteration" stops the generator too:

    >>> def f():
    ...     yield 1
    ...     raise StopIteration
    ...     yield 2 # never reached
    ...
    >>> g = f()
    >>> g.next()
    1
    >>> g.next()
    Traceback (most recent call last):
      File "<stdin>", line 1, in ?
    StopIteration
    >>> g.next()
    Traceback (most recent call last):
      File "<stdin>", line 1, in ?
    StopIteration

However, they are not exactly equivalent:

    >>> def g1():
    ...     try:
    ...         return
    ...     except:
    ...         yield 1
    ...
    >>> list(g1())
    []

    >>> def g2():
    ...     try:
    ...         raise StopIteration
    ...     except:
    ...         yield 42
    >>> print list(g2())
    [42]

This may be surprising at first:

    >>> def g3():
    ...     try:
    ...         return
    ...     finally:
    ...         yield 1
    ...
    >>> list(g3())
    [1]

Let's create an alternate range() function implemented as a generator:

    >>> def yrange(n):
    ...     for i in range(n):
    ...         yield i
    ...
    >>> list(yrange(5))
    [0, 1, 2, 3, 4]

Generators always return to the most recent caller:

    >>> def creator():
    ...     r = yrange(5)
    ...     print "creator", r.next()
    ...     return r
    ...
    >>> def caller():
    ...     r = creator()
    ...     for i in r:
    ...             print "caller", i
    ...
    >>> caller()
    creator 0
    caller 1
    caller 2
    caller 3
    caller 4

Generators can call other generators:

    >>> def zrange(n):
    ...     for i in yrange(n):
    ...         yield i
    ...
    >>> list(zrange(5))
    [0, 1, 2, 3, 4]

"""

# The examples from PEP 255.

pep_tests = """

Specification:  Yield

    Restriction:  A generator cannot be resumed while it is actively
    running:

    >>> def g():
    ...     i = me.next()
    ...     yield i
    >>> me = g()
    >>> me.next()
    Traceback (most recent call last):
     ...
      File "<string>", line 2, in g
    ValueError: generator already executing

Specification: Return

    Note that return isn't always equivalent to raising StopIteration:  the
    difference lies in how enclosing try/except constructs are treated.
    For example,

        >>> def f1():
        ...     try:
        ...         return
        ...     except:
        ...        yield 1
        >>> print list(f1())
        []

    because, as in any function, return simply exits, but

        >>> def f2():
        ...     try:
        ...         raise StopIteration
        ...     except:
        ...         yield 42
        >>> print list(f2())
        [42]

    because StopIteration is captured by a bare "except", as is any
    exception.

Specification: Generators and Exception Propagation

    >>> def f():
    ...     return 1//0
    >>> def g():
    ...     yield f()  # the zero division exception propagates
    ...     yield 42   # and we'll never get here
    >>> k = g()
    >>> k.next()
    Traceback (most recent call last):
      File "<stdin>", line 1, in ?
      File "<stdin>", line 2, in g
      File "<stdin>", line 2, in f
    ZeroDivisionError: integer division or modulo by zero
    >>> k.next()  # and the generator cannot be resumed
    Traceback (most recent call last):
      File "<stdin>", line 1, in ?
    StopIteration
    >>>

Specification: Try/Except/Finally

    >>> def f():
    ...     try:
    ...         yield 1
    ...         try:
    ...             yield 2
    ...             1//0
    ...             yield 3  # never get here
    ...         except ZeroDivisionError:
    ...             yield 4
    ...             yield 5
    ...             raise
    ...         except:
    ...             yield 6
    ...         yield 7     # the "raise" above stops this
    ...     except:
    ...         yield 8
    ...     yield 9
    ...     try:
    ...         x = 12
    ...     finally:
    ...         yield 10
    ...     yield 11
    >>> print list(f())
    [1, 2, 4, 5, 8, 9, 10, 11]
    >>>

Guido's binary tree example.

    >>> # A binary tree class.
    >>> class Tree:
    ...
    ...     def __init__(self, label, left=None, right=None):
    ...         self.label = label
    ...         self.left = left
    ...         self.right = right
    ...
    ...     def __repr__(self, level=0, indent="    "):
    ...         s = level*indent + repr(self.label)
    ...         if self.left:
    ...             s = s + "\\n" + self.left.__repr__(level+1, indent)
    ...         if self.right:
    ...             s = s + "\\n" + self.right.__repr__(level+1, indent)
    ...         return s
    ...
    ...     def __iter__(self):
    ...         return inorder(self)

    >>> # Create a Tree from a list.
    >>> def tree(list):
    ...     n = len(list)
    ...     if n == 0:
    ...         return []
    ...     i = n // 2
    ...     return Tree(list[i], tree(list[:i]), tree(list[i+1:]))

    >>> # Show it off: create a tree.
    >>> t = tree("ABCDEFGHIJKLMNOPQRSTUVWXYZ")

    >>> # A recursive generator that generates Tree labels in in-order.
    >>> def inorder(t):
    ...     if t:
    ...         for x in inorder(t.left):
    ...             yield x
    ...         yield t.label
    ...         for x in inorder(t.right):
    ...             yield x

    >>> # Show it off: create a tree.
    >>> t = tree("ABCDEFGHIJKLMNOPQRSTUVWXYZ")
    >>> # Print the nodes of the tree in in-order.
    >>> for x in t:
    ...     print x,
    A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

    >>> # A non-recursive generator.
    >>> def inorder(node):
    ...     stack = []
    ...     while node:
    ...         while node.left:
    ...             stack.append(node)
    ...             node = node.left
    ...         yield node.label
    ...         while not node.right:
    ...             try:
    ...                 node = stack.pop()
    ...             except IndexError:
    ...                 return
    ...             yield node.label
    ...         node = node.right

    >>> # Exercise the non-recursive generator.
    >>> for x in t:
    ...     print x,
    A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

"""

# Examples from Iterator-List and Python-Dev and c.l.py.

email_tests = """

The difference between yielding None and returning it.

>>> def g():
...     for i in range(3):
...         yield None
...     yield None
...     return
>>> list(g())
[None, None, None, None]

Ensure that explicitly raising StopIteration acts like any other exception
in try/except, not like a return.

>>> def g():
...     yield 1
...     try:
...         raise StopIteration
...     except:
...         yield 2
...     yield 3
>>> list(g())
[1, 2, 3]

Next one was posted to c.l.py.

