1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664 9665 9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678 9679 9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802 9803 9804 9805 9806 9807 9808 9809 9810 9811 9812 9813 9814 9815 9816 9817 9818 9819 9820 9821 9822 9823 9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919 9920 9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936 9937 9938 9939 9940 9941 9942 9943 9944 9945 9946 9947 9948 9949 9950 9951 9952 9953 9954 9955 9956 9957 9958 9959 9960 9961 9962 9963 9964 9965 9966 9967 9968 9969 9970 9971 9972 9973 9974 9975 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 9987 9988 9989 9990 9991 9992 9993 9994 9995 9996 9997 9998 9999 10000 10001 10002 10003 10004 10005 10006 10007 10008 10009 10010 10011 10012 10013 10014 10015 10016 10017 10018 10019 10020 10021 10022 10023 10024 10025 10026 10027 10028 10029 10030 10031 10032 10033 10034 10035 10036 10037 10038 10039 10040 10041 10042 10043 10044 10045 10046 10047 10048 10049 10050 10051 10052 10053 10054 10055 10056 10057 10058 10059 10060 10061 10062 10063 10064 10065 10066 10067 10068 10069 10070 10071 10072 10073 10074 10075 10076 10077 10078 10079 10080 10081 10082 10083 10084 10085 10086 10087 10088 10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100 10101 10102 10103 10104 10105 10106 10107 10108 10109 10110 10111 10112 10113 10114 10115 10116 10117 10118 10119 10120 10121 10122 10123 10124 10125 10126 10127 10128 10129 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143 10144 10145 10146 10147 10148 10149 10150 10151 10152 10153 10154 10155 10156 10157 10158 10159 10160 10161 10162 10163 10164 10165 10166 10167 10168 10169 10170 10171 10172 10173 10174 10175 10176 10177 10178 10179 10180 10181 10182 10183 10184 10185 10186 10187 10188 10189 10190 10191 10192 10193 10194 10195 10196 10197 10198 10199 10200 10201 10202 10203 10204 10205 10206 10207 10208 10209 10210 10211 10212 10213 10214 10215 10216 10217 10218 10219 10220 10221 10222 10223 10224 10225 10226 10227 10228 10229 10230 10231 10232 10233 10234 10235 10236 10237 10238 10239 10240 10241 10242 10243 10244 10245 10246 10247 10248 10249 10250 10251 10252 10253 10254 10255 10256 10257 10258 10259 10260 10261 10262 10263 10264 10265 10266 10267 10268 10269 10270 10271 10272 10273 10274 10275 10276 10277 10278 10279 10280 10281 10282 10283 10284 10285 10286 10287 10288 10289 10290 10291 10292 10293 10294 10295 10296 10297 10298 10299 10300 10301 10302 10303 10304 10305 10306 10307 10308 10309 10310 10311 10312 10313 10314 10315 10316 10317 10318 10319 10320 10321 10322 10323 10324 10325 10326 10327 10328 10329 10330 10331 10332 10333 10334 10335 10336 10337 10338 10339 10340 10341 10342 10343 10344 10345 10346 10347 10348 10349 10350 10351 10352 10353 10354 10355 10356 10357 10358 10359 10360 10361 10362 10363 10364 10365 10366 10367 10368 10369 10370 10371 10372 10373 10374 10375 10376 10377 10378 10379 10380 10381 10382 10383 10384 10385 10386 10387 10388 10389 10390 10391 10392 10393 10394 10395 10396 10397 10398 10399 10400 10401 10402 10403 10404 10405 10406 10407 10408 10409 10410 10411 10412 10413 10414 10415 10416 10417 10418 10419 10420 10421 10422 10423 10424 10425 10426 10427 10428 10429 10430 10431 10432 10433 10434 10435 10436 10437 10438 10439 10440 10441 10442 10443 10444 10445 10446 10447 10448 10449 10450 10451 10452 10453 10454 10455 10456 10457 10458 10459 10460 10461 10462 10463 10464 10465 10466 10467 10468 10469 10470 10471 10472 10473 10474 10475 10476 10477 10478 10479 10480 10481 10482 10483 10484 10485 10486 10487 10488 10489 10490 10491 10492 10493 10494 10495 10496 10497 10498 10499 10500 10501 10502 10503 10504 10505 10506 10507 10508 10509 10510 10511 10512 10513 10514 10515 10516 10517 10518 10519 10520 10521 10522 10523 10524 10525 10526 10527 10528 10529 10530 10531 10532 10533 10534 10535 10536 10537 10538 10539 10540 10541 10542 10543 10544 10545 10546 10547 10548 10549 10550 10551 10552 10553 10554 10555 10556 10557 10558 10559 10560 10561 10562 10563 10564 10565 10566 10567 10568 10569 10570 10571 10572 10573 10574 10575 10576 10577 10578 10579 10580 10581 10582 10583 10584 10585 10586 10587 10588 10589 10590 10591 10592 10593 10594 10595 10596 10597 10598 10599 10600 10601 10602 10603 10604 10605 10606 10607 10608 10609 10610 10611 10612 10613 10614 10615 10616 10617 10618 10619 10620 10621 10622 10623 10624 10625 10626 10627 10628 10629 10630 10631 10632 10633 10634 10635 10636 10637 10638 10639 10640 10641 10642 10643 10644 10645 10646 10647 10648 10649 10650 10651 10652 10653 10654 10655 10656 10657 10658 10659 10660 10661 10662 10663 10664 10665 10666 10667 10668 10669 10670 10671 10672 10673 10674 10675 10676 10677 10678 10679 10680 10681 10682 10683 10684 10685 10686 10687 10688 10689 10690 10691 10692 10693 10694 10695 10696 10697 10698 10699 10700 10701 10702 10703 10704 10705 10706 10707 10708 10709 10710 10711 10712 10713 10714 10715 10716 10717 10718 10719 10720 10721 10722 10723 10724 10725 10726 10727 10728 10729 10730 10731 10732 10733 10734 10735 10736 10737 10738 10739 10740 10741 10742 10743 10744 10745 10746 10747 10748 10749 10750 10751 10752 10753 10754 10755 10756 10757 10758 10759 10760 10761 10762 10763 10764 10765 10766 10767 10768 10769 10770 10771 10772 10773 10774 10775 10776 10777 10778 10779 10780 10781 10782 10783 10784 10785 10786 10787 10788 10789 10790 10791 10792 10793 10794 10795 10796 10797 10798 10799 10800 10801 10802 10803 10804 10805 10806 10807 10808 10809 10810 10811 10812 10813 10814 10815 10816 10817 10818 10819 10820 10821 10822 10823 10824 10825 10826 10827 10828 10829 10830 10831 10832 10833 10834 10835 10836 10837 10838 10839 10840 10841 10842 10843 10844 10845 10846 10847 10848 10849 10850 10851 10852 10853 10854 10855 10856 10857 10858 10859 10860 10861 10862 10863 10864 10865 10866 10867 10868 10869 10870 10871 10872 10873 10874 10875 10876 10877 10878 10879 10880 10881 10882 10883 10884 10885 10886 10887 10888 10889 10890 10891 10892 10893 10894 10895 10896 10897 10898 10899 10900 10901 10902 10903 10904 10905 10906 10907 10908 10909 10910 10911 10912 10913 10914 10915 10916 10917 10918 10919 10920 10921 10922 10923 10924 10925 10926 10927 10928 10929 10930 10931 10932 10933 10934 10935 10936 10937 10938 10939 10940 10941 10942 10943 10944 10945 10946 10947 10948 10949 10950 10951 10952 10953 10954 10955 10956 10957 10958 10959 10960 10961 10962 10963 10964 10965 10966 10967 10968 10969 10970 10971 10972 10973 10974 10975 10976 10977 10978 10979 10980 10981 10982 10983 10984 10985 10986 10987 10988 10989 10990 10991 10992 10993 10994 10995 10996 10997 10998 10999 11000 11001 11002 11003 11004 11005 11006 11007 11008 11009 11010 11011 11012 11013 11014 11015 11016 11017 11018 11019 11020 11021 11022 11023 11024 11025 11026 11027 11028 11029 11030 11031 11032 11033 11034 11035 11036 11037 11038 11039 11040 11041 11042 11043 11044 11045 11046 11047 11048 11049 11050 11051 11052 11053 11054 11055 11056 11057 11058 11059 11060 11061 11062 11063 11064 11065 11066 11067 11068 11069 11070 11071 11072 11073 11074 11075 11076 11077 11078 11079 11080 11081 11082 11083 11084 11085 11086 11087 11088 11089 11090 11091 11092 11093 11094 11095 11096 11097 11098 11099 11100 11101 11102 11103 11104 11105 11106 11107 11108 11109 11110 11111 11112 11113 11114 11115 11116 11117 11118 11119 11120 11121 11122 11123 11124 11125 11126 11127 11128 11129 11130 11131 11132 11133 11134 11135 11136 11137 11138 11139 11140 11141 11142 11143 11144 11145 11146 11147 11148 11149 11150 11151 11152 11153 11154 11155 11156 11157 11158 11159 11160 11161 11162 11163 11164 11165 11166 11167 11168 11169 11170 11171 11172 11173 11174 11175 11176 11177 11178 11179 11180 11181 11182 11183 11184 11185 11186 11187 11188 11189 11190 11191 11192 11193 11194 11195 11196 11197 11198 11199 11200 11201 11202 11203 11204 11205 11206 11207 11208 11209 11210 11211 11212 11213 11214 11215 11216 11217 11218 11219 11220 11221 11222 11223 11224 11225 11226 11227 11228 11229 11230 11231 11232 11233 11234 11235 11236 11237 11238 11239 11240 11241 11242 11243 11244 11245 11246 11247 11248 11249 11250 11251 11252 11253 11254 11255 11256 11257 11258 11259 11260 11261 11262 11263 11264 11265 11266 11267 11268 11269 11270 11271 11272 11273 11274 11275 11276 11277 11278 11279 11280 11281 11282 11283 11284 11285 11286 11287 11288 11289 11290 11291 11292 11293 11294 11295 11296 11297 11298 11299 11300 11301 11302 11303 11304 11305 11306 11307 11308 11309 11310 11311 11312 11313 11314 11315 11316 11317 11318 11319 11320 11321 11322 11323 11324 11325 11326 11327 11328 11329 11330 11331 11332 11333 11334 11335 11336 11337 11338 11339 11340 11341 11342 11343 11344 11345 11346 11347 11348 11349 11350 11351 11352 11353 11354 11355 11356 11357 11358 11359 11360 11361 11362 11363 11364 11365 11366 11367 11368 11369 11370 11371 11372 11373 11374 11375 11376 11377 11378 11379 11380 11381 11382 11383 11384 11385 11386 11387 11388 11389 11390 11391 11392 11393 11394 11395 11396 11397 11398 11399 11400 11401 11402 11403 11404 11405 11406 11407 11408 11409 11410 11411 11412 11413 11414 11415 11416 11417 11418 11419 11420 11421 11422 11423 11424 11425 11426 11427 11428 11429 11430 11431 11432 11433 11434 11435 11436 11437 11438 11439 11440 11441 11442 11443 11444 11445 11446 11447 11448 11449 11450 11451 11452 11453 11454 11455 11456 11457 11458 11459 11460 11461 11462 11463 11464 11465 11466 11467 11468 11469 11470 11471 11472 11473 11474 11475 11476 11477 11478 11479 11480 11481 11482 11483 11484 11485 11486 11487 11488 11489 11490 11491 11492 11493 11494 11495 11496 11497 11498 11499 11500 11501 11502 11503 11504 11505 11506 11507 11508 11509 11510 11511 11512 11513 11514 11515 11516 11517 11518 11519 11520 11521 11522 11523 11524 11525 11526 11527 11528 11529 11530 11531 11532 11533 11534 11535 11536 11537 11538 11539 11540 11541 11542 11543 11544 11545 11546 11547 11548 11549 11550 11551 11552 11553 11554 11555 11556 11557 11558 11559 11560 11561 11562 11563 11564 11565 11566 11567 11568 11569 11570 11571 11572 11573 11574 11575 11576 11577 11578 11579 11580 11581 11582 11583 11584 11585 11586 11587 11588 11589 11590 11591 11592 11593 11594 11595 11596 11597 11598 11599 11600 11601 11602 11603 11604 11605 11606 11607 11608 11609 11610 11611 11612 11613 11614 11615 11616 11617 11618 11619 11620 11621 11622 11623 11624 11625 11626 11627 11628 11629 11630 11631 11632 11633 11634 11635 11636 11637 11638 11639 11640 11641 11642 11643 11644 11645 11646 11647 11648 11649 11650 11651 11652 11653 11654 11655 11656 11657 11658 11659 11660 11661 11662 11663 11664 11665 11666 11667 11668 11669 11670 11671 11672 11673 11674 11675 11676 11677 11678 11679 11680 11681 11682 11683 11684 11685 11686 11687 11688 11689 11690 11691 11692 11693 11694 11695 11696 11697 11698 11699 11700 11701 11702 11703 11704 11705 11706 11707 11708 11709 11710 11711 11712 11713 11714 11715 11716 11717 11718 11719 11720 11721 11722 11723 11724 11725 11726 11727 11728 11729 11730 11731 11732 11733 11734 11735 11736 11737 11738 11739 11740 11741 11742 11743 11744 11745 11746 11747 11748 11749 11750 11751 11752 11753 11754 11755 11756 11757 11758 11759 11760 11761 11762 11763 11764 11765 11766 11767 11768 11769 11770 11771 11772 11773 11774 11775 11776 11777 11778 11779 11780 11781 11782 11783 11784 11785 11786 11787 11788 11789 11790 11791 11792 11793 11794 11795 11796 11797 11798 11799 11800 11801 11802 11803 11804 11805 11806 11807 11808 11809 11810 11811 11812 11813 11814 11815 11816 11817 11818 11819 11820 11821 11822 11823 11824 11825 11826 11827 11828 11829 11830 11831 11832 11833 11834 11835 11836 11837 11838 11839 11840 11841 11842 11843 11844 11845 11846 11847 11848 11849 11850 11851 11852 11853 11854 11855 11856 11857 11858 11859 11860 11861 11862 11863 11864 11865 11866 11867 11868 11869 11870 11871 11872 11873 11874 11875 11876 11877 11878 11879 11880 11881 11882 11883 11884 11885 11886 11887 11888 11889 11890 11891 11892 11893 11894 11895 11896 11897 11898 11899 11900 11901 11902 11903 11904 11905 11906 11907 11908 11909 11910 11911 11912 11913 11914 11915 11916 11917 11918 11919 11920 11921 11922 11923 11924 11925 11926 11927 11928 11929 11930 11931 11932 11933 11934 11935 11936 11937 11938 11939 11940 11941 11942 11943 11944 11945 11946 11947 11948 11949 11950 11951 11952 11953 11954 11955 11956 11957 11958 11959 11960 11961 11962 11963 11964 11965 11966 11967 11968 11969 11970 11971 11972 11973 11974 11975 11976 11977 11978 11979 11980 11981 11982 11983 11984 11985 11986 11987 11988 11989 11990 11991 11992 11993 11994 11995 11996 11997 11998 11999 12000 12001 12002 12003 12004 12005 12006 12007 12008 12009 12010 12011 12012 12013 12014 12015 12016 12017 12018 12019 12020 12021 12022 12023 12024 12025 12026 12027 12028 12029 12030 12031 12032 12033 12034 12035 12036 12037 12038 12039 12040 12041 12042 12043 12044 12045 12046 12047 12048 12049 12050 12051 12052 12053 12054 12055 12056 12057 12058 12059 12060 12061 12062 12063 12064 12065 12066 12067 12068 12069 12070 12071 12072 12073 12074 12075 12076 12077 12078 12079 12080 12081 12082 12083 12084 12085 12086 12087 12088 12089 12090 12091 12092 12093 12094 12095 12096 12097 12098 12099 12100 12101 12102 12103 12104 12105 12106 12107 12108 12109 12110 12111 12112 12113 12114 12115 12116 12117 12118 12119 12120 12121 12122 12123 12124 12125 12126 12127 12128 12129 12130 12131 12132 12133 12134 12135 12136 12137 12138 12139 12140 12141 12142 12143 12144 12145 12146 12147 12148 12149 12150 12151 12152 12153 12154 12155 12156 12157 12158 12159 12160 12161 12162 12163 12164 12165 12166 12167 12168 12169 12170 12171 12172 12173 12174 12175 12176 12177 12178 12179 12180 12181 12182 12183 12184 12185 12186 12187 12188 12189 12190 12191 12192 12193 12194 12195 12196 12197 12198 12199 12200 12201 12202 12203 12204 12205 12206 12207 12208 12209 12210 12211 12212 12213 12214 12215 12216 12217 12218 12219 12220 12221 12222 12223 12224 12225 12226 12227 12228 12229 12230 12231 12232 12233 12234 12235 12236 12237 12238 12239 12240 12241 12242 12243 12244 12245 12246 12247 12248 12249 12250 12251 12252 12253 12254 12255 12256 12257 12258 12259 12260 12261 12262 12263 12264 12265 12266 12267 12268 12269 12270 12271 12272 12273 12274 12275 12276 12277 12278 12279 12280 12281 12282 12283 12284 12285 12286 12287 12288 12289 12290 12291 12292 12293 12294 12295 12296 12297 12298 12299 12300 12301 12302 12303 12304 12305 12306 12307 12308 12309 12310 12311 12312 12313 12314 12315 12316 12317 12318 12319 12320 12321 12322 12323 12324 12325 12326 12327 12328 12329 12330 12331 12332 12333 12334 12335 12336 12337 12338 12339 12340 12341 12342 12343 12344 12345 12346 12347 12348 12349 12350 12351 12352 12353 12354 12355 