1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 | Parser/spark.py
# Copyright (c) 1998-2002 John Aycock # # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so, subject to # the following conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. # IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY # CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, # TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE # SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. __version__ = 'SPARK-0.7 (pre-alpha-5)' import re import string def _namelist(instance): namelist, namedict, classlist = [], {}, [instance.__class__] for c in classlist: for b in c.__bases__: classlist.append(b) for name in c.__dict__.keys(): if not namedict.has_key(name): namelist.append(name) namedict[name] = 1 return namelist class GenericScanner: def __init__(self, flags=0): pattern = self.reflect() self.re = re.compile(pattern, re.VERBOSE|flags) self.index2func = {} for name, number in self.re.groupindex.items(): self.index2func[number-1] = getattr(self, 't_' + name) def makeRE(self, name): doc = getattr(self, name).__doc__ rv = '(?P<%s>%s)' % (name[2:], doc) return rv def reflect(self): rv = [] for name in _namelist(self): if name[:2] == 't_' and name != 't_default': rv.append(self.makeRE(name)) rv.append(self.makeRE('t_default')) return string.join(rv, '|') def error(self, s, pos): print "Lexical error at position %s" % pos raise SystemExit def tokenize(self, s): pos = 0 n = len(s) while pos < n: m = self.re.match(s, pos) if m is None: self.error(s, pos) groups = m.groups() for i in range(len(groups)): if groups[i] and self.index2func.has_key(i): self.index2func[i](groups[i]) pos = m.end() def t_default(self, s): r'( . | \n )+' print "Specification error: unmatched input" raise SystemExit # # Extracted from GenericParser and made global so that [un]picking works. # class _State: def __init__(self, stateno, items): self.T, self.complete, self.items = [], [], items self.stateno = stateno class GenericParser: # # An Earley parser, as per J. Earley, "An Efficient Context-Free # Parsing Algorithm", CACM 13(2), pp. 94-102. Also J. C. Earley, # "An Efficient Context-Free Parsing Algorithm", Ph.D. thesis, # Carnegie-Mellon University, August 1968. New formulation of # the parser according to J. Aycock, "Practical Earley Parsing # and the SPARK Toolkit", Ph.D. thesis, University of Victoria, # 2001, and J. Aycock and R. N. Horspool, "Practical Earley # Parsing", unpublished paper, 2001. # def __init__(self, start): self.rules = {} self.rule2func = {} self.rule2name = {} self.collectRules() self.augment(start) self.ruleschanged = 1 _NULLABLE = '\e_' _START = 'START' _BOF = '|-' # # When pickling, take the time to generate the full state machine; # some information is then extraneous, too. Unfortunately we # can't save the rule2func map. # def __getstate__(self): if self.ruleschanged: # # XXX - duplicated from parse() # self.computeNull() self.newrules = {} self.new2old = {} self.makeNewRules() self.ruleschanged = 0 self.edges, self.cores = {}, {} self.states = { 0: self.makeState0() } self.makeState(0, self._BOF) # # XXX - should find a better way to do this.. # changes = 1 while changes: changes = 0 for k, v in self.edges.items(): if v is None: state, sym = k if self.states.has_key(state): self.goto(state, sym) changes = 1 rv = self.__dict__.copy() for s in self.states.values(): del s.items del rv['rule2func'] del rv['nullable'] del rv['cores'] return rv def __setstate__(self, D): self.rules = {} self.rule2func = {} self.rule2name = {} self.collectRules() start = D['rules'][self._START][0][1][1] # Blech. self.augment(start) D['rule2func'] = self.rule2func D['makeSet'] = self.makeSet_fast self.__dict__ = D # # A hook for GenericASTBuilder and GenericASTMatcher. Mess # thee not with this; nor shall thee toucheth the _preprocess # argument to addRule. # def preprocess(self, rule, func): return rule, func def addRule(self, doc, func, _preprocess=1): fn = func rules = string.split(doc) index = [] for i in range(len(rules)): if rules[i] == '::=': index.append(i-1) index.append(len(rules)) for i in range(len(index)-1): lhs = rules[index[i]] rhs = rules[index[i]+2:index[i+1]] rule = (lhs, tuple(rhs)) if _preprocess: rule, fn = self.preprocess(rule, func) if self.rules.has_key(lhs): self.rules[lhs].append(rule) else: self.rules[lhs] = [ rule ] self.rule2func[rule] = fn self.rule2name[rule] = func.__name__[2:] self.ruleschanged = 1 def collectRules(self): for name in _namelist(self): if name[:2] == 'p_': func = getattr(self, name) doc = func.