>>> def gcomb(x, k):
...     "Generate all combinations of k elements from list x."
...
...     if k > len(x):
...         return
...     if k == 0:
...         yield []
...     else:
...         first, rest = x[0], x[1:]
...         # A combination does or doesn't contain first.
...         # If it does, the remainder is a k-1 comb of rest.
...         for c in gcomb(rest, k-1):
...             c.insert(0, first)
...             yield c
...         # If it doesn't contain first, it's a k comb of rest.
...         for c in gcomb(rest, k):
...             yield c

>>> seq = range(1, 5)
>>> for k in range(len(seq) + 2):
...     print "%d-combs of %s:" % (k, seq)
...     for c in gcomb(seq, k):
...         print "   ", c
0-combs of [1, 2, 3, 4]:
    []
1-combs of [1, 2, 3, 4]:
    [1]
    [2]
    [3]
    [4]
2-combs of [1, 2, 3, 4]:
    [1, 2]
    [1, 3]
    [1, 4]
    [2, 3]
    [2, 4]
    [3, 4]
3-combs of [1, 2, 3, 4]:
    [1, 2, 3]
    [1, 2, 4]
    [1, 3, 4]
    [2, 3, 4]
4-combs of [1, 2, 3, 4]:
    [1, 2, 3, 4]
5-combs of [1, 2, 3, 4]:

From the Iterators list, about the types of these things.

>>> def g():
...     yield 1
...
>>> type(g)
<type 'function'>
>>> i = g()
>>> type(i)
<type 'generator'>
>>> [s for s in dir(i) if not s.startswith('_')]
['close', 'gi_code', 'gi_frame', 'gi_running', 'next', 'send', 'throw']
>>> from test.test_support import HAVE_DOCSTRINGS
>>> print(i.next.__doc__ if HAVE_DOCSTRINGS else 'x.next() -> the next value, or raise StopIteration')
x.next() -> the next value, or raise StopIteration
>>> iter(i) is i
True
>>> import types
>>> isinstance(i, types.GeneratorType)
True

And more, added later.

>>> i.gi_running
0
>>> type(i.gi_frame)
<type 'frame'>
>>> i.gi_running = 42
Traceback (most recent call last):
  ...
TypeError: readonly attribute
>>> def g():
...     yield me.gi_running
>>> me = g()
>>> me.gi_running
0
>>> me.next()
1
>>> me.gi_running
0

A clever union-find implementation from c.l.py, due to David Eppstein.
Sent: Friday, June 29, 2001 12:16 PM
To: python-list@python.org
Subject: Re: PEP 255: Simple Generators

>>> class disjointSet:
...     def __init__(self, name):
...         self.name = name
...         self.parent = None
...         self.generator = self.generate()
...
...     def generate(self):
...         while not self.parent:
...             yield self
...         for x in self.parent.generator:
...             yield x
...
...     def find(self):
...         return self.generator.next()
...
...     def union(self, parent):
...         if self.parent:
...             raise ValueError("Sorry, I'm not a root!")
...         self.parent = parent
...
...     def __str__(self):
...         return self.name

>>> names = "ABCDEFGHIJKLM"
>>> sets = [disjointSet(name) for name in names]
>>> roots = sets[:]

>>> import random
>>> gen = random.WichmannHill(42)
>>> while 1:
...     for s in sets:
...         print "%s->%s" % (s, s.find()),
...     print
...     if len(roots) > 1:
...         s1 = gen.choice(roots)
...         roots.remove(s1)
...         s2 = gen.choice(roots)
...         s1.union(s2)
...         print "merged", s1, "into", s2
...     else:
...         break
A->A B->B C->C D->D E->E F->F G->G H->H I->I J->J K->K L->L M->M
merged D into G
A->A B->B C->C D->G E->E F->F G->G H->H I->I J->J K->K L->L M->M
merged C into F
A->A B->B C->F D->G E->E F->F G->G H->H I->I J->J K->K L->L M->M
merged L into A
A->A B->B C->F D->G E->E F->F G->G H->H I->I J->J K->K L->A M->M
merged H into E
A->A B->B C->F D->G E->E F->F G->G H->E I->I J->J K->K L->A M->M
merged B into E
A->A B->E C->F D->G E->E F->F G->G H->E I->I J->J K->K L->A M->M
merged J into G
A->A B->E C->F D->G E->E F->F G->G H->E I->I J->G K->K L->A M->M
merged E into G
A->A B->G C->F D->G E->G F->F G->G H->G I->I J->G K->K L->A M->M
merged M into G
A->A B->G C->F D->G E->G F->F G->G H->G I->I J->G K->K L->A M->G
merged I into K
A->A B->G C->F D->G E->G F->F G->G H->G I->K J->G K->K L->A M->G
merged K into A
A->A B->G C->F D->G E->G F->F G->G H->G I->A J->G K->A L->A M->G
merged F into A
A->A B->G C->A D->G E->G F->A G->G H->G I->A J->G K->A L->A M->G
merged A into G
A->G B->G C->G D->G E->G F->G G->G H->G I->G J->G K->G L->G M->G

"""
# Emacs turd '

# Fun tests (for sufficiently warped notions of "fun").

fun_tests = """

Build up to a recursive Sieve of Eratosthenes generator.

>>> def firstn(g, n):
...     return [g.next() for i in range(n)]

>>> def intsfrom(i):
...     while 1:
...         yield i
...         i += 1

>>> firstn(intsfrom(5), 7)
[5, 6, 7, 8, 9, 10, 11]

>>> def exclude_multiples(n, ints):
...     for i in ints:
...         if i % n:
...             yield i

>>> firstn(exclude_multiples(3, intsfrom(1)), 6)
[1, 2, 4, 5, 7, 8]

>>> def sieve(ints):
...     prime = ints.next()
...     yield prime
...     not_divisible_by_prime = exclude_multiples(prime, ints)
...     for p in sieve(not_divisible_by_prime):
...         yield p

>>> primes = sieve(intsfrom(2))
>>> firstn(primes, 20)
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71]


Another famous problem:  generate all integers of the form
    2**i * 3**j  * 5**k
in increasing order, where i,j,k >= 0.  Trickier than it may look at first!
Try writing it without generators, and correctly, and without generating
3 internal results for each result output.