12356 12357 12358 12359 12360 12361 12362 12363 12364 12365 12366 12367 12368 12369 12370 12371 12372 12373 12374 12375 12376 12377 12378 12379 12380 12381 12382 12383 12384 12385 12386 12387 12388 12389 12390 12391 12392 12393 12394 12395 12396 12397 12398 12399 12400 12401 12402 12403 12404 12405 12406 12407 12408 12409 12410 12411 12412 12413 12414 12415 12416 12417 12418 12419 12420 12421 12422 12423 12424 12425 12426 12427 12428 12429 12430 12431 12432 12433 12434 12435 12436 12437 12438 12439 12440 12441 12442 12443 12444 12445 12446 12447 12448 12449 12450 12451 12452 12453 12454 12455 12456 12457 12458 12459 12460 12461 12462 12463 12464 12465 12466 12467 12468 12469 12470 12471 12472 12473 12474 12475 12476 12477 12478 12479 12480 12481 12482 12483 12484 12485 12486 12487 12488 12489 12490 12491 12492 12493 12494 12495 12496 12497 12498 12499 12500 12501 12502 12503 12504 12505 12506 12507 12508 12509 12510 12511 12512 12513 12514 12515 12516 12517 12518 12519 12520 12521 12522 12523 12524 12525 12526 12527 12528 12529 12530 12531 12532 12533 12534 12535 12536 12537 12538 12539 12540 12541 12542 12543 12544 12545 12546 12547 12548 12549 12550 12551 12552 12553 12554 12555 12556 12557 12558 12559 12560 12561 12562 12563 12564 12565 12566 12567 12568 12569 12570 12571 12572 12573 12574 12575 12576 12577 12578 12579 12580 12581 12582 12583 12584 12585 12586 12587 12588 12589 12590 12591 12592 12593 12594 12595 12596 12597 12598 12599 12600 12601 12602 12603 12604 12605 12606 12607 12608 12609 12610 12611 12612 12613 12614 12615 12616 12617 12618 12619 12620 12621 12622 12623 12624 12625 12626 12627 12628 12629 12630 12631 12632 12633 12634 12635 12636 12637 12638 12639 12640 12641 12642 12643 12644 12645 12646 12647 12648 12649 12650 12651 12652 12653 12654 12655 12656 12657 12658 12659 12660 12661 12662 12663 12664 12665 12666 12667 12668 12669 12670 12671 12672 12673 12674 12675 12676 12677 12678 12679 12680 12681 12682 12683 12684 12685 12686 12687 12688 12689 12690 12691 12692 12693 12694 12695 12696 12697 12698 12699 12700 12701 12702 12703 12704 12705 12706 12707 12708 12709 12710 12711 12712 12713 12714 12715 12716 12717 12718 12719 12720 12721 12722 12723 12724 12725 12726 12727 12728 12729 12730 12731 12732 12733 12734 12735 12736 12737 12738 12739 12740 12741 12742 12743 12744 12745 12746 12747 12748 12749 12750 12751 12752 12753 12754 12755 12756 12757 12758 12759 12760 12761 12762 12763 12764 12765 12766 12767 12768 12769 12770 12771 12772 12773 12774 12775 12776 12777 12778 12779 12780 12781 12782 12783 12784 12785 12786 12787 12788 12789 12790 12791 12792 12793 12794 12795 12796 12797 12798 12799 12800 12801 12802 12803 12804 12805 12806 12807 12808 12809 12810 12811 12812 12813 12814 12815 12816 12817 12818 12819 12820 12821 12822 12823 12824 12825 12826 12827 12828 12829 12830 12831 12832 12833 12834 12835 12836 12837 12838 12839 12840 12841 12842 12843 12844 12845 12846 12847 12848 12849 12850 12851 12852 12853 12854 12855 12856 12857 12858 12859 12860 12861 12862 12863 12864 12865 12866 12867 12868 12869 12870 12871 12872 12873 12874 12875 12876 12877 12878 12879 12880 12881 12882 12883 12884 12885 12886 12887 12888 12889 12890 12891 12892 12893 12894 12895 12896 12897 12898 12899 12900 12901 12902 12903 12904 12905 12906 12907 12908 12909 12910 12911 12912 12913 12914 12915 12916 12917 12918 12919 12920 12921 12922 12923 12924 12925 12926 12927 12928 12929 12930 12931 12932 12933 12934 12935 12936 12937 12938 12939 12940 12941 12942 12943 12944 12945 12946 12947 12948 12949 12950 12951 12952 12953 12954 12955 12956 12957 12958 12959 12960 12961 12962 12963 12964 12965 12966 12967 12968 12969 12970 12971 12972 12973 12974 12975 12976 12977 12978 12979 12980 12981 12982 12983 12984 12985 12986 12987 12988 12989 12990 12991 12992 12993 12994 12995 12996 12997 12998 12999 13000 13001 13002 13003 13004 13005 13006 13007 13008 13009 13010 13011 13012 13013 13014 13015 13016 13017 13018 13019 13020 13021 13022 13023 13024 13025 13026 13027 13028 13029 13030 13031 13032 13033 13034 13035 13036 13037 13038 13039 13040 13041 13042 13043 13044 13045 13046 13047 13048 13049 13050 13051 13052 13053 13054 13055 13056 13057 13058 13059 13060 13061 13062 13063 13064 13065 13066 13067 13068 13069 13070 13071 13072 13073 13074 13075 13076 13077 13078 13079 13080 13081 13082 13083 13084 13085 13086 13087 13088 13089 13090 13091 13092 13093 13094 13095 13096 13097 13098 13099 13100 13101 13102 13103 13104 13105 13106 13107 13108 13109 13110 13111 13112 13113 13114 13115 13116 13117 13118 13119 13120 13121 13122 13123 13124 13125 13126 13127 13128 13129 13130 13131 13132 13133 13134 13135 13136 13137 13138 13139 13140 13141 13142 13143 13144 13145 13146 13147 13148 13149 13150 13151 13152 13153 13154 13155 13156 13157 13158 13159 13160 13161 13162 13163 13164 13165 13166 13167 13168 13169 13170 13171 13172 13173 13174 13175 13176 13177 13178 13179 13180 13181 13182 13183 13184 13185 13186 13187 13188 13189 13190 13191 13192 13193 13194 13195 13196 13197 13198 13199 13200 13201 13202 13203 13204 13205 13206 13207 13208 13209 13210 13211 13212 13213 13214 13215 13216 13217 13218 13219 13220 13221 13222 13223 13224 13225 13226 13227 13228 13229 13230 13231 13232 13233 13234 13235 13236 13237 13238 13239 13240 13241 13242 13243 13244 13245 13246 13247 13248 13249 13250 13251 13252 13253 13254 13255 13256 13257 13258 13259 13260 13261 13262 13263 13264 13265 13266 13267 13268 13269 13270 13271 13272 13273 13274 13275 13276 13277 13278 13279 13280 13281 13282 13283 13284 13285 13286 13287 13288 13289 13290 13291 13292 13293 13294 13295 13296 13297 13298 13299 13300 13301 13302 13303 13304 13305 13306 13307 13308 13309 13310 13311 13312 13313 13314 13315 13316 13317 | Lib/pydoc_data/topics.py
# -*- coding: utf-8 -*- # Autogenerated by Sphinx on Sat Nov 21 13:35:13 2015 topics = {'assert': '\n' 'The "assert" statement\n' '**********************\n' '\n' 'Assert statements are a convenient way to insert debugging ' 'assertions\n' 'into a program:\n' '\n' ' assert_stmt ::= "assert" expression ["," expression]\n' '\n' 'The simple form, "assert expression", is equivalent to\n' '\n' ' if __debug__:\n' ' if not expression: raise AssertionError\n' '\n' 'The extended form, "assert expression1, expression2", is ' 'equivalent to\n' '\n' ' if __debug__:\n' ' if not expression1: raise AssertionError(expression2)\n' '\n' 'These equivalences assume that "__debug__" and "AssertionError" ' 'refer\n' 'to the built-in variables with those names. In the current\n' 'implementation, the built-in variable "__debug__" is "True" ' 'under\n' 'normal circumstances, "False" when optimization is requested ' '(command\n' 'line option -O). The current code generator emits no code for ' 'an\n' 'assert statement when optimization is requested at compile ' 'time. Note\n' 'that it is unnecessary to include the source code for the ' 'expression\n' 'that failed in the error message; it will be displayed as part ' 'of the\n' 'stack trace.\n' '\n' 'Assignments to "__debug__" are illegal. The value for the ' 'built-in\n' 'variable is determined when the interpreter starts.\n', 'assignment': '\n' 'Assignment statements\n' '*********************\n' '\n' 'Assignment statements are used to (re)bind names to values ' 'and to\n' 'modify attributes or items of mutable objects:\n' '\n' ' assignment_stmt ::= (target_list "=")+ (expression_list | ' 'yield_expression)\n' ' target_list ::= target ("," target)* [","]\n' ' target ::= identifier\n' ' | "(" target_list ")"\n' ' | "[" target_list "]"\n' ' | attributeref\n' ' | subscription\n' ' | slicing\n' '\n' '(See section Primaries for the syntax definitions for the ' 'last three\n' 'symbols.)\n' '\n' 'An assignment statement evaluates the expression list ' '(remember that\n' 'this can be a single expression or a comma-separated list, ' 'the latter\n' 'yielding a tuple) and assigns the single resulting object to ' 'each of\n' 'the target lists, from left to right.\n' '\n' 'Assignment is defined recursively depending on the form of ' 'the target\n' '(list). When a target is part of a mutable object (an ' 'attribute\n' 'reference, subscription or slicing), the mutable object ' 'must\n' 'ultimately perform the assignment and decide about its ' 'validity, and\n' 'may raise an exception if the assignment is unacceptable. ' 'The rules\n' 'observed by various types and the exceptions raised are ' 'given with the\n' 'definition of the object types (see section The standard ' 'type\n' 'hierarchy).\n' '\n' 'Assignment of an object to a target list is recursively ' 'defined as\n' 'follows.\n' '\n' '* If the target list is a single target: The object is ' 'assigned to\n' ' that target.\n' '\n' '* If the target list is a comma-separated list of targets: ' 'The\n' ' object must be an iterable with the same number of items ' 'as there\n' ' are targets in the target list, and the items are ' 'assigned, from\n' ' left to right, to the corresponding targets.\n' '\n' 'Assignment of an object to a single target is recursively ' 'defined as\n' 'follows.\n' '\n' '* If the target is an identifier (name):\n' '\n' ' * If the name does not occur in a "global" statement in ' 'the\n' ' current code block: the name is bound to the object in ' 'the current\n' ' local namespace.\n' '\n' ' * Otherwise: the name is bound to the object in the ' 'current global\n' ' namespace.\n' '\n' ' The name is rebound if it was already bound. This may ' 'cause the\n' ' reference count for the object previously bound to the ' 'name to reach\n' ' zero, causing the object to be deallocated and its ' 'destructor (if it\n' ' has one) to be called.\n' '\n' '* If the target is a target list enclosed in parentheses or ' 'in\n' ' square brackets: The object must be an iterable with the ' 'same number\n' ' of items as there are targets in the target list, and its ' 'items are\n' ' assigned, from left to right, to the corresponding ' 'targets.\n' '\n' '* If the target is an attribute reference: The primary ' 'expression in\n' ' the reference is evaluated. It should yield an object ' 'with\n' ' assignable attributes; if this is not the case, ' '"TypeError" is\n' ' raised. That object is then asked to assign the assigned ' 'object to\n' ' the given attribute; if it cannot perform the assignment, ' 'it raises\n' ' an exception (usually but not necessarily ' '"AttributeError").\n' '\n' ' Note: If the object is a class instance and the attribute ' 'reference\n' ' occurs on both sides of the assignment operator, the RHS ' 'expression,\n' ' "a.x" can access either an instance attribute or (if no ' 'instance\n' ' attribute exists) a class attribute. The LHS target "a.x" ' 'is always\n' ' set as an instance attribute, creating it if necessary. ' 'Thus, the\n' ' two occurrences of "a.x" do not necessarily refer to the ' 'same\n' ' attribute: if the RHS expression refers to a class ' 'attribute, the\n' ' LHS creates a new instance attribute as the target of the\n' ' assignment:\n' '\n' ' class Cls:\n' ' x = 3 # class variable\n' ' inst = Cls()\n' ' inst.x = inst.x + 1 # writes inst.x as 4 leaving ' 'Cls.x as 3\n' '\n' ' This description does not necessarily apply to descriptor\n' ' attributes, such as properties created with "property()".\n' '\n' '* If the target is a subscription: The primary expression in ' 'the\n' ' reference is evaluated. It should yield either a mutable ' 'sequence\n' ' object (such as a list) or a mapping object (such as a ' 'dictionary).\n' ' Next, the subscript expression is evaluated.\n' '\n' ' If the primary is a mutable sequence object (such as a ' 'list), the\n' ' subscript must yield a plain integer. If it is negative, ' 'the\n' " sequence's length is added to it. The resulting value must " 'be a\n' " nonnegative integer less than the sequence's length, and " 'the\n' ' sequence is asked to assign the assigned object to its ' 'item with\n' ' that index. If the index is out of range, "IndexError" is ' 'raised\n' ' (assignment to a subscripted sequence cannot add new items ' 'to a\n' ' list).\n' '\n' ' If the primary is a mapping object (such as a dictionary), ' 'the\n' " subscript must have a type compatible with the mapping's " 'key type,\n' ' and the mapping is then asked to create a key/datum pair ' 'which maps\n' ' the subscript to the assigned object. This can either ' 'replace an\n' ' existing key/value pair with the same key value, or insert ' 'a new\n' ' key/value pair (if no key with the same value existed).\n' '\n' '* If the target is a slicing: The primary expression in the\n' ' reference is evaluated. It should yield a mutable ' 'sequence object\n' ' (such as a list). The assigned object should be a ' 'sequence object\n' ' of the same type. Next, the lower and upper bound ' 'expressions are\n' ' evaluated, insofar they are present; defaults are zero and ' 'the\n' " sequence's length. The bounds should evaluate to (small) " 'integers.\n' " If either bound is negative, the sequence's length is " 'added to it.\n' ' The resulting bounds are clipped to lie between zero and ' 'the\n' " sequence's length, inclusive. Finally, the sequence " 'object is asked\n' ' to replace the slice with the items of the assigned ' 'sequence. The\n' ' length of the slice may be different from the length of ' 'the assigned\n' ' sequence, thus changing the length of the target sequence, ' 'if the\n' ' object allows it.\n' '\n' '**CPython implementation detail:** In the current ' 'implementation, the\n' 'syntax for targets is taken to be the same as for ' 'expressions, and\n' 'invalid syntax is rejected during the code generation phase, ' 'causing\n' 'less detailed error messages.\n' '\n' 'WARNING: Although the definition of assignment implies that ' 'overlaps\n' 'between the left-hand side and the right-hand side are ' "'safe' (for\n" 'example "a, b = b, a" swaps two variables), overlaps ' '*within* the\n' 'collection of assigned-to variables are not safe! For ' 'instance, the\n' 'following program prints "[0, 2]":\n' '\n' ' x = [0, 1]\n' ' i = 0\n' ' i, x[i] = 1, 2\n' ' print x\n' '\n' '\n' 'Augmented assignment statements\n' '===============================\n' '\n' 'Augmented assignment is the combination, in a single ' 'statement, of a\n' 'binary operation and an assignment statement:\n' '\n' ' augmented_assignment_stmt ::= augtarget augop ' '(expression_list | yield_expression)\n' ' augtarget ::= identifier | attributeref | ' 'subscription | slicing\n' ' augop ::= "+=" | "-=" | "*=" | "/=" | ' '"//=" | "%=" | "**="\n' ' | ">>=" | "<<=" | "&=" | "^=" | "|="\n' '\n' '(See section Primaries for the syntax definitions for the ' 'last three\n' 'symbols.)