__doc__ self.addRule(doc, func) def augment(self, start): rule = '%s ::= %s %s' % (self._START, self._BOF, start) self.addRule(rule, lambda args: args[1], 0) def computeNull(self): self.nullable = {} tbd = [] for rulelist in self.rules.values(): lhs = rulelist[0][0] self.nullable[lhs] = 0 for rule in rulelist: rhs = rule[1] if len(rhs) == 0: self.nullable[lhs] = 1 continue # # We only need to consider rules which # consist entirely of nonterminal symbols. # This should be a savings on typical # grammars. # for sym in rhs: if not self.rules.has_key(sym): break else: tbd.append(rule) changes = 1 while changes: changes = 0 for lhs, rhs in tbd: if self.nullable[lhs]: continue for sym in rhs: if not self.nullable[sym]: break else: self.nullable[lhs] = 1 changes = 1 def makeState0(self): s0 = _State(0, []) for rule in self.newrules[self._START]: s0.items.append((rule, 0)) return s0 def finalState(self, tokens): # # Yuck. # if len(self.newrules[self._START]) == 2 and len(tokens) == 0: return 1 start = self.rules[self._START][0][1][1] return self.goto(1, start) def makeNewRules(self): worklist = [] for rulelist in self.rules.values(): for rule in rulelist: worklist.append((rule, 0, 1, rule)) for rule, i, candidate, oldrule in worklist: lhs, rhs = rule n = len(rhs) while i < n: sym = rhs[i] if not self.rules.has_key(sym) or \ not self.nullable[sym]: candidate = 0 i = i + 1 continue newrhs = list(rhs) newrhs[i] = self._NULLABLE+sym newrule = (lhs, tuple(newrhs)) worklist.append((newrule, i+1, candidate, oldrule)) candidate = 0 i = i + 1 else: if candidate: lhs = self._NULLABLE+lhs rule = (lhs, rhs) if self.newrules.has_key(lhs): self.newrules[lhs].append(rule) else: self.newrules[lhs] = [ rule ] self.new2old[rule] = oldrule def typestring(self, token): return None def error(self, token): print "Syntax error at or near `%s' token" % token raise SystemExit def parse(self, tokens): sets = [ [(1,0), (2,0)] ] self.links = {} if self.ruleschanged: self.computeNull() self.newrules = {} self.new2old = {} self.makeNewRules() self.ruleschanged = 0 self.edges, self.cores = {}, {} self.states = { 0: self.makeState0() } self.makeState(0, self._BOF) for i in xrange(len(tokens)): sets.append([]) if sets[i] == []: break self.makeSet(tokens[i], sets, i) else: sets.append([]) self.makeSet(None, sets, len(tokens)) #_dump(tokens, sets, self.states) finalitem = (self.finalState(tokens), 0) if finalitem not in sets[-2]: if len(tokens) > 0: self.error(tokens[i-1]) else: self.error(None) return self.buildTree(self._START, finalitem, tokens, len(sets)-2) def isnullable(self, sym): # # For symbols in G_e only. If we weren't supporting 1.5, # could just use sym.startswith(). # return self._NULLABLE == sym[0:len(self._NULLABLE)] def skip(self, (lhs, rhs), pos=0): n = len(rhs) while pos < n: if not self.isnullable(rhs[pos]): break pos = pos + 1 return pos def makeState(self, state, sym): assert sym is not None # # Compute \epsilon-kernel state's core and see if # it exists already. # kitems = [] for rule, pos in self.states[state].items: lhs, rhs = rule if rhs[pos:pos+1] == (sym,): kitems.append((rule, self.skip(rule, pos+1))) core = kitems core.sort() tcore = tuple(core) if self.cores.has_key(tcore): return self.cores[tcore] # # Nope, doesn't exist. Compute it and the associated # \epsilon-nonkernel state together; we'll need it right away. # k = self.cores[tcore] = len(self.states) K, NK = _State(k, kitems), _State(k+1, []) self.states[k] = K predicted = {} edges = self.edges rules = self.newrules for X in K, NK: worklist = X.items for item in worklist: rule, pos = item lhs, rhs = rule if pos == len(rhs): X.complete.append(rule) continue nextSym = rhs[pos] key = (X.stateno, nextSym) if not rules.has_key(nextSym): if not edges.has_key(key): edges[key] = None X.T.append(nextSym) else: edges[key] = None if not predicted.has_key(nextSym): predicted[nextSym] = 1 for prule in rules[nextSym]: ppos = self.skip(prule) new = (prule, ppos) NK.items.append(new) # # Problem: we know K needs generating, but we # don't yet know about NK. Can't commit anything # regarding NK to self.edges until we're sure. Should # we delay committing on both K and NK to avoid this # hacky code? This creates other problems.. # if X is K: edges = {} if NK.items == []: return k # # Check for \epsilon-nonkernel's core. Unfortunately we # need to know the entire set of predicted nonterminals # to do this without accidentally duplicating states. # core = predicted.keys() core.sort() tcore = tuple(core) if self.cores.has_key(tcore): self.edges[(k, None)] = self.cores[tcore] return k nk = self.cores[tcore] = self.edges[(k, None)] = NK.stateno self.edges.update(edges) self.states[nk] = NK return k def goto(self, state, sym): key = (state, sym) if not self.edges.has_key(key): # # No transitions from state on sym. # return None rv = self.edges[key] if rv is None: # # Target state isn't generated yet. Remedy this. # rv = self.makeState(state, sym) self.edges[key] = rv return rv def gotoT(self, state, t): return [self.goto(state, t)] def gotoST(self, state, st): rv = [] for t in self.states[state].T: if st == t: rv.append(self.goto(state, t)) return rv def add(self, set, item, i=None, predecessor=None, causal=None): if predecessor is None: if item not in set: set.append(item) else: key = (item, i) if item not in set: self.links[key] = [] set.append(item) self.links[key].append((predecessor, causal)) def makeSet(self, token, sets, i): cur, next = sets[i], sets[i+1] ttype = token is not None and self.typestring(token) or None if ttype is not None: fn, arg = self.gotoT, ttype else: fn, arg = self.gotoST, token for item in cur: ptr = (item, i) state, parent = item add = fn(state, arg) for k in add: if k is not None: self.add(next, (k, parent), i+1, ptr) nk = self.goto(k, None) if nk is not None: self.add(next, (nk, i+1)) if parent == i: continue for rule in self.states[state].complete: lhs, rhs = rule for pitem in sets[parent]: pstate, pparent = pitem k = self.goto(pstate, lhs) if k is not None: why = (item, i, rule) pptr = (pitem, parent) self.add(cur, (k, pparent), i, pptr, why) nk = self.goto(k, None) if nk is not None: self.add(cur, (nk, i)) def makeSet_fast(self, token, sets, i): # # Call *only* when the entire state machine has been built! # It relies on self.edges being filled in completely, and # then duplicates and inlines code to boost speed at the # cost of extreme ugliness. # cur, next = sets[i], sets[i+1] ttype = token is not None and self.typestring(token) or None for item in cur: ptr = (item, i) state, parent = item if ttype is not None: k = self.edges.get((state, ttype), None) if k is not None: #self.add(next, (k, parent), i+1, ptr) #INLINED --v new = (k, parent) key = (new, i+1) if new not in next: self.links[key] = [] next.append(new) self.links[key].append((ptr, None)) #INLINED --^ #nk = self.goto(k, None) nk = self.edges.get((k, None), None) if nk is not None: #self.add(next, (nk, i+1)) #INLINED --v new = (nk, i+1) if new not in next: next.append(new) #INLINED --^ else: add = self.gotoST(state, token) for k in add: if k is not None: self.add(next, (k, parent), i+1, ptr) #nk = self.goto(k, None) nk = self.edges.get((k, None), None) if nk is not None: self.add(next, (nk, i+1)) if parent == i: continue for rule in self.states[state].complete: lhs, rhs = rule for pitem in sets[parent]: pstate, pparent = pitem #k = self.goto(pstate, lhs) k = self.edges.get((pstate, lhs), None) if k is not None: why = (item, i, rule) pptr = (pitem, parent) #self.add(cur, (k, pparent), # i, pptr, why) #INLINED --v new = (k, pparent) key = (new, i) if new not in cur: self.links[key] = [] cur.append(new) self.links[key].append((pptr, why)) #INLINED --^ #nk = self.goto(k, None) nk = self.edges.get((k, None), None) if nk is not None: #self.add(cur, (nk, i)) #INLINED --v new = (nk, i) if new not in cur: cur.append(new) #INLINED --^ def predecessor(self, key, causal): for p, c in self.links[key]: if c == causal: return p assert 0 def causal(self, key): links = self.links[key] if len(links) == 1: return links[0][1] choices = [] rule2cause = {} for p, c in links: rule = c[2] choices.append(rule) rule2cause[rule] = c return rule2cause[self.ambiguity(choices)] def deriveEpsilon(self, nt): if len(self.newrules[nt]) > 1: rule = self.ambiguity(self.newrules[nt]) else: rule = self.newrules[nt][0] #print rule rhs = rule[1] attr = [None] * len(rhs) for i in range(len(rhs)-1, -1, -1): attr[i] = self.deriveEpsilon(rhs[i]) return self.rule2func[self.new2old[rule]](attr) def buildTree(self, nt, item, tokens, k): state, parent = item choices = [] for rule in self.states[state].complete: if rule[0] == nt: choices.append(rule) rule = choices[0] if len(choices) > 1: rule = self.ambiguity(choices) #print rule rhs = rule[1] attr = [None] * len(rhs) for i in range(len(rhs)-1, -1, -1): sym = rhs[i] if not self.newrules.has_key(sym): if sym != self._BOF: attr[i] = tokens[k-1] key = (item, k) item, k = self.predecessor(key, None) #elif