>>> def times(n, g):
...     for i in g:
...         yield n * i
>>> firstn(times(10, intsfrom(1)), 10)
[10, 20, 30, 40, 50, 60, 70, 80, 90, 100]

>>> def merge(g, h):
...     ng = g.next()
...     nh = h.next()
...     while 1:
...         if ng < nh:
...             yield ng
...             ng = g.next()
...         elif ng > nh:
...             yield nh
...             nh = h.next()
...         else:
...             yield ng
...             ng = g.next()
...             nh = h.next()

The following works, but is doing a whale of a lot of redundant work --
it's not clear how to get the internal uses of m235 to share a single
generator.  Note that me_times2 (etc) each need to see every element in the
result sequence.  So this is an example where lazy lists are more natural
(you can look at the head of a lazy list any number of times).

>>> def m235():
...     yield 1
...     me_times2 = times(2, m235())
...     me_times3 = times(3, m235())
...     me_times5 = times(5, m235())
...     for i in merge(merge(me_times2,
...                          me_times3),
...                    me_times5):
...         yield i

Don't print "too many" of these -- the implementation above is extremely
inefficient:  each call of m235() leads to 3 recursive calls, and in
turn each of those 3 more, and so on, and so on, until we've descended
enough levels to satisfy the print stmts.  Very odd:  when I printed 5
lines of results below, this managed to screw up Win98's malloc in "the
usual" way, i.e. the heap grew over 4Mb so Win98 started fragmenting
address space, and it *looked* like a very slow leak.

>>> result = m235()
>>> for i in range(3):
...     print firstn(result, 15)
[1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24]
[25, 27, 30, 32, 36, 40, 45, 48, 50, 54, 60, 64, 72, 75, 80]
[81, 90, 96, 100, 108, 120, 125, 128, 135, 144, 150, 160, 162, 180, 192]

Heh.  Here's one way to get a shared list, complete with an excruciating
namespace renaming trick.  The *pretty* part is that the times() and merge()
functions can be reused as-is, because they only assume their stream
arguments are iterable -- a LazyList is the same as a generator to times().

>>> class LazyList:
...     def __init__(self, g):
...         self.sofar = []
...         self.fetch = g.next
...
...     def __getitem__(self, i):
...         sofar, fetch = self.sofar, self.fetch
...         while i >= len(sofar):
...             sofar.append(fetch())
...         return sofar[i]

>>> def m235():
...     yield 1
...     # Gack:  m235 below actually refers to a LazyList.
...     me_times2 = times(2, m235)
...     me_times3 = times(3, m235)
...     me_times5 = times(5, m235)
...     for i in merge(merge(me_times2,
...                          me_times3),
...                    me_times5):
...         yield i

Print as many of these as you like -- *this* implementation is memory-
efficient.

>>> m235 = LazyList(m235())
>>> for i in range(5):
...     print [m235[j] for j in range(15*i, 15*(i+1))]
[1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24]
[25, 27, 30, 32, 36, 40, 45, 48, 50, 54, 60, 64, 72, 75, 80]
[81, 90, 96, 100, 108, 120, 125, 128, 135, 144, 150, 160, 162, 180, 192]
[200, 216, 225, 240, 243, 250, 256, 270, 288, 300, 320, 324, 360, 375, 384]
[400, 405, 432, 450, 480, 486, 500, 512, 540, 576, 600, 625, 640, 648, 675]

Ye olde Fibonacci generator, LazyList style.

>>> def fibgen(a, b):
...
...     def sum(g, h):
...         while 1:
...             yield g.next() + h.next()
...
...     def tail(g):
...         g.next()    # throw first away
...         for x in g:
...             yield x
...
...     yield a
...     yield b
...     for s in sum(iter(fib),
...                  tail(iter(fib))):
...         yield s

>>> fib = LazyList(fibgen(1, 2))
>>> firstn(iter(fib), 17)
[1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584]


Running after your tail with itertools.tee (new in version 2.4)

The algorithms "m235" (Hamming) and Fibonacci presented above are both
examples of a whole family of FP (functional programming) algorithms
where a function produces and returns a list while the production algorithm
suppose the list as already produced by recursively calling itself.
For these algorithms to work, they must:

- produce at least a first element without presupposing the existence of
  the rest of the list
- produce their elements in a lazy manner

To work efficiently, the beginning of the list must not be recomputed over
and over again. This is ensured in most FP languages as a built-in feature.
In python, we have to explicitly maintain a list of already computed results
and abandon genuine recursivity.

This is what had been attempted above with the LazyList class. One problem
with that class is that it keeps a list of all of the generated results and
therefore continually grows. This partially defeats the goal of the generator
concept, viz. produce the results only as needed instead of producing them
all and thereby wasting memory.

Thanks to itertools.tee, it is now clear "how to get the internal uses of
m235 to share a single generator".

>>> from itertools import tee
>>> def m235():
...     def _m235():
...         yield 1
...         for n in merge(times(2, m2),
...                        merge(times(3, m3),
...                              times(5, m5))):
...             yield n
...     m1 = _m235()
...     m2, m3, m5, mRes = tee(m1, 4)
...     return mRes

>>> it = m235()
>>> for i in range(5):
...     print firstn(it, 15)
[1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24]
[25, 27, 30, 32, 36, 40, 45, 48, 50, 54, 60, 64, 72, 75, 80]
[81, 90, 96, 100, 108, 120, 125, 128, 135, 144, 150, 160, 162, 180, 192]
[200, 216, 225, 240, 243, 250, 256, 270, 288, 300, 320, 324, 360, 375, 384]
[400, 405, 432, 450, 480, 486, 500, 512, 540, 576, 600, 625, 640, 648, 675]

The "tee" function does just what we want. It internally keeps a generated
result for as long as it has not been "consumed" from all of the duplicated
iterators, whereupon it is deleted. You can therefore print the hamming
sequence during hours without increasing memory usage, or very little.

The beauty of it is that recursive running-after-their-tail FP algorithms
are quite straightforwardly expressed with this Python idiom.

Ye olde Fibonacci generator, tee style.