\n' '\n' 'An augmented assignment evaluates the target (which, unlike ' 'normal\n' 'assignment statements, cannot be an unpacking) and the ' 'expression\n' 'list, performs the binary operation specific to the type of ' 'assignment\n' 'on the two operands, and assigns the result to the original ' 'target.\n' 'The target is only evaluated once.\n' '\n' 'An augmented assignment expression like "x += 1" can be ' 'rewritten as\n' '"x = x + 1" to achieve a similar, but not exactly equal ' 'effect. In the\n' 'augmented version, "x" is only evaluated once. Also, when ' 'possible,\n' 'the actual operation is performed *in-place*, meaning that ' 'rather than\n' 'creating a new object and assigning that to the target, the ' 'old object\n' 'is modified instead.\n' '\n' 'With the exception of assigning to tuples and multiple ' 'targets in a\n' 'single statement, the assignment done by augmented ' 'assignment\n' 'statements is handled the same way as normal assignments. ' 'Similarly,\n' 'with the exception of the possible *in-place* behavior, the ' 'binary\n' 'operation performed by augmented assignment is the same as ' 'the normal\n' 'binary operations.\n' '\n' 'For targets which are attribute references, the same caveat ' 'about\n' 'class and instance attributes applies as for regular ' 'assignments.\n', 'atom-identifiers': '\n' 'Identifiers (Names)\n' '*******************\n' '\n' 'An identifier occurring as an atom is a name. See ' 'section Identifiers\n' 'and keywords for lexical definition and section Naming ' 'and binding for\n' 'documentation of naming and binding.\n' '\n' 'When the name is bound to an object, evaluation of the ' 'atom yields\n' 'that object. When a name is not bound, an attempt to ' 'evaluate it\n' 'raises a "NameError" exception.\n' '\n' '**Private name mangling:** When an identifier that ' 'textually occurs in\n' 'a class definition begins with two or more underscore ' 'characters and\n' 'does not end in two or more underscores, it is ' 'considered a *private\n' 'name* of that class. Private names are transformed to ' 'a longer form\n' 'before code is generated for them. The transformation ' 'inserts the\n' 'class name, with leading underscores removed and a ' 'single underscore\n' 'inserted, in front of the name. For example, the ' 'identifier "__spam"\n' 'occurring in a class named "Ham" will be transformed ' 'to "_Ham__spam".\n' 'This transformation is independent of the syntactical ' 'context in which\n' 'the identifier is used. If the transformed name is ' 'extremely long\n' '(longer than 255 characters), implementation defined ' 'truncation may\n' 'happen. If the class name consists only of ' 'underscores, no\n' 'transformation is done.\n', 'atom-literals': '\n' 'Literals\n' '********\n' '\n' 'Python supports string literals and various numeric ' 'literals:\n' '\n' ' literal ::= stringliteral | integer | longinteger\n' ' | floatnumber | imagnumber\n' '\n' 'Evaluation of a literal yields an object of the given ' 'type (string,\n' 'integer, long integer, floating point number, complex ' 'number) with the\n' 'given value. The value may be approximated in the case ' 'of floating\n' 'point and imaginary (complex) literals. See section ' 'Literals for\n' 'details.\n' '\n' 'All literals correspond to immutable data types, and ' 'hence the\n' "object's identity is less important than its value. " 'Multiple\n' 'evaluations of literals with the same value (either the ' 'same\n' 'occurrence in the program text or a different occurrence) ' 'may obtain\n' 'the same object or a different object with the same ' 'value.\n', 'attribute-access': '\n' 'Customizing attribute access\n' '****************************\n' '\n' 'The following methods can be defined to customize the ' 'meaning of\n' 'attribute access (use of, assignment to, or deletion ' 'of "x.name") for\n' 'class instances.\n' '\n' 'object.__getattr__(self, name)\n' '\n' ' Called when an attribute lookup has not found the ' 'attribute in the\n' ' usual places (i.e. it is not an instance attribute ' 'nor is it found\n' ' in the class tree for "self"). "name" is the ' 'attribute name. This\n' ' method should return the (computed) attribute value ' 'or raise an\n' ' "AttributeError" exception.\n' '\n' ' Note that if the attribute is found through the ' 'normal mechanism,\n' ' "__getattr__()" is not called. (This is an ' 'intentional asymmetry\n' ' between "__getattr__()" and "__setattr__()".) This ' 'is done both for\n' ' efficiency reasons and because otherwise ' '"__getattr__()" would have\n' ' no way to access other attributes of the instance. ' 'Note that at\n' ' least for instance variables, you can fake total ' 'control by not\n' ' inserting any values in the instance attribute ' 'dictionary (but\n' ' instead inserting them in another object). See ' 'the\n' ' "__getattribute__()" method below for a way to ' 'actually get total\n' ' control in new-style classes.\n' '\n' 'object.__setattr__(self, name, value)\n' '\n' ' Called when an attribute assignment is attempted. ' 'This is called\n' ' instead of the normal mechanism (i.e. store the ' 'value in the\n' ' instance dictionary). *name* is the attribute ' 'name, *value* is the\n' ' value to be assigned to it.\n' '\n' ' If "__setattr__()" wants to assign to an instance ' 'attribute, it\n' ' should not simply execute "self.name = value" --- ' 'this would cause\n' ' a recursive call to itself. Instead, it should ' 'insert the value in\n' ' the dictionary of instance attributes, e.g., ' '"self.__dict__[name] =\n' ' value". For new-style classes, rather than ' 'accessing the instance\n' ' dictionary, it should call the base class method ' 'with the same\n' ' name, for example, "object.__setattr__(self, name, ' 'value)".\n' '\n' 'object.__delattr__(self, name)\n' '\n' ' Like "__setattr__()" but for attribute deletion ' 'instead of\n' ' assignment. This should only be implemented if ' '"del obj.name" is\n' ' meaningful for the object.\n' '\n' '\n' 'More attribute access for new-style classes\n' '===========================================\n' '\n' 'The following methods only apply to new-style ' 'classes.\n' '\n' 'object.__getattribute__(self, name)\n' '\n' ' Called unconditionally to implement attribute ' 'accesses for\n' ' instances of the class. If the class also defines ' '"__getattr__()",\n' ' the latter will not be called unless ' '"__getattribute__()" either\n' ' calls it explicitly or raises an "AttributeError". ' 'This method\n' ' should return the (computed) attribute value or ' 'raise an\n' ' "AttributeError" exception. In order to avoid ' 'infinite recursion in\n' ' this method, its implementation should always call ' 'the base class\n' ' method with the same name to access any attributes ' 'it needs, for\n' ' example, "object.__getattribute__(self, name)".\n' '\n' ' Note: This method may still be bypassed when ' 'looking up special\n' ' methods as the result of implicit invocation via ' 'language syntax\n' ' or built-in functions. See Special method lookup ' 'for new-style\n' ' classes.\n' '\n' '\n' 'Implementing Descriptors\n' '========================\n' '\n' 'The following methods only apply when an instance of ' 'the class\n' 'containing the method (a so-called *descriptor* class) ' 'appears in an\n' '*owner* class (the descriptor must be in either the ' "owner's class\n" 'dictionary or in the class dictionary for one of its ' 'parents). In the\n' 'examples below, "the attribute" refers to the ' 'attribute whose name is\n' "the key of the property in the owner class' " '"__dict__".\n' '\n' 'object.__get__(self, instance, owner)\n' '\n' ' Called to get the attribute of the owner class ' '(class attribute\n' ' access) or of an instance of that class (instance ' 'attribute\n' ' access). *owner* is always the owner class, while ' '*instance* is the\n' ' instance that the attribute was accessed through, ' 'or "None" when\n' ' the attribute is accessed through the *owner*. ' 'This method should\n' ' return the (computed) attribute value or raise an ' '"AttributeError"\n' ' exception.\n' '\n' 'object.__set__(self, instance, value)\n' '\n' ' Called to set the attribute on an instance ' '*instance* of the owner\n' ' class to a new value, *value*.\n' '\n' 'object.__delete__(self, instance)\n' '\n' ' Called to delete the attribute on an instance ' '*instance* of the\n' ' owner class.\n' '\n' '\n' 'Invoking Descriptors\n' '====================\n' '\n' 'In general, a descriptor is an object attribute with ' '"binding\n' 'behavior", one whose attribute access has been ' 'overridden by methods\n' 'in the descriptor protocol: "__get__()", "__set__()", ' 'and\n' '"__delete__()". If any of those methods are defined ' 'for an object, it\n' 'is said to be a descriptor.\n' '\n' 'The default behavior for attribute access is to get, ' 'set, or delete\n' "the attribute from an object's dictionary. For " 'instance, "a.x" has a\n' 'lookup chain starting with "a.__dict__[\'x\']", then\n' '"type(a).__dict__[\'x\']", and continuing through the ' 'base classes of\n' '"type(a)" excluding metaclasses.\n' '\n' 'However, if the looked-up value is an object defining ' 'one of the\n' 'descriptor methods, then Python may override the ' 'default behavior and\n' 'invoke the descriptor method instead. Where this ' 'occurs in the\n' 'precedence chain depends on which descriptor methods ' 'were defined and\n' 'how they were called. Note that descriptors are only ' 'invoked for new\n' 'style objects or classes (ones that subclass ' '"object()" or "type()").\n' '\n' 'The starting point for descriptor invocation is a ' 'binding, "a.x". How\n' 'the arguments are assembled depends on "a":\n' '\n' 'Direct Call\n' ' The simplest and least common call is when user ' 'code directly\n' ' invokes a descriptor method: "x.__get__(a)".\n' '\n' 'Instance Binding\n' ' If binding to a new-style object instance, "a.x" is ' 'transformed\n' ' into the call: "type(a).__dict__[\'x\'].__get__(a, ' 'type(a))".\n' '\n' 'Class Binding\n' ' If binding to a new-style class, "A.x" is ' 'transformed into the\n' ' call: "A.__dict__[\'x\'].__get__(None, A)".\n' '\n' 'Super Binding\n' ' If "a" is an instance of "super", then the binding ' '"super(B,\n' ' obj).m()" searches "obj.__class__.__mro__" for the ' 'base class "A"\n' ' immediately preceding "B" and then invokes the ' 'descriptor with the\n' ' call: "A.__dict__[\'m\'].__get__(obj, ' 'obj.__class__)".\n' '\n' 'For instance bindings, the precedence of descriptor ' 'invocation depends\n' 'on the which descriptor methods are defined. A ' 'descriptor can define\n' 'any combination of "__get__()", "__set__()" and ' '"__delete__()". If it\n' 'does not define "__get__()", then accessing the ' 'attribute will return\n' 'the descriptor object itself unless there is a value ' "in the object's\n" 'instance dictionary. If the descriptor defines ' '"__set__()" and/or\n' '"__delete__()", it is a data descriptor; if it defines ' 'neither, it is\n' 'a non-data descriptor. Normally, data descriptors ' 'define both\n' '"__get__()" and "__set__()", while non-data ' 'descriptors have just the\n' '"__get__()" method. Data descriptors with "__set__()" ' 'and "__get__()"\n' 'defined always override a redefinition in an instance ' 'dictionary. In\n' 'contrast, non-data descriptors can be overridden by ' 'instances.\n' '\n' 'Python methods (including "staticmethod()" and ' '"classmethod()") are\n' 'implemented as non-data descriptors. Accordingly, ' 'instances can\n' 'redefine and override methods. This allows individual ' 'instances to\n' 'acquire behaviors that differ from other instances of ' 'the same class.\n' '\n' 'The "property()" function is implemented as a data ' 'descriptor.\n' 'Accordingly, instances cannot override the behavior of ' 'a property.\n' '\n' '\n' '__slots__\n' '=========\n' '\n' 'By default, instances of both old and new-style ' 'classes have a\n' 'dictionary for attribute storage. This wastes space ' 'for objects\n' 'having very few instance variables. The space ' 'consumption can become\n' 'acute when creating large numbers of instances.\n' '\n' 'The default can be overridden by defining *__slots__* ' 'in a new-style\n' 'class definition. The *__slots__* declaration takes a ' 'sequence of\n' 'instance variables and reserves just enough space in ' 'each instance to\n' 'hold a value for each variable. Space is saved ' 'because *__dict__* is\n' 'not created for each instance.\n' '\n' '__slots__\n' '\n' ' This class variable can be assigned a string, ' 'iterable, or sequence\n' ' of strings with variable names used by instances. ' 'If defined in a\n' ' new-style class, *__slots__* reserves space for the ' 'declared\n' ' variables and prevents the automatic creation of ' '*__dict__* and\n' ' *__weakref__* for each instance.\n' '\n' ' New in version 2.2.\n' '\n' 'Notes on using *__slots__*\n' '\n' '* When inheriting from a class without *__slots__*, ' 'the *__dict__*\n' ' attribute of that class will always be accessible, ' 'so a *__slots__*\n' ' definition in the subclass is meaningless.\n' '\n' '* Without a *__dict__* variable, instances cannot be ' 'assigned new\n' ' variables not listed in the *__slots__* definition. ' 'Attempts to\n' ' assign to an unlisted variable name raises ' '"AttributeError". If\n' ' dynamic assignment of new variables is desired, then ' 'add\n' ' "\'__dict__\'" to the sequence of strings in the ' '*__slots__*\n' ' declaration.\n' '\n' ' Changed in version 2.3: Previously, adding ' '"\'__dict__\'" to the\n' ' *__slots__* declaration would not enable the ' 'assignment of new\n' ' attributes not specifically listed in the sequence ' 'of instance\n' ' variable names.\n' '\n' '* Without a *__weakref__* variable for each instance, ' 'classes\n' ' defining *__slots__* do not support weak references ' 'to its\n' ' instances. If weak reference support is needed, then ' 'add\n' ' "\'__weakref__\'" to the sequence of strings in the ' '*__slots__*\n' ' declaration.\n' '\n' ' Changed in version 2.3: Previously, adding ' '"\'__weakref__\'" to the\n' ' *__slots__* declaration would not enable support for ' 'weak\n' ' references.\n' '\n' '* *__slots__* are implemented at the class level by ' 'creating\n' ' descriptors (Implementing Descriptors) for each ' 'variable name. As a\n' ' result, class attributes cannot be used to set ' 'default values for\n' ' instance variables defined by *__slots__*; ' 'otherwise, the class\n' ' attribute would overwrite the descriptor ' 'assignment.\n' '\n' '* The action of a *__slots__* declaration is limited ' 'to the class\n' ' where it is defined. As a result, subclasses will ' 'have a *__dict__*\n' ' unless they also define *__slots__* (which must only ' 'contain names\n' ' of any *additional* slots).\n' '\n' '* If a class defines a slot also defined in a base ' 'class, the\n' ' instance variable defined by the base class slot is ' 'inaccessible\n' ' (except by retrieving its descriptor directly from ' 'the base class).