1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 | Lib/test/test_setcomps.py
doctests = """ ########### Tests mostly copied from test_listcomps.py ############ Test simple loop with conditional >>> sum({i*i for i in range(100) if i&1 == 1}) 166650 Test simple case >>> {2*y + x + 1 for x in (0,) for y in (1,)} set([3]) Test simple nesting >>> list(sorted({(i,j) for i in range(3) for j in range(4)})) [(0, 0), (0, 1), (0, 2), (0, 3), (1, 0), (1, 1), (1, 2), (1, 3), (2, 0), (2, 1), (2, 2), (2, 3)] Test nesting with the inner expression dependent on the outer >>> list(sorted({(i,j) for i in range(4) for j in range(i)})) [(1, 0), (2, 0), (2, 1), (3, 0), (3, 1), (3, 2)] Make sure the induction variable is not exposed >>> i = 20 >>> sum({i*i for i in range(100)}) 328350 >>> i 20 Verify that syntax error's are raised for setcomps used as lvalues >>> {y for y in (1,2)} = 10 # doctest: +IGNORE_EXCEPTION_DETAIL Traceback (most recent call last): ... SyntaxError: ... >>> {y for y in (1,2)} += 10 # doctest: +IGNORE_EXCEPTION_DETAIL Traceback (most recent call last): ... SyntaxError: ... Make a nested set comprehension that acts like set(range()) >>> def srange(n): ... return {i for i in range(n)} >>> list(sorted(srange(10))) [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] Same again, only as a lambda expression instead of a function definition >>> lrange = lambda n: {i for i in range(n)} >>> list(sorted(lrange(10))) [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] Generators can call other generators: >>> def grange(n): ... for x in {i for i in range(n)}: ... yield x >>> list(sorted(grange(5))) [0, 1, 2, 3, 4] Make sure that None is a valid return value >>> {None for i in range(10)} set([None]) ########### Tests for various scoping corner cases ############ Return lambdas that use the iteration variable as a default argument >>> items = {(lambda i=i: i) for i in range(5)} >>> {x() for x in items} == set(range(5)) True Same again, only this time as a closure variable >>> items = {(lambda: i) for i in range(5)} >>> {x() for x in items} set([4]) Another way to test that the iteration variable is local to the list comp >>> items = {(lambda: i) for i in range(5)} >>> i = 20 >>> {x() for x in items} set([4]) And confirm that a closure can jump over the list comp scope >>> items = {(lambda: y) for i in range(5)} >>> y = 2 >>> {x() for x in items} set([2]) We also repeat each of the above scoping tests inside a function >>> def test_func(): ... items = {(lambda i=i: i) for i in range(5)} ... return {x() for x in items} >>> test_func() == set(range(5)) True >>> def test_func(): ... items = {(lambda: i) for i in range(5)} ... return {x() for x in items} >>> test_func() set([4]) >>> def test_func(): ... items = {(lambda: i) for i in range(5)} ... i = 20 ... return {x() for x in items} >>> test_func() set([4]) >>> def test_func(): ... items = {(lambda: y) for i in range(5)} ... y = 2 ... return {x() for x in items} >>> test_func() set([2]) """ __test__ = {'doctests' : doctests} def test_main(verbose=None): import sys from test import test_support from test import test_setcomps test_support.run_doctest(test_setcomps, verbose) # verify reference counting if verbose and hasattr(sys, "gettotalrefcount"): import gc counts = [None] * 5 for i in range(len(counts)): test_support.run_doctest(test_setcomps, verbose) gc.collect() counts[i] = sys.gettotalrefcount() print(counts) if __name__ == "__main__": test_main(verbose=True) |