>>> def fib():
...
...     def _isum(g, h):
...         while 1:
...             yield g.next() + h.next()
...
...     def _fib():
...         yield 1
...         yield 2
...         fibTail.next() # throw first away
...         for res in _isum(fibHead, fibTail):
...             yield res
...
...     realfib = _fib()
...     fibHead, fibTail, fibRes = tee(realfib, 3)
...     return fibRes

>>> firstn(fib(), 17)
[1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584]

"""

# syntax_tests mostly provokes SyntaxErrors.  Also fiddling with #if 0
# hackery.

syntax_tests = """

>>> def f():
...     return 22
...     yield 1
Traceback (most recent call last):
  ..
SyntaxError: 'return' with argument inside generator (<doctest test.test_generators.__test__.syntax[0]>, line 3)

>>> def f():
...     yield 1
...     return 22
Traceback (most recent call last):
  ..
SyntaxError: 'return' with argument inside generator (<doctest test.test_generators.__test__.syntax[1]>, line 3)

"return None" is not the same as "return" in a generator:

>>> def f():
...     yield 1
...     return None
Traceback (most recent call last):
  ..
SyntaxError: 'return' with argument inside generator (<doctest test.test_generators.__test__.syntax[2]>, line 3)

These are fine:

>>> def f():
...     yield 1
...     return

>>> def f():
...     try:
...         yield 1
...     finally:
...         pass

>>> def f():
...     try:
...         try:
...             1//0
...         except ZeroDivisionError:
...             yield 666
...         except:
...             pass
...     finally:
...         pass

>>> def f():
...     try:
...         try:
...             yield 12
...             1//0
...         except ZeroDivisionError:
...             yield 666
...         except:
...             try:
...                 x = 12
...             finally:
...                 yield 12
...     except:
...         return
>>> list(f())
[12, 666]

>>> def f():
...    yield
>>> type(f())
<type 'generator'>


>>> def f():
...    if 0:
...        yield
>>> type(f())
<type 'generator'>


>>> def f():
...     if 0:
...         yield 1
>>> type(f())
<type 'generator'>

>>> def f():
...    if "":
...        yield None
>>> type(f())
<type 'generator'>

>>> def f():
...     return
...     try:
...         if x==4:
...             pass
...         elif 0:
...             try:
...                 1//0
...             except SyntaxError:
...                 pass
...             else:
...                 if 0:
...                     while 12:
...                         x += 1
...                         yield 2 # don't blink
...                         f(a, b, c, d, e)
...         else:
...             pass
...     except:
...         x = 1
...     return
>>> type(f())
<type 'generator'>

>>> def f():
...     if 0:
...         def g():
...             yield 1
...
>>> type(f())
<type 'NoneType'>

>>> def f():
...     if 0:
...         class C:
...             def __init__(self):
...                 yield 1
...             def f(self):
...                 yield 2
>>> type(f())
<type 'NoneType'>

>>> def f():
...     if 0:
...         return
...     if 0:
...         yield 2
>>> type(f())
<type 'generator'>


>>> def f():
...     if 0:
...         lambda x:  x        # shouldn't trigger here
...         return              # or here
...         def f(i):
...             return 2*i      # or here
...         if 0:
...             return 3        # but *this* sucks (line 8)
...     if 0:
...         yield 2             # because it's a generator (line 10)
Traceback (most recent call last):
SyntaxError: 'return' with argument inside generator (<doctest test.test_generators.__test__.syntax[24]>, line 10)

This one caused a crash (see SF bug 567538):

>>> def f():
...     for i in range(3):
...         try:
...             continue
...         finally:
...             yield i
...
>>> g = f()
>>> print g.next()
0
>>> print g.next()
1
>>> print g.next()
2
>>> print g.next()
Traceback (most recent call last):
StopIteration


Test the gi_code attribute

>>> def f():
...     yield 5
...
>>> g = f()
>>> g.gi_code is f.func_code
True
>>> g.next()
5
>>> g.next()
Traceback (most recent call last):
StopIteration
>>> g.gi_code is f.func_code
True


Test the __name__ attribute and the repr()

>>> def f():
...    yield 5
...
>>> g = f()
>>> g.__name__
'f'
>>> repr(g)  # doctest: +ELLIPSIS
'<generator object f at ...>'

Lambdas shouldn't have their usual return behavior.

>>> x = lambda: (yield 1)
>>> list(x())
[1]

>>> x = lambda: ((yield 1), (yield 2))
>>> list(x())
[1, 2]
"""

# conjoin is a simple backtracking generator, named in honor of Icon's
# "conjunction" control structure.  Pass a list of no-argument functions
# that return iterable objects.  Easiest to explain by example:  assume the
# function list [x, y, z] is passed.  Then conjoin acts like:
#
# def g():
#     values = [None] * 3
#     for values[0] in x():
#         for values[1] in y():
#             for values[2] in z():
#                 yield values
#
# So some 3-lists of values *may* be generated, each time we successfully
# get into the innermost loop.  If an iterator fails (is exhausted) before
# then, it "backtracks" to get the next value from the nearest enclosing
# iterator (the one "to the left"), and starts all over again at the next
# slot (pumps a fresh iterator).  Of course this is most useful when the
# iterators have side-effects, so that which values *can* be generated at
# each slot depend on the values iterated at previous slots.

def simple_conjoin(gs):

    values = [None] * len(gs)

    def gen(i):
        if i >= len(gs):
            yield values
        else:
            for values[i] in gs[i]():
                for x in gen(i+1):
                    yield x

    for x in gen(0):
        yield x

# That works fine, but recursing a level and checking i against len(gs) for
# each item produced is inefficient.  By doing manual loop unrolling across
# generator boundaries, it's possible to eliminate most of that overhead.
# This isn't worth the bother *in general* for generators, but conjoin() is
# a core building block for some CPU-intensive generator applications.

def conjoin(gs):

    n = len(gs)
    values = [None] * n

    # Do one loop nest at time recursively, until the # of loop nests
    # remaining is divisible by 3.

    def gen(i):
        if i >= n:
            yield values

        elif (n-i) % 3:
            ip1 = i+1
            for values[i] in gs[i]():
                for x in gen(ip1):
                    yield x

        else:
            for x in _gen3(i):
                yield x

    # Do three loop nests at a time, recursing only if at least three more
    # remain.  Don't call directly:  this is an internal optimization for
    # gen's use.