\n' ' This renders the meaning of the program undefined. ' 'In the future, a\n' ' check may be added to prevent this.\n' '\n' '* Nonempty *__slots__* does not work for classes ' 'derived from\n' ' "variable-length" built-in types such as "long", ' '"str" and "tuple".\n' '\n' '* Any non-string iterable may be assigned to ' '*__slots__*. Mappings\n' ' may also be used; however, in the future, special ' 'meaning may be\n' ' assigned to the values corresponding to each key.\n' '\n' '* *__class__* assignment works only if both classes ' 'have the same\n' ' *__slots__*.\n' '\n' ' Changed in version 2.6: Previously, *__class__* ' 'assignment raised an\n' ' error if either new or old class had *__slots__*.\n', 'attribute-references': '\n' 'Attribute references\n' '********************\n' '\n' 'An attribute reference is a primary followed by a ' 'period and a name:\n' '\n' ' attributeref ::= primary "." identifier\n' '\n' 'The primary must evaluate to an object of a type ' 'that supports\n' 'attribute references, e.g., a module, list, or an ' 'instance. This\n' 'object is then asked to produce the attribute ' 'whose name is the\n' 'identifier. If this attribute is not available, ' 'the exception\n' '"AttributeError" is raised. Otherwise, the type ' 'and value of the\n' 'object produced is determined by the object. ' 'Multiple evaluations of\n' 'the same attribute reference may yield different ' 'objects.\n', 'augassign': '\n' 'Augmented assignment statements\n' '*******************************\n' '\n' 'Augmented assignment is the combination, in a single ' 'statement, of a\n' 'binary operation and an assignment statement:\n' '\n' ' augmented_assignment_stmt ::= augtarget augop ' '(expression_list | yield_expression)\n' ' augtarget ::= identifier | attributeref | ' 'subscription | slicing\n' ' augop ::= "+=" | "-=" | "*=" | "/=" | ' '"//=" | "%=" | "**="\n' ' | ">>=" | "<<=" | "&=" | "^=" | "|="\n' '\n' '(See section Primaries for the syntax definitions for the ' 'last three\n' 'symbols.)\n' '\n' 'An augmented assignment evaluates the target (which, unlike ' 'normal\n' 'assignment statements, cannot be an unpacking) and the ' 'expression\n' 'list, performs the binary operation specific to the type of ' 'assignment\n' 'on the two operands, and assigns the result to the original ' 'target.\n' 'The target is only evaluated once.\n' '\n' 'An augmented assignment expression like "x += 1" can be ' 'rewritten as\n' '"x = x + 1" to achieve a similar, but not exactly equal ' 'effect. In the\n' 'augmented version, "x" is only evaluated once. Also, when ' 'possible,\n' 'the actual operation is performed *in-place*, meaning that ' 'rather than\n' 'creating a new object and assigning that to the target, the ' 'old object\n' 'is modified instead.\n' '\n' 'With the exception of assigning to tuples and multiple ' 'targets in a\n' 'single statement, the assignment done by augmented ' 'assignment\n' 'statements is handled the same way as normal assignments. ' 'Similarly,\n' 'with the exception of the possible *in-place* behavior, the ' 'binary\n' 'operation performed by augmented assignment is the same as ' 'the normal\n' 'binary operations.\n' '\n' 'For targets which are attribute references, the same caveat ' 'about\n' 'class and instance attributes applies as for regular ' 'assignments.\n', 'binary': '\n' 'Binary arithmetic operations\n' '****************************\n' '\n' 'The binary arithmetic operations have the conventional priority\n' 'levels. Note that some of these operations also apply to ' 'certain non-\n' 'numeric types. Apart from the power operator, there are only ' 'two\n' 'levels, one for multiplicative operators and one for additive\n' 'operators:\n' '\n' ' m_expr ::= u_expr | m_expr "*" u_expr | m_expr "//" u_expr | ' 'm_expr "/" u_expr\n' ' | m_expr "%" u_expr\n' ' a_expr ::= m_expr | a_expr "+" m_expr | a_expr "-" m_expr\n' '\n' 'The "*" (multiplication) operator yields the product of its ' 'arguments.\n' 'The arguments must either both be numbers, or one argument must ' 'be an\n' 'integer (plain or long) and the other must be a sequence. In ' 'the\n' 'former case, the numbers are converted to a common type and ' 'then\n' 'multiplied together. In the latter case, sequence repetition ' 'is\n' 'performed; a negative repetition factor yields an empty ' 'sequence.\n' '\n' 'The "/" (division) and "//" (floor division) operators yield ' 'the\n' 'quotient of their arguments. The numeric arguments are first\n' 'converted to a common type. Plain or long integer division ' 'yields an\n' 'integer of the same type; the result is that of mathematical ' 'division\n' "with the 'floor' function applied to the result. Division by " 'zero\n' 'raises the "ZeroDivisionError" exception.\n' '\n' 'The "%" (modulo) operator yields the remainder from the division ' 'of\n' 'the first argument by the second. The numeric arguments are ' 'first\n' 'converted to a common type. A zero right argument raises the\n' '"ZeroDivisionError" exception. The arguments may be floating ' 'point\n' 'numbers, e.g., "3.14%0.7" equals "0.34" (since "3.14" equals ' '"4*0.7 +\n' '0.34".) The modulo operator always yields a result with the ' 'same sign\n' 'as its second operand (or zero); the absolute value of the ' 'result is\n' 'strictly smaller than the absolute value of the second operand ' '[2].\n' '\n' 'The integer division and modulo operators are connected by the\n' 'following identity: "x == (x/y)*y + (x%y)". Integer division ' 'and\n' 'modulo are also connected with the built-in function ' '"divmod()":\n' '"divmod(x, y) == (x/y, x%y)". These identities don\'t hold for\n' 'floating point numbers; there similar identities hold ' 'approximately\n' 'where "x/y" is replaced by "floor(x/y)" or "floor(x/y) - 1" ' '[3].\n' '\n' 'In addition to performing the modulo operation on numbers, the ' '"%"\n' 'operator is also overloaded by string and unicode objects to ' 'perform\n' 'string formatting (also known as interpolation). The syntax for ' 'string\n' 'formatting is described in the Python Library Reference, ' 'section\n' 'String Formatting Operations.\n' '\n' 'Deprecated since version 2.3: The floor division operator, the ' 'modulo\n' 'operator, and the "divmod()" function are no longer defined for\n' 'complex numbers. Instead, convert to a floating point number ' 'using\n' 'the "abs()" function if appropriate.\n' '\n' 'The "+" (addition) operator yields the sum of its arguments. ' 'The\n' 'arguments must either both be numbers or both sequences of the ' 'same\n' 'type. In the former case, the numbers are converted to a common ' 'type\n' 'and then added together. In the latter case, the sequences are\n' 'concatenated.\n' '\n' 'The "-" (subtraction) operator yields the difference of its ' 'arguments.\n' 'The numeric arguments are first converted to a common type.\n', 'bitwise': '\n' 'Binary bitwise operations\n' '*************************\n' '\n' 'Each of the three bitwise operations has a different priority ' 'level:\n' '\n' ' and_expr ::= shift_expr | and_expr "&" shift_expr\n' ' xor_expr ::= and_expr | xor_expr "^" and_expr\n' ' or_expr ::= xor_expr | or_expr "|" xor_expr\n' '\n' 'The "&" operator yields the bitwise AND of its arguments, which ' 'must\n' 'be plain or long integers. The arguments are converted to a ' 'common\n' 'type.\n' '\n' 'The "^" operator yields the bitwise XOR (exclusive OR) of its\n' 'arguments, which must be plain or long integers. The arguments ' 'are\n' 'converted to a common type.\n' '\n' 'The "|" operator yields the bitwise (inclusive) OR of its ' 'arguments,\n' 'which must be plain or long integers. The arguments are ' 'converted to\n' 'a common type.\n', 'bltin-code-objects': '\n' 'Code Objects\n' '************\n' '\n' 'Code objects are used by the implementation to ' 'represent "pseudo-\n' 'compiled" executable Python code such as a function ' 'body. They differ\n' "from function objects because they don't contain a " 'reference to their\n' 'global execution environment. Code objects are ' 'returned by the built-\n' 'in "compile()" function and can be extracted from ' 'function objects\n' 'through their "func_code" attribute. See also the ' '"code" module.\n' '\n' 'A code object can be executed or evaluated by ' 'passing it (instead of a\n' 'source string) to the "exec" statement or the ' 'built-in "eval()"\n' 'function.\n' '\n' 'See The standard type hierarchy for more ' 'information.\n', 'bltin-ellipsis-object': '\n' 'The Ellipsis Object\n' '*******************\n' '\n' 'This object is used by extended slice notation ' '(see Slicings). It\n' 'supports no special operations. There is exactly ' 'one ellipsis object,\n' 'named "Ellipsis" (a built-in name).\n' '\n' 'It is written as "Ellipsis". When in a ' 'subscript, it can also be\n' 'written as "...", for example "seq[...]".\n', 'bltin-null-object': '\n' 'The Null Object\n' '***************\n' '\n' "This object is returned by functions that don't " 'explicitly return a\n' 'value. It supports no special operations. There is ' 'exactly one null\n' 'object, named "None" (a built-in name).\n' '\n' 'It is written as "None".\n', 'bltin-type-objects': '\n' 'Type Objects\n' '************\n' '\n' 'Type objects represent the various object types. An ' "object's type is\n" 'accessed by the built-in function "type()". There ' 'are no special\n' 'operations on types. The standard module "types" ' 'defines names for\n' 'all standard built-in types.\n' '\n' 'Types are written like this: "<type \'int\'>".\n', 'booleans': '\n' 'Boolean operations\n' '******************\n' '\n' ' or_test ::= and_test | or_test "or" and_test\n' ' and_test ::= not_test | and_test "and" not_test\n' ' not_test ::= comparison | "not" not_test\n' '\n' 'In the context of Boolean operations, and also when ' 'expressions are\n' 'used by control flow statements, the following values are ' 'interpreted\n' 'as false: "False", "None", numeric zero of all types, and ' 'empty\n' 'strings and containers (including strings, tuples, lists,\n' 'dictionaries, sets and frozensets). All other values are ' 'interpreted\n' 'as true. (See the "__nonzero__()" special method for a way to ' 'change\n' 'this.)\n' '\n' 'The operator "not" yields "True" if its argument is false, ' '"False"\n' 'otherwise.\n' '\n' 'The expression "x and y" first evaluates *x*; if *x* is false, ' 'its\n' 'value is returned; otherwise, *y* is evaluated and the ' 'resulting value\n' 'is returned.\n' '\n' 'The expression "x or y" first evaluates *x*; if *x* is true, ' 'its value\n' 'is returned; otherwise, *y* is evaluated and the resulting ' 'value is\n' 'returned.\n' '\n' '(Note that neither "and" nor "or" restrict the value and type ' 'they\n' 'return to "False" and "True", but rather return the last ' 'evaluated\n' 'argument. This is sometimes useful, e.g., if "s" is a string ' 'that\n' 'should be replaced by a default value if it is empty, the ' 'expression\n' '"s or \'foo\'" yields the desired value. Because "not" has to ' 'invent a\n' 'value anyway, it does not bother to return a value of the same ' 'type as\n' 'its argument, so e.g., "not \'foo\'" yields "False", not ' '"\'\'".)\n', 'break': '\n' 'The "break" statement\n' '*********************\n' '\n' ' break_stmt ::= "break"\n' '\n' '"break" may only occur syntactically nested in a "for" or ' '"while"\n' 'loop, but not nested in a function or class definition within ' 'that\n' 'loop.\n' '\n' 'It terminates the nearest enclosing loop, skipping the optional ' '"else"\n' 'clause if the loop has one.\n' '\n' 'If a "for" loop is terminated by "break", the loop control ' 'target\n' 'keeps its current value.\n' '\n' 'When "break" passes control out of a "try" statement with a ' '"finally"\n' 'clause, that "finally" clause is executed before really leaving ' 'the\n' 'loop.\n', 'callable-types': '\n' 'Emulating callable objects\n' '**************************\n' '\n' 'object.__call__(self[, args...])\n' '\n' ' Called when the instance is "called" as a function; ' 'if this method\n' ' is defined, "x(arg1, arg2, ...)" is a shorthand for\n' ' "x.__call__(arg1, arg2, ...)".\n', 'calls': '\n' 'Calls\n' '*****\n' '\n' 'A call calls a callable object (e.g., a *function*) with a ' 'possibly\n' 'empty series of *arguments*:\n' '\n' ' call ::= primary "(" [argument_list [","]\n' ' | expression genexpr_for] ")"\n' ' argument_list ::= positional_arguments ["," ' 'keyword_arguments]\n' ' ["," "*" expression] ["," ' 'keyword_arguments]\n' ' ["," "**" expression]\n' ' | keyword_arguments ["," "*" expression]\n' ' ["," "**" expression]\n' ' | "*" expression ["," keyword_arguments] ' '["," "**" expression]\n' ' | "**" expression\n' ' positional_arguments ::= expression ("," expression)*\n' ' keyword_arguments ::= keyword_item ("," keyword_item)*\n' ' keyword_item ::= identifier "=" expression\n' '\n' 'A trailing comma may be present after the positional and keyword\n' 'arguments but does not affect the semantics.\n' '\n' 'The primary must evaluate to a callable object (user-defined\n' 'functions, built-in functions, methods of built-in objects, ' 'class\n' 'objects, methods of class instances, and certain class instances\n' 'themselves are callable; extensions may define additional ' 'callable\n' 'object types). All argument expressions are evaluated before the ' 'call\n' 'is attempted. Please refer to section Function definitions for ' 'the\n' 'syntax of formal *parameter* lists.\n' '\n' 'If keyword arguments are present, they are first converted to\n' 'positional arguments, as follows. First, a list of unfilled ' 'slots is\n' 'created for the formal parameters. If there are N positional\n' 'arguments, they are placed in the first N slots. Next, for each\n' 'keyword argument, the identifier is used to determine the\n' 'corresponding slot (if the identifier is the same as the first ' 'formal\n' 'parameter name, the first slot is used, and so on). If the slot ' 'is\n' 'already filled, a "TypeError" exception is raised. Otherwise, ' 'the\n' 'value of the argument is placed in the slot, filling it (even if ' 'the\n' 'expression is "None", it fills the slot). When all arguments ' 'have\n' 'been processed, the slots that are still unfilled are filled with ' 'the\n' 'corresponding default value from the function definition. ' '(Default\n' 'values are calculated, once, when the function is defined; thus, ' 'a\n' 'mutable object such as a list or dictionary used as default value ' 'will\n' "be shared by all calls that don't specify an argument value for " 'the\n' 'corresponding slot; this should usually be avoided.) If there ' 'are any\n' 'unfilled slots for which no default value is specified, a ' '"TypeError"\n' 'exception is raised. Otherwise, the list of filled slots is used ' 'as\n' 'the argument list for the call.