self.isnullable(sym): elif self._NULLABLE == sym[0:len(self._NULLABLE)]: attr[i] = self.deriveEpsilon(sym) else: key = (item, k) why = self.causal(key) attr[i] = self.buildTree(sym, why[0], tokens, why[1]) item, k = self.predecessor(key, why) return self.rule2func[self.new2old[rule]](attr) def ambiguity(self, rules): # # XXX - problem here and in collectRules() if the same rule # appears in >1 method. Also undefined results if rules # causing the ambiguity appear in the same method. # sortlist = [] name2index = {} for i in range(len(rules)): lhs, rhs = rule = rules[i] name = self.rule2name[self.new2old[rule]] sortlist.append((len(rhs), name)) name2index[name] = i sortlist.sort() list = map(lambda (a,b): b, sortlist) return rules[name2index[self.resolve(list)]] def resolve(self, list): # # Resolve ambiguity in favor of the shortest RHS. # Since we walk the tree from the top down, this # should effectively resolve in favor of a "shift". # return list[0] # # GenericASTBuilder automagically constructs a concrete/abstract syntax tree # for a given input. The extra argument is a class (not an instance!) # which supports the "__setslice__" and "__len__" methods. # # XXX - silently overrides any user code in methods. # class GenericASTBuilder(GenericParser): def __init__(self, AST, start): GenericParser.__init__(self, start) self.AST = AST def preprocess(self, rule, func): rebind = lambda lhs, self=self: \ lambda args, lhs=lhs, self=self: \ self.buildASTNode(args, lhs) lhs, rhs = rule return rule, rebind(lhs) def buildASTNode(self, args, lhs): children = [] for arg in args: if isinstance(arg, self.AST): children.append(arg) else: children.append(self.terminal(arg)) return self.nonterminal(lhs, children) def terminal(self, token): return token def nonterminal(self, type, args): rv = self.AST(type) rv[:len(args)] = args return rv # # GenericASTTraversal is a Visitor pattern according to Design Patterns. For # each node it attempts to invoke the method n_<node type>, falling # back onto the default() method if the n_* can't be found. The preorder # traversal also looks for an exit hook named n_<node type>_exit (no default # routine is called if it's not found). To prematurely halt traversal # of a subtree, call the prune() method -- this only makes sense for a # preorder traversal. Node type is determined via the typestring() method. # class GenericASTTraversalPruningException: pass class GenericASTTraversal: def __init__(self, ast): self.ast = ast def typestring(self, node): return node.type def prune(self): raise GenericASTTraversalPruningException def preorder(self, node=None): if node is None: node = self.ast try: name = 'n_' + self.typestring(node) if hasattr(self, name): func = getattr(self, name) func(node) else: self.default(node) except GenericASTTraversalPruningException: return for kid in node: self.preorder(kid) name = name + '_exit' if hasattr(self, name): func = getattr(self, name) func(node) def postorder(self, node=None): if node is None: node = self.ast for kid in node: self.postorder(kid) name = 'n_' + self.typestring(node) if hasattr(self, name): func = getattr(self, name) func(node) else: self.default(node) def default(self, node): pass # # GenericASTMatcher. AST nodes must have "__getitem__" and "__cmp__" # implemented. # # XXX - makes assumptions about how GenericParser walks the parse tree. # class GenericASTMatcher(GenericParser): def __init__(self, start, ast): GenericParser.__init__(self, start) self.ast = ast def preprocess(self, rule, func): rebind = lambda func, self=self: \ lambda args, func=func, self=self: \ self.foundMatch(args, func) lhs, rhs = rule rhslist = list(rhs) rhslist.reverse() return (lhs, tuple(rhslist)), rebind(func) def foundMatch(self, args, func): func(args[-1]) return args[-1] def match_r(self, node): self.input.insert(0, node) children = 0 for child in node: if children == 0: self.input.insert(0, '(') children = children + 1 self.match_r(child) if children > 0: self.input.insert(0, ')') def match(self, ast=None): if ast is None: ast = self.ast self.input = [] self.match_r(ast) self.parse(self.input) def resolve(self, list): # # Resolve ambiguity in favor of the longest RHS. # return list[-1] def _dump(tokens, sets, states): for i in range(len(sets)): print 'set', i for item in sets[i]: print '\t', item for (lhs, rhs), pos in states[item[0]].items: print '\t\t', lhs, '::=', print string.join(rhs[:pos]), print '.', print string.join(rhs[pos:]) if i < len(tokens): print print 'token', str(tokens[i]) print |