    def _gen3(i):
        assert i < n and (n-i) % 3 == 0
        ip1, ip2, ip3 = i+1, i+2, i+3
        g, g1, g2 = gs[i : ip3]

        if ip3 >= n:
            # These are the last three, so we can yield values directly.
            for values[i] in g():
                for values[ip1] in g1():
                    for values[ip2] in g2():
                        yield values

        else:
            # At least 6 loop nests remain; peel off 3 and recurse for the
            # rest.
            for values[i] in g():
                for values[ip1] in g1():
                    for values[ip2] in g2():
                        for x in _gen3(ip3):
                            yield x

    for x in gen(0):
        yield x

# And one more approach:  For backtracking apps like the Knight's Tour
# solver below, the number of backtracking levels can be enormous (one
# level per square, for the Knight's Tour, so that e.g. a 100x100 board
# needs 10,000 levels).  In such cases Python is likely to run out of
# stack space due to recursion.  So here's a recursion-free version of
# conjoin too.
# NOTE WELL:  This allows large problems to be solved with only trivial
# demands on stack space.  Without explicitly resumable generators, this is
# much harder to achieve.  OTOH, this is much slower (up to a factor of 2)
# than the fancy unrolled recursive conjoin.

def flat_conjoin(gs):  # rename to conjoin to run tests with this instead
    n = len(gs)
    values = [None] * n
    iters  = [None] * n
    _StopIteration = StopIteration  # make local because caught a *lot*
    i = 0
    while 1:
        # Descend.
        try:
            while i < n:
                it = iters[i] = gs[i]().next
                values[i] = it()
                i += 1
        except _StopIteration:
            pass
        else:
            assert i == n
            yield values

        # Backtrack until an older iterator can be resumed.
        i -= 1
        while i >= 0:
            try:
                values[i] = iters[i]()
                # Success!  Start fresh at next level.
                i += 1
                break
            except _StopIteration:
                # Continue backtracking.
                i -= 1
        else:
            assert i < 0
            break

# A conjoin-based N-Queens solver.

class Queens:
    def __init__(self, n):
        self.n = n
        rangen = range(n)

        # Assign a unique int to each column and diagonal.
        # columns:  n of those, range(n).
        # NW-SE diagonals: 2n-1 of these, i-j unique and invariant along
        # each, smallest i-j is 0-(n-1) = 1-n, so add n-1 to shift to 0-
        # based.
        # NE-SW diagonals: 2n-1 of these, i+j unique and invariant along
        # each, smallest i+j is 0, largest is 2n-2.

        # For each square, compute a bit vector of the columns and
        # diagonals it covers, and for each row compute a function that
        # generates the possiblities for the columns in that row.
        self.rowgenerators = []
        for i in rangen:
            rowuses = [(1L << j) |                  # column ordinal
                       (1L << (n + i-j + n-1)) |    # NW-SE ordinal
                       (1L << (n + 2*n-1 + i+j))    # NE-SW ordinal
                            for j in rangen]

            def rowgen(rowuses=rowuses):
                for j in rangen:
                    uses = rowuses[j]
                    if uses & self.used == 0:
                        self.used |= uses
                        yield j
                        self.used &= ~uses

            self.rowgenerators.append(rowgen)

    # Generate solutions.
    def solve(self):
        self.used = 0
        for row2col in conjoin(self.rowgenerators):
            yield row2col

    def printsolution(self, row2col):
        n = self.n
        assert n == len(row2col)
        sep = "+" + "-+" * n
        print sep
        for i in range(n):
            squares = [" " for j in range(n)]
            squares[row2col[i]] = "Q"
            print "|" + "|".join(squares) + "|"
            print sep

# A conjoin-based Knight's Tour solver.  This is pretty sophisticated
# (e.g., when used with flat_conjoin above, and passing hard=1 to the
# constructor, a 200x200 Knight's Tour was found quickly -- note that we're
# creating 10s of thousands of generators then!), and is lengthy.

class Knights:
    def __init__(self, m, n, hard=0):
        self.m, self.n = m, n

        # solve() will set up succs[i] to be a list of square #i's
        # successors.
        succs = self.succs = []

        # Remove i0 from each of its successor's successor lists, i.e.
        # successors can't go back to i0 again.  Return 0 if we can
        # detect this makes a solution impossible, else return 1.

        def remove_from_successors(i0, len=len):
            # If we remove all exits from a free square, we're dead:
            # even if we move to it next, we can't leave it again.
            # If we create a square with one exit, we must visit it next;
            # else somebody else will have to visit it, and since there's
            # only one adjacent, there won't be a way to leave it again.
            # Finelly, if we create more than one free square with a
            # single exit, we can only move to one of them next, leaving
            # the other one a dead end.
            ne0 = ne1 = 0
            for i in succs[i0]:
                s = succs[i]
                s.remove(i0)
                e = len(s)
                if e == 0:
                    ne0 += 1
                elif e == 1:
                    ne1 += 1
            return ne0 == 0 and ne1 < 2

        # Put i0 back in each of its successor's successor lists.

        def add_to_successors(i0):
            for i in succs[i0]:
                succs[i].append(i0)

        # Generate the first move.
        def first():
            if m < 1 or n < 1:
                return

            # Since we're looking for a cycle, it doesn't matter where we
            # start.  Starting in a corner makes the 2nd move easy.
            corner = self.coords2index(0, 0)
            remove_from_successors(corner)
            self.lastij = corner
            yield corner
            add_to_successors(corner)

        # Generate the second moves.
        def second():
            corner = self.coords2index(0, 0)
            assert self.lastij == corner  # i.e., we started in the corner
            if m < 3 or n < 3:
                return
            assert len(succs[corner]) == 2
            assert self.coords2index(1, 2) in succs[corner]
            assert self.coords2index(2, 1) in succs[corner]
            # Only two choices.  Whichever we pick, the other must be the
            # square picked on move m*n, as it's the only way to get back
            # to (0, 0).  Save its index in self.final so that moves before
            # the last know it must be kept free.
            for i, j in (1, 2), (2, 1):
                this  = self.coords2index(i, j)
                final = self.coords2index(3-i, 3-j)
                self.final = final

                remove_from_successors(this)
                succs[final].append(corner)
                self.lastij = this
                yield this
                succs[final].remove(corner)
                add_to_successors(this)