\n' '\n' '**CPython implementation detail:** An implementation may provide\n' 'built-in functions whose positional parameters do not have names, ' 'even\n' "if they are 'named' for the purpose of documentation, and which\n" 'therefore cannot be supplied by keyword. In CPython, this is the ' 'case\n' 'for functions implemented in C that use "PyArg_ParseTuple()" to ' 'parse\n' 'their arguments.\n' '\n' 'If there are more positional arguments than there are formal ' 'parameter\n' 'slots, a "TypeError" exception is raised, unless a formal ' 'parameter\n' 'using the syntax "*identifier" is present; in this case, that ' 'formal\n' 'parameter receives a tuple containing the excess positional ' 'arguments\n' '(or an empty tuple if there were no excess positional ' 'arguments).\n' '\n' 'If any keyword argument does not correspond to a formal ' 'parameter\n' 'name, a "TypeError" exception is raised, unless a formal ' 'parameter\n' 'using the syntax "**identifier" is present; in this case, that ' 'formal\n' 'parameter receives a dictionary containing the excess keyword\n' 'arguments (using the keywords as keys and the argument values as\n' 'corresponding values), or a (new) empty dictionary if there were ' 'no\n' 'excess keyword arguments.\n' '\n' 'If the syntax "*expression" appears in the function call, ' '"expression"\n' 'must evaluate to an iterable. Elements from this iterable are ' 'treated\n' 'as if they were additional positional arguments; if there are\n' 'positional arguments *x1*, ..., *xN*, and "expression" evaluates ' 'to a\n' 'sequence *y1*, ..., *yM*, this is equivalent to a call with M+N\n' 'positional arguments *x1*, ..., *xN*, *y1*, ..., *yM*.\n' '\n' 'A consequence of this is that although the "*expression" syntax ' 'may\n' 'appear *after* some keyword arguments, it is processed *before* ' 'the\n' 'keyword arguments (and the "**expression" argument, if any -- ' 'see\n' 'below). So:\n' '\n' ' >>> def f(a, b):\n' ' ... print a, b\n' ' ...\n' ' >>> f(b=1, *(2,))\n' ' 2 1\n' ' >>> f(a=1, *(2,))\n' ' Traceback (most recent call last):\n' ' File "<stdin>", line 1, in ?\n' " TypeError: f() got multiple values for keyword argument 'a'\n" ' >>> f(1, *(2,))\n' ' 1 2\n' '\n' 'It is unusual for both keyword arguments and the "*expression" ' 'syntax\n' 'to be used in the same call, so in practice this confusion does ' 'not\n' 'arise.\n' '\n' 'If the syntax "**expression" appears in the function call,\n' '"expression" must evaluate to a mapping, the contents of which ' 'are\n' 'treated as additional keyword arguments. In the case of a ' 'keyword\n' 'appearing in both "expression" and as an explicit keyword ' 'argument, a\n' '"TypeError" exception is raised.\n' '\n' 'Formal parameters using the syntax "*identifier" or ' '"**identifier"\n' 'cannot be used as positional argument slots or as keyword ' 'argument\n' 'names. Formal parameters using the syntax "(sublist)" cannot be ' 'used\n' 'as keyword argument names; the outermost sublist corresponds to ' 'a\n' 'single unnamed argument slot, and the argument value is assigned ' 'to\n' 'the sublist using the usual tuple assignment rules after all ' 'other\n' 'parameter processing is done.\n' '\n' 'A call always returns some value, possibly "None", unless it ' 'raises an\n' 'exception. How this value is computed depends on the type of ' 'the\n' 'callable object.\n' '\n' 'If it is---\n' '\n' 'a user-defined function:\n' ' The code block for the function is executed, passing it the\n' ' argument list. The first thing the code block will do is bind ' 'the\n' ' formal parameters to the arguments; this is described in ' 'section\n' ' Function definitions. When the code block executes a ' '"return"\n' ' statement, this specifies the return value of the function ' 'call.\n' '\n' 'a built-in function or method:\n' ' The result is up to the interpreter; see Built-in Functions ' 'for the\n' ' descriptions of built-in functions and methods.\n' '\n' 'a class object:\n' ' A new instance of that class is returned.\n' '\n' 'a class instance method:\n' ' The corresponding user-defined function is called, with an ' 'argument\n' ' list that is one longer than the argument list of the call: ' 'the\n' ' instance becomes the first argument.\n' '\n' 'a class instance:\n' ' The class must define a "__call__()" method; the effect is ' 'then the\n' ' same as if that method was called.\n', 'class': '\n' 'Class definitions\n' '*****************\n' '\n' 'A class definition defines a class object (see section The ' 'standard\n' 'type hierarchy):\n' '\n' ' classdef ::= "class" classname [inheritance] ":" suite\n' ' inheritance ::= "(" [expression_list] ")"\n' ' classname ::= identifier\n' '\n' 'A class definition is an executable statement. It first ' 'evaluates the\n' 'inheritance list, if present. Each item in the inheritance list\n' 'should evaluate to a class object or class type which allows\n' "subclassing. The class's suite is then executed in a new " 'execution\n' 'frame (see section Naming and binding), using a newly created ' 'local\n' 'namespace and the original global namespace. (Usually, the suite\n' "contains only function definitions.) When the class's suite " 'finishes\n' 'execution, its execution frame is discarded but its local ' 'namespace is\n' 'saved. [4] A class object is then created using the inheritance ' 'list\n' 'for the base classes and the saved local namespace for the ' 'attribute\n' 'dictionary. The class name is bound to this class object in the\n' 'original local namespace.\n' '\n' "**Programmer's note:** Variables defined in the class definition " 'are\n' 'class variables; they are shared by all instances. To create ' 'instance\n' 'variables, they can be set in a method with "self.name = value". ' 'Both\n' 'class and instance variables are accessible through the notation\n' '""self.name"", and an instance variable hides a class variable ' 'with\n' 'the same name when accessed in this way. Class variables can be ' 'used\n' 'as defaults for instance variables, but using mutable values ' 'there can\n' 'lead to unexpected results. For *new-style class*es, descriptors ' 'can\n' 'be used to create instance variables with different ' 'implementation\n' 'details.\n' '\n' 'Class definitions, like function definitions, may be wrapped by ' 'one or\n' 'more *decorator* expressions. The evaluation rules for the ' 'decorator\n' 'expressions are the same as for functions. The result must be a ' 'class\n' 'object, which is then bound to the class name.\n' '\n' '-[ Footnotes ]-\n' '\n' '[1] The exception is propagated to the invocation stack unless\n' ' there is a "finally" clause which happens to raise another\n' ' exception. That new exception causes the old one to be lost.\n' '\n' '[2] Currently, control "flows off the end" except in the case of\n' ' an exception or the execution of a "return", "continue", or\n' ' "break" statement.\n' '\n' '[3] A string literal appearing as the first statement in the\n' ' function body is transformed into the function\'s "__doc__"\n' " attribute and therefore the function's *docstring*.\n" '\n' '[4] A string literal appearing as the first statement in the ' 'class\n' ' body is transformed into the namespace\'s "__doc__" item and\n' " therefore the class's *docstring*.\n", 'comparisons': '\n' 'Comparisons\n' '***********\n' '\n' 'Unlike C, all comparison operations in Python have the same ' 'priority,\n' 'which is lower than that of any arithmetic, shifting or ' 'bitwise\n' 'operation. Also unlike C, expressions like "a < b < c" ' 'have the\n' 'interpretation that is conventional in mathematics:\n' '\n' ' comparison ::= or_expr ( comp_operator or_expr )*\n' ' comp_operator ::= "<" | ">" | "==" | ">=" | "<=" | "<>" ' '| "!="\n' ' | "is" ["not"] | ["not"] "in"\n' '\n' 'Comparisons yield boolean values: "True" or "False".\n' '\n' 'Comparisons can be chained arbitrarily, e.g., "x < y <= z" ' 'is\n' 'equivalent to "x < y and y <= z", except that "y" is ' 'evaluated only\n' 'once (but in both cases "z" is not evaluated at all when "x ' '< y" is\n' 'found to be false).\n' '\n' 'Formally, if *a*, *b*, *c*, ..., *y*, *z* are expressions ' 'and *op1*,\n' '*op2*, ..., *opN* are comparison operators, then "a op1 b ' 'op2 c ... y\n' 'opN z" is equivalent to "a op1 b and b op2 c and ... y opN ' 'z", except\n' 'that each expression is evaluated at most once.\n' '\n' 'Note that "a op1 b op2 c" doesn\'t imply any kind of ' 'comparison between\n' '*a* and *c*, so that, e.g., "x < y > z" is perfectly legal ' '(though\n' 'perhaps not pretty).\n' '\n' 'The forms "<>" and "!=" are equivalent; for consistency ' 'with C, "!="\n' 'is preferred; where "!=" is mentioned below "<>" is also ' 'accepted.\n' 'The "<>" spelling is considered obsolescent.\n' '\n' 'The operators "<", ">", "==", ">=", "<=", and "!=" compare ' 'the values\n' 'of two objects. The objects need not have the same type. ' 'If both are\n' 'numbers, they are converted to a common type. Otherwise, ' 'objects of\n' 'different types *always* compare unequal, and are ordered ' 'consistently\n' 'but arbitrarily. You can control comparison behavior of ' 'objects of\n' 'non-built-in types by defining a "__cmp__" method or rich ' 'comparison\n' 'methods like "__gt__", described in section Special method ' 'names.\n' '\n' '(This unusual definition of comparison was used to simplify ' 'the\n' 'definition of operations like sorting and the "in" and "not ' 'in"\n' 'operators. In the future, the comparison rules for objects ' 'of\n' 'different types are likely to change.)\n' '\n' 'Comparison of objects of the same type depends on the ' 'type:\n' '\n' '* Numbers are compared arithmetically.\n' '\n' '* Strings are compared lexicographically using the numeric\n' ' equivalents (the result of the built-in function "ord()") ' 'of their\n' ' characters. Unicode and 8-bit strings are fully ' 'interoperable in\n' ' this behavior. [4]\n' '\n' '* Tuples and lists are compared lexicographically using ' 'comparison\n' ' of corresponding elements. This means that to compare ' 'equal, each\n' ' element must compare equal and the two sequences must be ' 'of the same\n' ' type and have the same length.\n' '\n' ' If not equal, the sequences are ordered the same as their ' 'first\n' ' differing elements. For example, "cmp([1,2,x], [1,2,y])" ' 'returns\n' ' the same as "cmp(x,y)". If the corresponding element ' 'does not\n' ' exist, the shorter sequence is ordered first (for ' 'example, "[1,2] <\n' ' [1,2,3]").\n' '\n' '* Mappings (dictionaries) compare equal if and only if ' 'their sorted\n' ' (key, value) lists compare equal. [5] Outcomes other than ' 'equality\n' ' are resolved consistently, but are not otherwise defined. ' '[6]\n' '\n' '* Most other objects of built-in types compare unequal ' 'unless they\n' ' are the same object; the choice whether one object is ' 'considered\n' ' smaller or larger than another one is made arbitrarily ' 'but\n' ' consistently within one execution of a program.\n' '\n' 'The operators "in" and "not in" test for collection ' 'membership. "x in\n' 's" evaluates to true if *x* is a member of the collection ' '*s*, and\n' 'false otherwise. "x not in s" returns the negation of "x ' 'in s". The\n' 'collection membership test has traditionally been bound to ' 'sequences;\n' 'an object is a member of a collection if the collection is ' 'a sequence\n' 'and contains an element equal to that object. However, it ' 'make sense\n' 'for many other object types to support membership tests ' 'without being\n' 'a sequence. In particular, dictionaries (for keys) and ' 'sets support\n' 'membership testing.\n' '\n' 'For the list and tuple types, "x in y" is true if and only ' 'if there\n' 'exists an index *i* such that "x == y[i]" is true.\n' '\n' 'For the Unicode and string types, "x in y" is true if and ' 'only if *x*\n' 'is a substring of *y*. An equivalent test is "y.find(x) != ' '-1".\n' 'Note, *x* and *y* need not be the same type; consequently, ' '"u\'ab\' in\n' '\'abc\'" will return "True". Empty strings are always ' 'considered to be a\n' 'substring of any other string, so """ in "abc"" will return ' '"True".\n' '\n' 'Changed in version 2.3: Previously, *x* was required to be ' 'a string of\n' 'length "1".\n' '\n' 'For user-defined classes which define the "__contains__()" ' 'method, "x\n' 'in y" is true if and only if "y.__contains__(x)" is true.\n' '\n' 'For user-defined classes which do not define ' '"__contains__()" but do\n' 'define "__iter__()", "x in y" is true if some value "z" ' 'with "x == z"\n' 'is produced while iterating over "y". If an exception is ' 'raised\n' 'during the iteration, it is as if "in" raised that ' 'exception.\n' '\n' 'Lastly, the old-style iteration protocol is tried: if a ' 'class defines\n' '"__getitem__()", "x in y" is true if and only if there is a ' 'non-\n' 'negative integer index *i* such that "x == y[i]", and all ' 'lower\n' 'integer indices do not raise "IndexError" exception. (If ' 'any other\n' 'exception is raised, it is as if "in" raised that ' 'exception).\n' '\n' 'The operator "not in" is defined to have the inverse true ' 'value of\n' '"in".\n' '\n' 'The operators "is" and "is not" test for object identity: ' '"x is y" is\n' 'true if and only if *x* and *y* are the same object. "x is ' 'not y"\n' 'yields the inverse truth value. [7]\n', 'compound': '\n' 'Compound statements\n' '*******************\n' '\n' 'Compound statements contain (groups of) other statements; they ' 'affect\n' 'or control the execution of those other statements in some ' 'way. In\n' 'general, compound statements span multiple lines, although in ' 'simple\n' 'incarnations a whole compound statement may be contained in ' 'one line.\n' '\n' 'The "if", "while" and "for" statements implement traditional ' 'control\n' 'flow constructs. "try" specifies exception handlers and/or ' 'cleanup\n' 'code for a group of statements. Function and class ' 'definitions are\n' 'also syntactically compound statements.\n' '\n' "Compound statements consist of one or more 'clauses.' A " 'clause\n' "consists of a header and a 'suite.' The clause headers of a\n" 'particular compound statement are all at the same indentation ' 'level.