        # Generate moves 3 thru m*n-1.
        def advance(len=len):
            # If some successor has only one exit, must take it.
            # Else favor successors with fewer exits.
            candidates = []
            for i in succs[self.lastij]:
                e = len(succs[i])
                assert e > 0, "else remove_from_successors() pruning flawed"
                if e == 1:
                    candidates = [(e, i)]
                    break
                candidates.append((e, i))
            else:
                candidates.sort()

            for e, i in candidates:
                if i != self.final:
                    if remove_from_successors(i):
                        self.lastij = i
                        yield i
                    add_to_successors(i)

        # Generate moves 3 thru m*n-1.  Alternative version using a
        # stronger (but more expensive) heuristic to order successors.
        # Since the # of backtracking levels is m*n, a poor move early on
        # can take eons to undo.  Smallest square board for which this
        # matters a lot is 52x52.
        def advance_hard(vmid=(m-1)/2.0, hmid=(n-1)/2.0, len=len):
            # If some successor has only one exit, must take it.
            # Else favor successors with fewer exits.
            # Break ties via max distance from board centerpoint (favor
            # corners and edges whenever possible).
            candidates = []
            for i in succs[self.lastij]:
                e = len(succs[i])
                assert e > 0, "else remove_from_successors() pruning flawed"
                if e == 1:
                    candidates = [(e, 0, i)]
                    break
                i1, j1 = self.index2coords(i)
                d = (i1 - vmid)**2 + (j1 - hmid)**2
                candidates.append((e, -d, i))
            else:
                candidates.sort()

            for e, d, i in candidates:
                if i != self.final:
                    if remove_from_successors(i):
                        self.lastij = i
                        yield i
                    add_to_successors(i)

        # Generate the last move.
        def last():
            assert self.final in succs[self.lastij]
            yield self.final

        if m*n < 4:
            self.squaregenerators = [first]
        else:
            self.squaregenerators = [first, second] + \
                [hard and advance_hard or advance] * (m*n - 3) + \
                [last]

    def coords2index(self, i, j):
        assert 0 <= i < self.m
        assert 0 <= j < self.n
        return i * self.n + j

    def index2coords(self, index):
        assert 0 <= index < self.m * self.n
        return divmod(index, self.n)

    def _init_board(self):
        succs = self.succs
        del succs[:]
        m, n = self.m, self.n
        c2i = self.coords2index

        offsets = [( 1,  2), ( 2,  1), ( 2, -1), ( 1, -2),
                   (-1, -2), (-2, -1), (-2,  1), (-1,  2)]
        rangen = range(n)
        for i in range(m):
            for j in rangen:
                s = [c2i(i+io, j+jo) for io, jo in offsets
                                     if 0 <= i+io < m and
                                        0 <= j+jo < n]
                succs.append(s)

    # Generate solutions.
    def solve(self):
        self._init_board()
        for x in conjoin(self.squaregenerators):
            yield x

    def printsolution(self, x):
        m, n = self.m, self.n
        assert len(x) == m*n
        w = len(str(m*n))
        format = "%" + str(w) + "d"

        squares = [[None] * n for i in range(m)]
        k = 1
        for i in x:
            i1, j1 = self.index2coords(i)
            squares[i1][j1] = format % k
            k += 1

        sep = "+" + ("-" * w + "+") * n
        print sep
        for i in range(m):
            row = squares[i]
            print "|" + "|".join(row) + "|"
            print sep

conjoin_tests = """

Generate the 3-bit binary numbers in order.  This illustrates dumbest-
possible use of conjoin, just to generate the full cross-product.

>>> for c in conjoin([lambda: iter((0, 1))] * 3):
...     print c
[0, 0, 0]
[0, 0, 1]
[0, 1, 0]
[0, 1, 1]
[1, 0, 0]
[1, 0, 1]
[1, 1, 0]
[1, 1, 1]

For efficiency in typical backtracking apps, conjoin() yields the same list
object each time.  So if you want to save away a full account of its
generated sequence, you need to copy its results.

>>> def gencopy(iterator):
...     for x in iterator:
...         yield x[:]

>>> for n in range(10):
...     all = list(gencopy(conjoin([lambda: iter((0, 1))] * n)))
...     print n, len(all), all[0] == [0] * n, all[-1] == [1] * n
0 1 True True
1 2 True True
2 4 True True
3 8 True True
4 16 True True
5 32 True True
6 64 True True
7 128 True True
8 256 True True
9 512 True True

And run an 8-queens solver.

>>> q = Queens(8)
>>> LIMIT = 2
>>> count = 0
>>> for row2col in q.solve():
...     count += 1
...     if count <= LIMIT:
...         print "Solution", count
...         q.printsolution(row2col)
Solution 1
+-+-+-+-+-+-+-+-+
|Q| | | | | | | |
+-+-+-+-+-+-+-+-+
| | | | |Q| | | |
+-+-+-+-+-+-+-+-+
| | | | | | | |Q|
+-+-+-+-+-+-+-+-+
| | | | | |Q| | |
+-+-+-+-+-+-+-+-+
| | |Q| | | | | |
+-+-+-+-+-+-+-+-+
| | | | | | |Q| |
+-+-+-+-+-+-+-+-+
| |Q| | | | | | |
+-+-+-+-+-+-+-+-+
| | | |Q| | | | |
+-+-+-+-+-+-+-+-+
Solution 2
+-+-+-+-+-+-+-+-+
|Q| | | | | | | |
+-+-+-+-+-+-+-+-+
| | | | | |Q| | |
+-+-+-+-+-+-+-+-+
| | | | | | | |Q|
+-+-+-+-+-+-+-+-+
| | |Q| | | | | |
+-+-+-+-+-+-+-+-+
| | | | | | |Q| |
+-+-+-+-+-+-+-+-+
| | | |Q| | | | |
+-+-+-+-+-+-+-+-+
| |Q| | | | | | |
+-+-+-+-+-+-+-+-+
| | | | |Q| | | |
+-+-+-+-+-+-+-+-+

>>> print count, "solutions in all."
92 solutions in all.

And run a Knight's Tour on a 10x10 board.  Note that there are about
20,000 solutions even on a 6x6 board, so don't dare run this to exhaustion.

>>> k = Knights(10, 10)
>>> LIMIT = 2
>>> count = 0
>>> for x in k.solve():
...     count += 1
...     if count <= LIMIT:
...         print "Solution", count
...         k.printsolution(x)
...     else:
...         break
Solution 1
+---+---+---+---+---+---+---+---+---+---+
|  1| 58| 27| 34|  3| 40| 29| 10|  5|  8|
+---+---+---+---+---+---+---+---+---+---+
| 26| 35|  2| 57| 28| 33|  4|  7| 30| 11|
+---+---+---+---+---+---+---+---+---+---+
| 59|100| 73| 36| 41| 56| 39| 32|  9|  6|
+---+---+---+---+---+---+---+---+---+---+
| 74| 25| 60| 55| 72| 37| 42| 49| 12| 31|
+---+---+---+---+---+---+---+---+---+---+
| 61| 86| 99| 76| 63| 52| 47| 38| 43| 50|
+---+---+---+---+---+---+---+---+---+---+
| 24| 75| 62| 85| 54| 71| 64| 51| 48| 13|
+---+---+---+---+---+---+---+---+---+---+
| 87| 98| 91| 80| 77| 84| 53| 46| 65| 44|
+---+---+---+---+---+---+---+---+---+---+
| 90| 23| 88| 95| 70| 79| 68| 83| 14| 17|
+---+---+---+---+---+---+---+---+---+---+
| 97| 92| 21| 78| 81| 94| 19| 16| 45| 66|
+---+---+---+---+---+---+---+---+---+---+
| 22| 89| 96| 93| 20| 69| 82| 67| 18| 15|
+---+---+---+---+---+---+---+---+---+---+
Solution 2
+---+---+---+---+---+---+---+---+---+---+
|  1| 58| 27| 34|  3| 40| 29| 10|  5|  8|
+---+---+---+---+---+---+---+---+---+---+
| 26| 35|  2| 57| 28| 33|  4|  7| 30| 11|
+---+---+---+---+---+---+---+---+---+---+
| 59|100| 73| 36| 41| 56| 39| 32|  9|  6|
+---+---+---+---+---+---+---+---+---+---+
| 74| 25| 60| 55| 72| 37| 42| 49| 12| 31|
+---+---+---+---+---+---+---+---+---+---+
| 61| 86| 99| 76| 63| 52| 47| 38| 43| 50|
+---+---+---+---+---+---+---+---+---+---+
| 24| 75| 62| 85| 54| 71| 64| 51| 48| 13|
+---+---+---+---+---+---+---+---+---+---+
| 87| 98| 89| 80| 77| 84| 53| 46| 65| 44|
+---+---+---+---+---+---+---+---+---+---+
| 90| 23| 92| 95| 70| 79| 68| 83| 14| 17|
+---+---+---+---+---+---+---+---+---+---+
| 97| 88| 21| 78| 81| 94| 19| 16| 45| 66|
+---+---+---+---+---+---+---+---+---+---+
| 22| 91| 96| 93| 20| 69| 82| 67| 18| 15|
+---+---+---+---+---+---+---+---+---+---+
"""

weakref_tests = """\
Generators are weakly referencable:

>>> import weakref
>>> def gen():
...     yield 'foo!'
...
>>> wr = weakref.ref(gen)
>>> wr() is gen
True
>>> p = weakref.proxy(gen)

Generator-iterators are weakly referencable as well:

>>> gi = gen()
>>> wr = weakref.ref(gi)
>>> wr() is gi
True
>>> p = weakref.proxy(gi)
>>> list(p)
['foo!']

"""

coroutine_tests = """\
Sending a value into a started generator:

>>> def f():
...     print (yield 1)
...     yield 2
>>> g = f()
>>> g.next()
1
>>> g.send(42)
42
2

Sending a value into a new generator produces a TypeError:

>>> f().send("foo")
Traceback (most recent call last):
...
TypeError: can't send non-None value to a just-started generator


Yield by itself yields None:

>>> def f(): yield
>>> list(f())
[None]



An obscene abuse of a yield expression within a generator expression:

>>> list((yield 21) for i in range(4))
[21, None, 21, None, 21, None, 21, None]

And a more sane, but still weird usage:

>>> def f(): list(i for i in [(yield 26)])
>>> type(f())
<type 'generator'>


A yield expression with augmented assignment.

>>> def coroutine(seq):
...     count = 0
...     while count < 200:
...         count += yield
...         seq.append(count)
>>> seq = []
>>> c = coroutine(seq)
>>> c.next()
>>> print seq
[]
>>> c.send(10)
>>> print seq
[10]
>>> c.send(10)
>>> print seq
[10, 20]
>>> c.send(10)
>>> print seq
[10, 20, 30]


Check some syntax errors for yield expressions:

>>> f=lambda: (yield 1),(yield 2)
Traceback (most recent call last):
  ...
  File "<doctest test.test_generators.__test__.coroutine[21]>", line 1
SyntaxError: 'yield' outside function

>>> def f(): return lambda x=(yield): 1
Traceback (most recent call last):
  ...
SyntaxError: 'return' with argument inside generator (<doctest test.test_generators.__test__.coroutine[22]>, line 1)

>>> def f(): x = yield = y
Traceback (most recent call last):
  ...
  File "<doctest test.test_generators.__test__.coroutine[23]>", line 1
SyntaxError: assignment to yield expression not possible

>>> def f(): (yield bar) = y
Traceback (most recent call last):
  ...
  File "<doctest test.test_generators.__test__.coroutine[24]>", line 1
SyntaxError: can't assign to yield expression

>>> def f(): (yield bar) += y
Traceback (most recent call last):
  ...
  File "<doctest test.test_generators.__test__.coroutine[25]>", line 1
SyntaxError: can't assign to yield expression


Now check some throw() conditions:

>>> def f():
...     while True:
...         try:
...             print (yield)
...         except ValueError,v:
...             print "caught ValueError (%s)" % (v),
>>> import sys
>>> g = f()
>>> g.next()

>>> g.throw(ValueError) # type only
caught ValueError ()

>>> g.throw(ValueError("xyz"))  # value only
caught ValueError (xyz)

>>> g.throw(ValueError, ValueError(1))   # value+matching type
caught ValueError (1)

>>> g.throw(ValueError, TypeError(1))  # mismatched type, rewrapped
caught ValueError (1)

>>> g.throw(ValueError, ValueError(1), None)   # explicit None traceback
caught ValueError (1)

>>> g.throw(ValueError(1), "foo")       # bad args
Traceback (most recent call last):
  ...
TypeError: instance exception may not have a separate value