\n' 'Each clause header begins with a uniquely identifying keyword ' 'and ends\n' 'with a colon. A suite is a group of statements controlled by ' 'a\n' 'clause. A suite can be one or more semicolon-separated ' 'simple\n' 'statements on the same line as the header, following the ' "header's\n" 'colon, or it can be one or more indented statements on ' 'subsequent\n' 'lines. Only the latter form of suite can contain nested ' 'compound\n' 'statements; the following is illegal, mostly because it ' "wouldn't be\n" 'clear to which "if" clause a following "else" clause would ' 'belong:\n' '\n' ' if test1: if test2: print x\n' '\n' 'Also note that the semicolon binds tighter than the colon in ' 'this\n' 'context, so that in the following example, either all or none ' 'of the\n' '"print" statements are executed:\n' '\n' ' if x < y < z: print x; print y; print z\n' '\n' 'Summarizing:\n' '\n' ' compound_stmt ::= if_stmt\n' ' | while_stmt\n' ' | for_stmt\n' ' | try_stmt\n' ' | with_stmt\n' ' | funcdef\n' ' | classdef\n' ' | decorated\n' ' suite ::= stmt_list NEWLINE | NEWLINE INDENT ' 'statement+ DEDENT\n' ' statement ::= stmt_list NEWLINE | compound_stmt\n' ' stmt_list ::= simple_stmt (";" simple_stmt)* [";"]\n' '\n' 'Note that statements always end in a "NEWLINE" possibly ' 'followed by a\n' '"DEDENT". Also note that optional continuation clauses always ' 'begin\n' 'with a keyword that cannot start a statement, thus there are ' 'no\n' 'ambiguities (the \'dangling "else"\' problem is solved in ' 'Python by\n' 'requiring nested "if" statements to be indented).\n' '\n' 'The formatting of the grammar rules in the following sections ' 'places\n' 'each clause on a separate line for clarity.\n' '\n' '\n' 'The "if" statement\n' '==================\n' '\n' 'The "if" statement is used for conditional execution:\n' '\n' ' if_stmt ::= "if" expression ":" suite\n' ' ( "elif" expression ":" suite )*\n' ' ["else" ":" suite]\n' '\n' 'It selects exactly one of the suites by evaluating the ' 'expressions one\n' 'by one until one is found to be true (see section Boolean ' 'operations\n' 'for the definition of true and false); then that suite is ' 'executed\n' '(and no other part of the "if" statement is executed or ' 'evaluated).\n' 'If all expressions are false, the suite of the "else" clause, ' 'if\n' 'present, is executed.\n' '\n' '\n' 'The "while" statement\n' '=====================\n' '\n' 'The "while" statement is used for repeated execution as long ' 'as an\n' 'expression is true:\n' '\n' ' while_stmt ::= "while" expression ":" suite\n' ' ["else" ":" suite]\n' '\n' 'This repeatedly tests the expression and, if it is true, ' 'executes the\n' 'first suite; if the expression is false (which may be the ' 'first time\n' 'it is tested) the suite of the "else" clause, if present, is ' 'executed\n' 'and the loop terminates.\n' '\n' 'A "break" statement executed in the first suite terminates the ' 'loop\n' 'without executing the "else" clause\'s suite. A "continue" ' 'statement\n' 'executed in the first suite skips the rest of the suite and ' 'goes back\n' 'to testing the expression.\n' '\n' '\n' 'The "for" statement\n' '===================\n' '\n' 'The "for" statement is used to iterate over the elements of a ' 'sequence\n' '(such as a string, tuple or list) or other iterable object:\n' '\n' ' for_stmt ::= "for" target_list "in" expression_list ":" ' 'suite\n' ' ["else" ":" suite]\n' '\n' 'The expression list is evaluated once; it should yield an ' 'iterable\n' 'object. An iterator is created for the result of the\n' '"expression_list". The suite is then executed once for each ' 'item\n' 'provided by the iterator, in the order of ascending indices. ' 'Each\n' 'item in turn is assigned to the target list using the standard ' 'rules\n' 'for assignments, and then the suite is executed. When the ' 'items are\n' 'exhausted (which is immediately when the sequence is empty), ' 'the suite\n' 'in the "else" clause, if present, is executed, and the loop\n' 'terminates.\n' '\n' 'A "break" statement executed in the first suite terminates the ' 'loop\n' 'without executing the "else" clause\'s suite. A "continue" ' 'statement\n' 'executed in the first suite skips the rest of the suite and ' 'continues\n' 'with the next item, or with the "else" clause if there was no ' 'next\n' 'item.\n' '\n' 'The suite may assign to the variable(s) in the target list; ' 'this does\n' 'not affect the next item assigned to it.\n' '\n' 'The target list is not deleted when the loop is finished, but ' 'if the\n' 'sequence is empty, it will not have been assigned to at all by ' 'the\n' 'loop. Hint: the built-in function "range()" returns a ' 'sequence of\n' 'integers suitable to emulate the effect of Pascal\'s "for i := ' 'a to b\n' 'do"; e.g., "range(3)" returns the list "[0, 1, 2]".\n' '\n' 'Note: There is a subtlety when the sequence is being modified ' 'by the\n' ' loop (this can only occur for mutable sequences, i.e. ' 'lists). An\n' ' internal counter is used to keep track of which item is used ' 'next,\n' ' and this is incremented on each iteration. When this ' 'counter has\n' ' reached the length of the sequence the loop terminates. ' 'This means\n' ' that if the suite deletes the current (or a previous) item ' 'from the\n' ' sequence, the next item will be skipped (since it gets the ' 'index of\n' ' the current item which has already been treated). Likewise, ' 'if the\n' ' suite inserts an item in the sequence before the current ' 'item, the\n' ' current item will be treated again the next time through the ' 'loop.\n' ' This can lead to nasty bugs that can be avoided by making a\n' ' temporary copy using a slice of the whole sequence, e.g.,\n' '\n' ' for x in a[:]:\n' ' if x < 0: a.remove(x)\n' '\n' '\n' 'The "try" statement\n' '===================\n' '\n' 'The "try" statement specifies exception handlers and/or ' 'cleanup code\n' 'for a group of statements:\n' '\n' ' try_stmt ::= try1_stmt | try2_stmt\n' ' try1_stmt ::= "try" ":" suite\n' ' ("except" [expression [("as" | ",") ' 'identifier]] ":" suite)+\n' ' ["else" ":" suite]\n' ' ["finally" ":" suite]\n' ' try2_stmt ::= "try" ":" suite\n' ' "finally" ":" suite\n' '\n' 'Changed in version 2.5: In previous versions of Python,\n' '"try"..."except"..."finally" did not work. "try"..."except" ' 'had to be\n' 'nested in "try"..."finally".\n' '\n' 'The "except" clause(s) specify one or more exception handlers. ' 'When no\n' 'exception occurs in the "try" clause, no exception handler is\n' 'executed. When an exception occurs in the "try" suite, a ' 'search for an\n' 'exception handler is started. This search inspects the except ' 'clauses\n' 'in turn until one is found that matches the exception. An ' 'expression-\n' 'less except clause, if present, must be last; it matches any\n' 'exception. For an except clause with an expression, that ' 'expression\n' 'is evaluated, and the clause matches the exception if the ' 'resulting\n' 'object is "compatible" with the exception. An object is ' 'compatible\n' 'with an exception if it is the class or a base class of the ' 'exception\n' 'object, or a tuple containing an item compatible with the ' 'exception.\n' '\n' 'If no except clause matches the exception, the search for an ' 'exception\n' 'handler continues in the surrounding code and on the ' 'invocation stack.\n' '[1]\n' '\n' 'If the evaluation of an expression in the header of an except ' 'clause\n' 'raises an exception, the original search for a handler is ' 'canceled and\n' 'a search starts for the new exception in the surrounding code ' 'and on\n' 'the call stack (it is treated as if the entire "try" statement ' 'raised\n' 'the exception).\n' '\n' 'When a matching except clause is found, the exception is ' 'assigned to\n' 'the target specified in that except clause, if present, and ' 'the except\n' "clause's suite is executed. All except clauses must have an\n" 'executable block. When the end of this block is reached, ' 'execution\n' 'continues normally after the entire try statement. (This ' 'means that\n' 'if two nested handlers exist for the same exception, and the ' 'exception\n' 'occurs in the try clause of the inner handler, the outer ' 'handler will\n' 'not handle the exception.)\n' '\n' "Before an except clause's suite is executed, details about " 'the\n' 'exception are assigned to three variables in the "sys" ' 'module:\n' '"sys.exc_type" receives the object identifying the exception;\n' '"sys.exc_value" receives the exception\'s parameter;\n' '"sys.exc_traceback" receives a traceback object (see section ' 'The\n' 'standard type hierarchy) identifying the point in the program ' 'where\n' 'the exception occurred. These details are also available ' 'through the\n' '"sys.exc_info()" function, which returns a tuple "(exc_type,\n' 'exc_value, exc_traceback)". Use of the corresponding ' 'variables is\n' 'deprecated in favor of this function, since their use is ' 'unsafe in a\n' 'threaded program. As of Python 1.5, the variables are ' 'restored to\n' 'their previous values (before the call) when returning from a ' 'function\n' 'that handled an exception.\n' '\n' 'The optional "else" clause is executed if and when control ' 'flows off\n' 'the end of the "try" clause. [2] Exceptions in the "else" ' 'clause are\n' 'not handled by the preceding "except" clauses.\n' '\n' 'If "finally" is present, it specifies a \'cleanup\' handler. ' 'The "try"\n' 'clause is executed, including any "except" and "else" ' 'clauses. If an\n' 'exception occurs in any of the clauses and is not handled, ' 'the\n' 'exception is temporarily saved. The "finally" clause is ' 'executed. If\n' 'there is a saved exception, it is re-raised at the end of the\n' '"finally" clause. If the "finally" clause raises another ' 'exception or\n' 'executes a "return" or "break" statement, the saved exception ' 'is\n' 'discarded:\n' '\n' ' >>> def f():\n' ' ... try:\n' ' ... 1/0\n' ' ... finally:\n' ' ... return 42\n' ' ...\n' ' >>> f()\n' ' 42\n' '\n' 'The exception information is not available to the program ' 'during\n' 'execution of the "finally" clause.\n' '\n' 'When a "return", "break" or "continue" statement is executed ' 'in the\n' '"try" suite of a "try"..."finally" statement, the "finally" ' 'clause is\n' 'also executed \'on the way out.\' A "continue" statement is ' 'illegal in\n' 'the "finally" clause. (The reason is a problem with the ' 'current\n' 'implementation --- this restriction may be lifted in the ' 'future).\n' '\n' 'The return value of a function is determined by the last ' '"return"\n' 'statement executed. Since the "finally" clause always ' 'executes, a\n' '"return" statement executed in the "finally" clause will ' 'always be the\n' 'last one executed:\n' '\n' ' >>> def foo():\n' ' ... try:\n' " ... return 'try'\n" ' ... finally:\n' " ... return 'finally'\n" ' ...\n' ' >>> foo()\n' " 'finally'\n" '\n' 'Additional information on exceptions can be found in section\n' 'Exceptions, and information on using the "raise" statement to ' 'generate\n' 'exceptions may be found in section The raise statement.\n' '\n' '\n' 'The "with" statement\n' '====================\n' '\n' 'New in version 2.5.\n' '\n' 'The "with" statement is used to wrap the execution of a block ' 'with\n' 'methods defined by a context manager (see section With ' 'Statement\n' 'Context Managers). This allows common ' '"try"..."except"..."finally"\n' 'usage patterns to be encapsulated for convenient reuse.\n' '\n' ' with_stmt ::= "with" with_item ("," with_item)* ":" suite\n' ' with_item ::= expression ["as" target]\n' '\n' 'The execution of the "with" statement with one "item" proceeds ' 'as\n' 'follows:\n' '\n' '1. The context expression (the expression given in the ' '"with_item")\n' ' is evaluated to obtain a context manager.\n' '\n' '2. The context manager\'s "__exit__()" is loaded for later ' 'use.\n' '\n' '3. The context manager\'s "__enter__()" method is invoked.\n' '\n' '4. If a target was included in the "with" statement, the ' 'return\n' ' value from "__enter__()" is assigned to it.\n' '\n' ' Note: The "with" statement guarantees that if the ' '"__enter__()"\n' ' method returns without an error, then "__exit__()" will ' 'always be\n' ' called. Thus, if an error occurs during the assignment to ' 'the\n' ' target list, it will be treated the same as an error ' 'occurring\n' ' within the suite would be. See step 6 below.\n' '\n' '5. The suite is executed.\n' '\n' '6. The context manager\'s "__exit__()" method is invoked. If ' 'an\n' ' exception caused the suite to be exited, its type, value, ' 'and\n' ' traceback are passed as arguments to "__exit__()". ' 'Otherwise, three\n' ' "None" arguments are supplied.\n' '\n' ' If the suite was exited due to an exception, and the return ' 'value\n' ' from the "__exit__()" method was false, the exception is ' 'reraised.\n' ' If the return value was true, the exception is suppressed, ' 'and\n' ' execution continues with the statement following the ' '"with"\n' ' statement.\n' '\n' ' If the suite was exited for any reason other than an ' 'exception, the\n' ' return value from "__exit__()" is ignored, and execution ' 'proceeds\n' ' at the normal location for the kind of exit that was ' 'taken.\n' '\n' 'With more than one item, the context managers are processed as ' 'if\n' 'multiple "with" statements were nested:\n' '\n' ' with A() as a, B() as b:\n' ' suite\n' '\n' 'is equivalent to\n' '\n' ' with A() as a:\n' ' with B() as b:\n' ' suite\n' '\n' 'Note: In Python 2.5, the "with" statement is only allowed when ' 'the\n' ' "with_statement" feature has been enabled. It is always ' 'enabled in\n' ' Python 2.6.\n' '\n' 'Changed in version 2.7: Support for multiple context ' 'expressions.\n' '\n' 'See also: **PEP 0343** - The "with" statement\n' '\n' ' The specification, background, and examples for the ' 'Python "with"\n' ' statement.\n' '\n' '\n' 'Function definitions\n' '====================\n' '\n' 'A function definition defines a user-defined function object ' '(see\n' 'section The standard type hierarchy):\n' '\n' ' decorated ::= decorators (classdef | funcdef)\n' ' decorators ::= decorator+\n' ' decorator ::= "@" dotted_name ["(" [argument_list ' '[","]] ")"] NEWLINE\n' ' funcdef ::= "def" funcname "(" [parameter_list] ")" ' '":" suite\n' ' dotted_name ::= identifier ("." identifier)*\n' ' parameter_list ::= (defparameter ",")*\n' ' ( "*" identifier ["," "**" identifier]\n' ' | "**" identifier\n' ' | defparameter [","] )\n' ' defparameter ::= parameter ["=" expression]\n' ' sublist ::= parameter ("," parameter)* [","]\n' ' parameter ::= identifier | "(" sublist ")"\n' ' funcname ::= identifier\n' '\n' 'A function definition is an executable statement. Its ' 'execution binds\n' 'the function name in the current local namespace to a function ' 'object\n' '(a wrapper around the executable code for the function). ' 'This\n' 'function object contains a reference to the current global ' 'namespace\n' 'as the global namespace to be used when the function is ' 'called.\n' '\n' 'The function definition does not execute the function body; ' 'this gets\n' 'executed only when the function is called. [3]\n' '\n' 'A function definition may be wrapped by one or more ' '*decorator*\n' 'expressions. Decorator expressions are evaluated when the ' 'function is\n' 'defined, in the scope that contains the function definition. ' 'The\n' 'result must be a callable, which is invoked with the function ' 'object\n' 'as the only argument. The returned value is bound to the ' 'function name\n' 'instead of the function object. Multiple decorators are ' 'applied in\n' 'nested fashion. For example, the following code:\n' '\n' ' @f1(arg)\n' ' @f2\n' ' def func(): pass\n' '\n' 'is equivalent to:\n' '\n' ' def func(): pass\n' ' func = f1(arg)(f2(func))\n' '\n' 'When one or more top-level *parameters* have the form ' '*parameter* "="\n' '*expression*, the function is said to have "default parameter ' 'values."