>>> g.throw(ValueError, "foo", 23)      # bad args
Traceback (most recent call last):
  ...
TypeError: throw() third argument must be a traceback object

>>> def throw(g,exc):
...     try:
...         raise exc
...     except:
...         g.throw(*sys.exc_info())
>>> throw(g,ValueError) # do it with traceback included
caught ValueError ()

>>> g.send(1)
1

>>> throw(g,TypeError)  # terminate the generator
Traceback (most recent call last):
  ...
TypeError

>>> print g.gi_frame
None

>>> g.send(2)
Traceback (most recent call last):
  ...
StopIteration

>>> g.throw(ValueError,6)       # throw on closed generator
Traceback (most recent call last):
  ...
ValueError: 6

>>> f().throw(ValueError,7)     # throw on just-opened generator
Traceback (most recent call last):
  ...
ValueError: 7

>>> f().throw("abc")     # throw on just-opened generator
Traceback (most recent call last):
  ...
TypeError: exceptions must be classes, or instances, not str

Now let's try closing a generator:

>>> def f():
...     try: yield
...     except GeneratorExit:
...         print "exiting"

>>> g = f()
>>> g.next()
>>> g.close()
exiting
>>> g.close()  # should be no-op now

>>> f().close()  # close on just-opened generator should be fine

>>> def f(): yield      # an even simpler generator
>>> f().close()         # close before opening
>>> g = f()
>>> g.next()
>>> g.close()           # close normally

And finalization:

>>> def f():
...     try: yield
...     finally:
...         print "exiting"

>>> g = f()
>>> g.next()
>>> del g
exiting

>>> class context(object):
...    def __enter__(self): pass
...    def __exit__(self, *args): print 'exiting'
>>> def f():
...     with context():
...          yield
>>> g = f()
>>> g.next()
>>> del g
exiting


GeneratorExit is not caught by except Exception:

>>> def f():
...     try: yield
...     except Exception: print 'except'
...     finally: print 'finally'

>>> g = f()
>>> g.next()
>>> del g
finally


Now let's try some ill-behaved generators:

>>> def f():
...     try: yield
...     except GeneratorExit:
...         yield "foo!"
>>> g = f()
>>> g.next()
>>> g.close()
Traceback (most recent call last):
  ...
RuntimeError: generator ignored GeneratorExit
>>> g.close()


Our ill-behaved code should be invoked during GC:

>>> import sys, StringIO
>>> old, sys.stderr = sys.stderr, StringIO.StringIO()
>>> g = f()
>>> g.next()
>>> del g
>>> sys.stderr.getvalue().startswith(
...     "Exception RuntimeError: 'generator ignored GeneratorExit' in "
... )
True
>>> sys.stderr = old


And errors thrown during closing should propagate:

>>> def f():
...     try: yield
...     except GeneratorExit:
...         raise TypeError("fie!")
>>> g = f()
>>> g.next()
>>> g.close()
Traceback (most recent call last):
  ...
TypeError: fie!


Ensure that various yield expression constructs make their
enclosing function a generator:

>>> def f(): x += yield
>>> type(f())
<type 'generator'>

>>> def f(): x = yield
>>> type(f())
<type 'generator'>

>>> def f(): lambda x=(yield): 1
>>> type(f())
<type 'generator'>

>>> def f(): x=(i for i in (yield) if (yield))
>>> type(f())
<type 'generator'>

>>> def f(d): d[(yield "a")] = d[(yield "b")] = 27
>>> data = [1,2]
>>> g = f(data)
>>> type(g)
<type 'generator'>
>>> g.send(None)
'a'
>>> data
[1, 2]
>>> g.send(0)
'b'
>>> data
[27, 2]
>>> try: g.send(1)
... except StopIteration: pass
>>> data
[27, 27]

"""

refleaks_tests = """
Prior to adding cycle-GC support to itertools.tee, this code would leak
references. We add it to the standard suite so the routine refleak-tests
would trigger if it starts being uncleanable again.

>>> import itertools
>>> def leak():
...     class gen:
...         def __iter__(self):
...             return self
...         def next(self):
...             return self.item
...     g = gen()
...     head, tail = itertools.tee(g)
...     g.item = head
...     return head
>>> it = leak()

Make sure to also test the involvement of the tee-internal teedataobject,
which stores returned items.

>>> item = it.next()



This test leaked at one point due to generator finalization/destruction.
It was copied from Lib/test/leakers/test_generator_cycle.py before the file
was removed.

>>> def leak():
...    def gen():
...        while True:
...            yield g
...    g = gen()

>>> leak()



This test isn't really generator related, but rather exception-in-cleanup
related. The coroutine tests (above) just happen to cause an exception in
the generator's __del__ (tp_del) method. We can also test for this
explicitly, without generators. We do have to redirect stderr to avoid
printing warnings and to doublecheck that we actually tested what we wanted
to test.

>>> import sys, StringIO
>>> old = sys.stderr
>>> try:
...     sys.stderr = StringIO.StringIO()
...     class Leaker:
...         def __del__(self):
...             raise RuntimeError
...
...     l = Leaker()
...     del l
...     err = sys.stderr.getvalue().strip()
...     err.startswith(
...         "Exception RuntimeError: RuntimeError() in <"
...     )
...     err.endswith("> ignored")
...     len(err.splitlines())
... finally:
...     sys.stderr = old
True
True
1



These refleak tests should perhaps be in a testfile of their own,
test_generators just happened to be the test that drew these out.

"""

__test__ = {"tut":      tutorial_tests,
            "pep":      pep_tests,
            "email":    email_tests,
            "fun":      fun_tests,
            "syntax":   syntax_tests,
            "conjoin":  conjoin_tests,
            "weakref":  weakref_tests,
            "coroutine":  coroutine_tests,
            "refleaks": refleaks_tests,
            }

# Magic test name that regrtest.py invokes *after* importing this module.
# This worms around a bootstrap problem.
# Note that doctest and regrtest both look in sys.argv for a "-v" argument,
# so this works as expected in both ways of running regrtest.
def test_main(verbose=None):
    from test import test_support, test_generators
    test_support.run_doctest(test_generators, verbose)

# This part isn't needed for regrtest, but for running the test directly.
if __name__ == "__main__":
    test_main(1)