\n' 'For a parameter with a default value, the corresponding ' '*argument* may\n' "be omitted from a call, in which case the parameter's default " 'value is\n' 'substituted. If a parameter has a default value, all ' 'following\n' 'parameters must also have a default value --- this is a ' 'syntactic\n' 'restriction that is not expressed by the grammar.\n' '\n' '**Default parameter values are evaluated when the function ' 'definition\n' 'is executed.** This means that the expression is evaluated ' 'once, when\n' 'the function is defined, and that the same "pre-computed" ' 'value is\n' 'used for each call. This is especially important to ' 'understand when a\n' 'default parameter is a mutable object, such as a list or a ' 'dictionary:\n' 'if the function modifies the object (e.g. by appending an item ' 'to a\n' 'list), the default value is in effect modified. This is ' 'generally not\n' 'what was intended. A way around this is to use "None" as ' 'the\n' 'default, and explicitly test for it in the body of the ' 'function, e.g.:\n' '\n' ' def whats_on_the_telly(penguin=None):\n' ' if penguin is None:\n' ' penguin = []\n' ' penguin.append("property of the zoo")\n' ' return penguin\n' '\n' 'Function call semantics are described in more detail in ' 'section Calls.\n' 'A function call always assigns values to all parameters ' 'mentioned in\n' 'the parameter list, either from position arguments, from ' 'keyword\n' 'arguments, or from default values. If the form ' '""*identifier"" is\n' 'present, it is initialized to a tuple receiving any excess ' 'positional\n' 'parameters, defaulting to the empty tuple. If the form\n' '""**identifier"" is present, it is initialized to a new ' 'dictionary\n' 'receiving any excess keyword arguments, defaulting to a new ' 'empty\n' 'dictionary.\n' '\n' 'It is also possible to create anonymous functions (functions ' 'not bound\n' 'to a name), for immediate use in expressions. This uses ' 'lambda\n' 'expressions, described in section Lambdas. Note that the ' 'lambda\n' 'expression is merely a shorthand for a simplified function ' 'definition;\n' 'a function defined in a ""def"" statement can be passed around ' 'or\n' 'assigned to another name just like a function defined by a ' 'lambda\n' 'expression. The ""def"" form is actually more powerful since ' 'it\n' 'allows the execution of multiple statements.\n' '\n' "**Programmer's note:** Functions are first-class objects. A " '""def""\n' 'form executed inside a function definition defines a local ' 'function\n' 'that can be returned or passed around. Free variables used in ' 'the\n' 'nested function can access the local variables of the ' 'function\n' 'containing the def. See section Naming and binding for ' 'details.\n' '\n' '\n' 'Class definitions\n' '=================\n' '\n' 'A class definition defines a class object (see section The ' 'standard\n' 'type hierarchy):\n' '\n' ' classdef ::= "class" classname [inheritance] ":" suite\n' ' inheritance ::= "(" [expression_list] ")"\n' ' classname ::= identifier\n' '\n' 'A class definition is an executable statement. It first ' 'evaluates the\n' 'inheritance list, if present. Each item in the inheritance ' 'list\n' 'should evaluate to a class object or class type which allows\n' "subclassing. The class's suite is then executed in a new " 'execution\n' 'frame (see section Naming and binding), using a newly created ' 'local\n' 'namespace and the original global namespace. (Usually, the ' 'suite\n' "contains only function definitions.) When the class's suite " 'finishes\n' 'execution, its execution frame is discarded but its local ' 'namespace is\n' 'saved. [4] A class object is then created using the ' 'inheritance list\n' 'for the base classes and the saved local namespace for the ' 'attribute\n' 'dictionary. The class name is bound to this class object in ' 'the\n' 'original local namespace.\n' '\n' "**Programmer's note:** Variables defined in the class " 'definition are\n' 'class variables; they are shared by all instances. To create ' 'instance\n' 'variables, they can be set in a method with "self.name = ' 'value". Both\n' 'class and instance variables are accessible through the ' 'notation\n' '""self.name"", and an instance variable hides a class variable ' 'with\n' 'the same name when accessed in this way. Class variables can ' 'be used\n' 'as defaults for instance variables, but using mutable values ' 'there can\n' 'lead to unexpected results. For *new-style class*es, ' 'descriptors can\n' 'be used to create instance variables with different ' 'implementation\n' 'details.\n' '\n' 'Class definitions, like function definitions, may be wrapped ' 'by one or\n' 'more *decorator* expressions. The evaluation rules for the ' 'decorator\n' 'expressions are the same as for functions. The result must be ' 'a class\n' 'object, which is then bound to the class name.\n' '\n' '-[ Footnotes ]-\n' '\n' '[1] The exception is propagated to the invocation stack ' 'unless\n' ' there is a "finally" clause which happens to raise ' 'another\n' ' exception. That new exception causes the old one to be ' 'lost.\n' '\n' '[2] Currently, control "flows off the end" except in the case ' 'of\n' ' an exception or the execution of a "return", "continue", ' 'or\n' ' "break" statement.\n' '\n' '[3] A string literal appearing as the first statement in the\n' " function body is transformed into the function's " '"__doc__"\n' " attribute and therefore the function's *docstring*.\n" '\n' '[4] A string literal appearing as the first statement in the ' 'class\n' ' body is transformed into the namespace\'s "__doc__" item ' 'and\n' " therefore the class's *docstring*.\n", 'context-managers': '\n' 'With Statement Context Managers\n' '*******************************\n' '\n' 'New in version 2.5.\n' '\n' 'A *context manager* is an object that defines the ' 'runtime context to\n' 'be established when executing a "with" statement. The ' 'context manager\n' 'handles the entry into, and the exit from, the desired ' 'runtime context\n' 'for the execution of the block of code. Context ' 'managers are normally\n' 'invoked using the "with" statement (described in ' 'section The with\n' 'statement), but can also be used by directly invoking ' 'their methods.\n' '\n' 'Typical uses of context managers include saving and ' 'restoring various\n' 'kinds of global state, locking and unlocking ' 'resources, closing opened\n' 'files, etc.\n' '\n' 'For more information on context managers, see Context ' 'Manager Types.\n' '\n' 'object.__enter__(self)\n' '\n' ' Enter the runtime context related to this object. ' 'The "with"\n' " statement will bind this method's return value to " 'the target(s)\n' ' specified in the "as" clause of the statement, if ' 'any.\n' '\n' 'object.__exit__(self, exc_type, exc_value, traceback)\n' '\n' ' Exit the runtime context related to this object. ' 'The parameters\n' ' describe the exception that caused the context to ' 'be exited. If the\n' ' context was exited without an exception, all three ' 'arguments will\n' ' be "None".\n' '\n' ' If an exception is supplied, and the method wishes ' 'to suppress the\n' ' exception (i.e., prevent it from being propagated), ' 'it should\n' ' return a true value. Otherwise, the exception will ' 'be processed\n' ' normally upon exit from this method.\n' '\n' ' Note that "__exit__()" methods should not reraise ' 'the passed-in\n' " exception; this is the caller's responsibility.\n" '\n' 'See also: **PEP 0343** - The "with" statement\n' '\n' ' The specification, background, and examples for ' 'the Python "with"\n' ' statement.\n', 'continue': '\n' 'The "continue" statement\n' '************************\n' '\n' ' continue_stmt ::= "continue"\n' '\n' '"continue" may only occur syntactically nested in a "for" or ' '"while"\n' 'loop, but not nested in a function or class definition or ' '"finally"\n' 'clause within that loop. It continues with the next cycle of ' 'the\n' 'nearest enclosing loop.\n' '\n' 'When "continue" passes control out of a "try" statement with ' 'a\n' '"finally" clause, that "finally" clause is executed before ' 'really\n' 'starting the next loop cycle.\n', 'conversions': '\n' 'Arithmetic conversions\n' '**********************\n' '\n' 'When a description of an arithmetic operator below uses the ' 'phrase\n' '"the numeric arguments are converted to a common type," the ' 'arguments\n' 'are coerced using the coercion rules listed at Coercion ' 'rules. If\n' 'both arguments are standard numeric types, the following ' 'coercions are\n' 'applied:\n' '\n' '* If either argument is a complex number, the other is ' 'converted to\n' ' complex;\n' '\n' '* otherwise, if either argument is a floating point number, ' 'the\n' ' other is converted to floating point;\n' '\n' '* otherwise, if either argument is a long integer, the ' 'other is\n' ' converted to long integer;\n' '\n' '* otherwise, both must be plain integers and no conversion ' 'is\n' ' necessary.\n' '\n' 'Some additional rules apply for certain operators (e.g., a ' 'string left\n' "argument to the '%' operator). Extensions can define their " 'own\n' 'coercions.\n', 'customization': '\n' 'Basic customization\n' '*******************\n' '\n' 'object.__new__(cls[, ...])\n' '\n' ' Called to create a new instance of class *cls*. ' '"__new__()" is a\n' ' static method (special-cased so you need not declare ' 'it as such)\n' ' that takes the class of which an instance was ' 'requested as its\n' ' first argument. The remaining arguments are those ' 'passed to the\n' ' object constructor expression (the call to the ' 'class). The return\n' ' value of "__new__()" should be the new object instance ' '(usually an\n' ' instance of *cls*).\n' '\n' ' Typical implementations create a new instance of the ' 'class by\n' ' invoking the superclass\'s "__new__()" method using\n' ' "super(currentclass, cls).__new__(cls[, ...])" with ' 'appropriate\n' ' arguments and then modifying the newly-created ' 'instance as\n' ' necessary before returning it.\n' '\n' ' If "__new__()" returns an instance of *cls*, then the ' 'new\n' ' instance\'s "__init__()" method will be invoked like\n' ' "__init__(self[, ...])", where *self* is the new ' 'instance and the\n' ' remaining arguments are the same as were passed to ' '"__new__()".\n' '\n' ' If "__new__()" does not return an instance of *cls*, ' 'then the new\n' ' instance\'s "__init__()" method will not be invoked.\n' '\n' ' "__new__()" is intended mainly to allow subclasses of ' 'immutable\n' ' types (like int, str, or tuple) to customize instance ' 'creation. It\n' ' is also commonly overridden in custom metaclasses in ' 'order to\n' ' customize class creation.\n' '\n' 'object.__init__(self[, ...])\n' '\n' ' Called after the instance has been created (by ' '"__new__()"), but\n' ' before it is returned to the caller. The arguments ' 'are those\n' ' passed to the class constructor expression. If a base ' 'class has an\n' ' "__init__()" method, the derived class\'s "__init__()" ' 'method, if\n' ' any, must explicitly call it to ensure proper ' 'initialization of the\n' ' base class part of the instance; for example:\n' ' "BaseClass.__init__(self, [args...])".\n' '\n' ' Because "__new__()" and "__init__()" work together in ' 'constructing\n' ' objects ("__new__()" to create it, and "__init__()" to ' 'customise\n' ' it), no non-"None" value may be returned by ' '"__init__()"; doing so\n' ' will cause a "TypeError" to be raised at runtime.\n' '\n' 'object.__del__(self)\n' '\n' ' Called when the instance is about to be destroyed. ' 'This is also\n' ' called a destructor. If a base class has a ' '"__del__()" method, the\n' ' derived class\'s "__del__()" method, if any, must ' 'explicitly call it\n' ' to ensure proper deletion of the base class part of ' 'the instance.\n' ' Note that it is possible (though not recommended!) for ' 'the\n' ' "__del__()" method to postpone destruction of the ' 'instance by\n' ' creating a new reference to it. It may then be called ' 'at a later\n' ' time when this new reference is deleted. It is not ' 'guaranteed that\n' ' "__del__()" methods are called for objects that still ' 'exist when\n' ' the interpreter exits.\n' '\n' ' Note: "del x" doesn\'t directly call "x.__del__()" --- ' 'the former\n' ' decrements the reference count for "x" by one, and ' 'the latter is\n' ' only called when "x"\'s reference count reaches ' 'zero. Some common\n' ' situations that may prevent the reference count of ' 'an object from\n' ' going to zero include: circular references between ' 'objects (e.g.,\n' ' a doubly-linked list or a tree data structure with ' 'parent and\n' ' child pointers); a reference to the object on the ' 'stack frame of\n' ' a function that caught an exception (the traceback ' 'stored in\n' ' "sys.exc_traceback" keeps the stack frame alive); or ' 'a reference\n' ' to the object on the stack frame that raised an ' 'unhandled\n' ' exception in interactive mode (the traceback stored ' 'in\n' ' "sys.last_traceback" keeps the stack frame alive). ' 'The first\n' ' situation can only be remedied by explicitly ' 'breaking the cycles;\n' ' the latter two situations can be resolved by storing ' '"None" in\n' ' "sys.exc_traceback" or "sys.last_traceback". ' 'Circular references\n' ' which are garbage are detected when the option cycle ' 'detector is\n' " enabled (it's on by default), but can only be " 'cleaned up if there\n' ' are no Python-level "__del__()" methods involved. ' 'Refer to the\n' ' documentation for the "gc" module for more ' 'information about how\n' ' "__del__()" methods are handled by the cycle ' 'detector,\n' ' particularly the description of the "garbage" ' 'value.\n' '\n' ' Warning: Due to the precarious circumstances under ' 'which\n' ' "__del__()" methods are invoked, exceptions that ' 'occur during\n' ' their execution are ignored, and a warning is ' 'printed to\n' ' "sys.stderr" instead. Also, when "__del__()" is ' 'invoked in\n' ' response to a module being deleted (e.g., when ' 'execution of the\n' ' program is done), other globals referenced by the ' '"__del__()"\n' ' method may already have been deleted or in the ' 'process of being\n' ' torn down (e.g. the import machinery shutting ' 'down). For this\n' ' reason, "__del__()" methods should do the absolute ' 'minimum needed\n' ' to maintain external invariants. Starting with ' 'version 1.5,\n' ' Python guarantees that globals whose name begins ' 'with a single\n' ' underscore are deleted from their module before ' 'other globals are\n' ' deleted; if no other references to such globals ' 'exist, this may\n' ' help in assuring that imported modules are still ' 'available at the\n' ' time when the "__del__()" method is called.\n' '\n' ' See also the "-R" command-line option.\n' '\n' 'object.__repr__(self)\n' '\n' ' Called by the "repr()" built-in function and by string ' 'conversions\n' ' (reverse quotes) to compute the "official" string ' 'representation of\n' ' an object. If at all possible, this should look like ' 'a valid\n' ' Python expression that could be used to recreate an ' 'object with the\n' ' same value (given an appropriate environment). If ' 'this is not\n' ' possible, a string of the form "<...some useful ' 'description...>"\n' ' should be returned. The return value must be a string ' 'object. If a\n' ' class defines "__repr__()" but not "__str__()", then ' '"__repr__()"\n' ' is also used when an "informal" string representation ' 'of instances\n' ' of that class is required.\n' '\n' ' This is typically used for debugging, so it is ' 'important that the\n' ' representation is information-rich and unambiguous.\n' '\n' 'object.__str__(self)\n' '\n' ' Called by the "str()" built-in function and by the ' '"print"\n' ' statement to compute the "informal" string ' 'representation of an\n' ' object. This differs from "__repr__()" in that it ' 'does not have to\n' ' be a valid Python expression: a more convenient or ' 'concise\n' ' representation may be used instead. The return value ' 'must be a\n' ' string object.\n' '\n' 'object.__lt__(self, other)\n' 'object.__le__(self, other)\n' 'object.__eq__(self, other)\n' 'object.__ne__(self, other)\n' 'object.__gt__(self, other)\n' 'object.__ge__(self, other)\n' '\n' ' New in version 2.1.\n' '\n' ' These are the so-called "rich comparison" methods, and ' 'are called\n' ' for comparison operators in preference to "__cmp__()" ' 'below. The\n' ' correspondence between operator symbols and method ' 'names is as\n' ' follows: "x<y" calls "x.__lt__(y)", "x<=y" calls ' '"x.__le__(y)",\n' ' "x==y" calls "x.__eq__(y)", "x!=y" and "x<>y" call ' '"x.__ne__(y)",\n' ' "x>y" calls "x.__gt__(y)", and "x>=y" calls ' '"x.__ge__(y)".\n' '\n' ' A rich comparison method may return the singleton ' '"NotImplemented"\n' ' if it does not implement the operation for a given ' 'pair of\n' ' arguments. By convention, "False" and "True" are ' 'returned for a\n' ' successful comparison. However, these methods can ' 'return any value,\n' ' so if the comparison operator is used in a Boolean ' 'context (e.g.,\n' ' in the condition of an "if" statement), Python will ' 'call "bool()"\n' ' on the value to determine if the result is true or ' 'false.\n' '\n' ' There are no implied relationships among the ' 'comparison operators.\n' ' The truth of "x==y" does not imply that "x!=y" is ' 'false.\n' ' Accordingly, when defining "__eq__()", one should also ' 'define\n' ' "__ne__()" so that the operators will behave as ' 'expected. See the\n' ' paragraph on "__hash__()" for some important notes on ' 'creating\n' ' *hashable* objects which support custom comparison ' 'operations and\n' ' are usable as dictionary keys.\n' '\n' ' There are no swapped-argument versions of these ' 'methods (to be used\n' ' when the left argument does not support the operation ' 'but the right\n' ' argument does); rather, "__lt__()" and "__gt__()" are ' "each other's\n" ' reflection, "__le__()" and "__ge__()" are each ' "other's reflection,\n" ' and "__eq__()" and "__ne__()" are their own ' 'reflection.\n' '\n' ' Arguments to rich comparison methods are never ' 'coerced.\n' '\n' ' To automatically generate ordering operations from a ' 'single root\n' ' operation, see "functools.total_ordering()".\n' '\n' 'object.__cmp__(self, other)\n' '\n' ' Called by comparison operations if rich comparison ' '(see above) is\n' ' not defined. Should return a negative integer if ' '"self < other",\n' ' zero if "self == other", a positive integer if "self > ' 'other". If\n' ' no "__cmp__()", "__eq__()" or "__ne__()" operation is ' 'defined,\n' ' class instances are compared by object identity ' '("address"). See\n' ' also the description of "__hash__()" for some ' 'important notes on\n' ' creating *hashable* objects which support custom ' 'comparison\n' ' operations and are usable as dictionary keys. (Note: ' 'the\n' ' restriction that exceptions are not propagated by ' '"__cmp__()" has\n' ' been removed since Python 1.5.)\n' '\n' 'object.__rcmp__(self, other)\n' '\n' ' Changed in version 2.1: No longer supported.\n' '\n' 'object.__hash__(self)\n' '\n' ' Called by built-in function "hash()" and for ' 'operations on members\n' ' of hashed collections including "set", "frozenset", ' 'and "dict".\n' ' "__hash__()" should return an integer. The only ' 'required property\n' ' is that objects which compare equal have the same hash ' 'value; it is\n' ' advised to somehow mix together (e.g. using exclusive ' 'or) the hash\n' ' values for the components of the object that also play ' 'a part in\n' ' comparison of objects.\n' '\n' ' If a class does not define a "__cmp__()" or "__eq__()" ' 'method it\n' ' should not define a "__hash__()" operation either; if ' 'it defines\n' ' "__cmp__()" or "__eq__()" but not "__hash__()", its ' 'instances will\n' ' not be usable in hashed collections. If a class ' 'defines mutable\n' ' objects and implements a "__cmp__()" or "__eq__()" ' 'method, it\n' ' should not implement "__hash__()", since hashable ' 'collection\n' " implementations require that a object's hash value is " 'immutable (if\n' " the object's hash value changes, it will be in the " 'wrong hash\n' ' bucket).\n' '\n' ' User-defined classes have "__cmp__()" and "__hash__()" ' 'methods by\n' ' default; with them, all objects compare unequal ' '(except with\n' ' themselves) and "x.__hash__()" returns a result ' 'derived from\n' ' "id(x)".\n' '\n' ' Classes which inherit a "__hash__()" method from a ' 'parent class but\n' ' change the meaning of "__cmp__()" or "__eq__()" such ' 'that the hash\n' ' value returned is no longer appropriate (e.g. by ' 'switching to a\n' ' value-based concept of equality instead of the default ' 'identity\n' ' based equality) can explicitly flag themselves as ' 'being unhashable\n' ' by setting "__hash__ = None" in the class definition. ' 'Doing so\n' ' means that not only will instances of the class raise ' 'an\n' ' appropriate "TypeError" when a program attempts to ' 'retrieve their\n' ' hash value, but they will also be correctly identified ' 'as\n' ' unhashable when checking "isinstance(obj, ' 'collections.Hashable)"\n' ' (unlike classes which define their own "__hash__()" to ' 'explicitly\n' ' raise "TypeError").\n' '\n' ' Changed in version 2.5: "__hash__()" may now also ' 'return a long\n' ' integer object; the 32-bit integer is then derived ' 'from the hash of\n' ' that object.\n' '\n' ' Changed in version 2.6: "__hash__" may now be set to ' '"None" to\n' ' explicitly flag instances of a class as unhashable.\n' '\n' 'object.__nonzero__(self)\n' '\n' ' Called to implement truth value testing and the ' 'built-in operation\n' ' "bool()"; should return "False" or "True", or their ' 'integer\n' ' equivalents "0" or "1". When this method is not ' 'defined,\n' ' "__len__()" is called, if it is defined, and the ' 'object is\n' ' considered true if its result is nonzero. If a class ' 'defines\n' ' neither "__len__()" nor "__nonzero__()", all its ' 'instances are\n' ' considered true.\n' '\n' 'object.__unicode__(self)\n' '\n' ' Called to implement "unicode()" built-in; should ' 'return a Unicode\n' ' object. When this method is not defined, string ' 'conversion is\n' ' attempted, and the result of string conversion is ' 'converted to\n' ' Unicode using the system default encoding.\n', 'debugger': '\n' '"pdb" --- The Python Debugger\n' '*****************************\n' '\n' '**Source code:** Lib/pdb.py\n' '\n' '======================================================================\n' '\n' 'The module "pdb" defines an interactive source code debugger ' 'for\n' 'Python programs. It supports setting (conditional) ' 'breakpoints and\n' 'single stepping at the source line level, inspection of stack ' 'frames,\n' 'source code listing, and evaluation of arbitrary Python code ' 'in the\n' 'context of any stack frame. It also supports post-mortem ' 'debugging\n' 'and can be called under program control.\n' '\n' 'The debugger is extensible --- it is actually defined as the ' 'class\n' '"Pdb". This is currently undocumented but easily understood by ' 'reading\n' 'the source. The extension interface uses the modules "bdb" ' 'and "cmd".\n' '\n' 'The debugger\'s prompt is "(Pdb)". Typical usage to run a ' 'program under\n' 'control of the debugger is:\n' '\n' ' >>> import pdb\n' ' >>> import mymodule\n' " >>> pdb.run('mymodule.test()')\n" ' > <string>(0)?()\n' ' (Pdb) continue\n' ' > <string>(1)?()\n' ' (Pdb) continue\n' " NameError: 'spam'\n" ' > <string>(1)?()\n' ' (Pdb)\n' '\n' '"pdb.py" can also be invoked as a script to debug other ' 'scripts. For\n' 'example:\n' '\n' ' python -m pdb myscript.py\n' '\n' 'When invoked as a script, pdb will automatically enter ' 'post-mortem\n' 'debugging if the program being debugged exits abnormally. ' 'After post-\n' 'mortem debugging (or after normal exit of the program), pdb ' 'will\n' "restart the program. Automatic restarting preserves pdb's " 'state (such\n' 'as breakpoints) and in most cases is more useful than quitting ' 'the\n' "debugger upon program's exit.\n" '\n' 'New in version 2.4: Restarting post-mortem behavior added.\n' '\n' 'The typical usage to break into the debugger from a running ' 'program is\n' 'to insert\n' '\n' ' import pdb; pdb.set_trace()\n' '\n' 'at the location you want to break into the debugger. You can ' 'then\n' 'step through the code following this statement, and continue ' 'running\n' 'without the debugger using the "c" command.\n' '\n' 'The typical usage to inspect a crashed program is:\n' '\n' ' >>> import pdb\n' ' >>> import mymodule\n' ' >>> mymodule.test()\n' ' Traceback (most recent call last):\n' ' File "<stdin>", line 1, in ?\n' ' File "./mymodule.py", line 4, in test\n' ' test2()\n' ' File "./mymodule.py", line 3, in test2\n' ' print spam\n' ' NameError: spam\n' ' >>> pdb.pm()\n' ' > ./mymodule.py(3)test2()\n' ' -> print spam\n' ' (Pdb)\n' '\n' 'The module defines the following functions; each enters the ' 'debugger\n' 'in a slightly different way:\n' '\n' 'pdb.run(statement[, globals[, locals]])\n' '\n' ' Execute the *statement* (given as a string) under debugger ' 'control.\n' ' The debugger prompt appears before any code is executed; ' 'you can\n' ' set breakpoints and type "continue", or you can step ' 'through the\n' ' statement using "step" or "next" (all these commands are ' 'explained\n' ' below). The optional *globals* and *locals* arguments ' 'specify the\n' ' environment in which the code is executed; by default the\n' ' dictionary of the module "__main__" is used. (See the ' 'explanation\n' ' of the "exec" statement or the "eval()" built-in ' 'function.)\n' '\n' 'pdb.runeval(expression[, globals[, locals]])\n' '\n' ' Evaluate the *expression* (given as a string) under ' 'debugger\n' ' control. When "runeval()" returns, it returns the value of ' 'the\n' ' expression. Otherwise this function is similar to ' '"run()".\n' '\n' 'pdb.runcall(function[, argument, ...])\n' '\n' ' Call the *function* (a function or method object, not a ' 'string)\n' ' with the given arguments. When "runcall()" returns, it ' 'returns\n' ' whatever the function call returned. The debugger prompt ' 'appears\n' ' as soon as the function is entered.\n' '\n' 'pdb.set_trace()\n' '\n' ' Enter the debugger at the calling stack frame. This is ' 'useful to\n' ' hard-code a breakpoint at a given point in a program, even ' 'if the\n' ' code is not otherwise being debugged (e.g. when an ' 'assertion\n' ' fails).\n' '\n' 'pdb.post_mortem([traceback])\n' '\n' ' Enter post-mortem debugging of the given *traceback* ' 'object. If no\n' ' *traceback* is given, it uses the one of the exception that ' 'is\n' ' currently being handled (an exception must be being handled ' 'if the\n' ' default is to be used).\n' '\n' 'pdb.pm()\n' '\n' ' Enter post-mortem debugging of the traceback found in\n' ' "sys.last_traceback".\n' '\n' 'The "run*" functions and "set_trace()" are aliases for ' 'instantiating\n' 'the "Pdb" class and calling the method of the same name. If ' 'you want\n' 'to access further features, you have to do this yourself:\n' '\n' "class class pdb.Pdb(completekey='tab', stdin=None, " 'stdout=None, skip=None)\n' '\n' ' "Pdb" is the debugger class.\n' '\n' ' The *completekey*, *stdin* and *stdout* arguments are ' 'passed to the\n' ' underlying "cmd.Cmd" class; see the description there.\n' '\n' ' The *skip* argument, if given, must be an iterable of ' 'glob-style\n' ' module name patterns. The debugger will not step into ' 'frames that\n' ' originate in a module that matches one of these patterns. ' '[1]\n' '\n' ' Example call to enable tracing with *skip*:\n' '\n' " import pdb; pdb.Pdb(skip=['django.*']).set_trace()\n" '\n' ' New in version 2.7: The *skip* argument.\n' '\n' ' run(statement[, globals[, locals]])\n' ' runeval(expression[, globals[, locals]])\n' ' runcall(function[, argument, ...])\n' ' set_trace()\n' '\n' ' See the documentation for the functions explained ' 'above.\n', 'del': '\n' 'The "del" statement\n' '*******************\n' '\n' ' del_stmt ::= "del" target_list\n' '\n' 'Deletion is recursively defined very similar to the way assignment ' 'is\n' 'defined. Rather than spelling it out in full details, here are ' 'some\n' 'hints.\n' '\n' 'Deletion of a target list recursively deletes each target, from ' 'left\n' 'to right.\n' '\n' 'Deletion of a name removes the binding of that name from the local ' 'or\n' 'global namespace, depending on whether the name occurs in a ' '"global"\n' 'statement in the same code block. If the name is unbound, a\n' '"NameError" exception will be raised.\n' '\n' 'It is illegal to delete a name from the local namespace if it ' 'occurs\n' 'as a free variable in a nested block.\n' '\n' 'Deletion of attribute references, subscriptions and slicings is ' 'passed\n' 'to the primary object involved; deletion of a slicing is in ' 'general\n' 'equivalent to assignment of an empty slice of the right type (but ' 'even\n' 'this is determined by the sliced object).\n', 'dict': '\n' 'Dictionary displays\n' '*******************\n' '\n' 'A dictionary display is a possibly empty series of key/datum ' 'pairs\n' 'enclosed in curly braces:\n' '\n' ' dict_display ::= "{" [key_datum_list | ' 'dict_comprehension] "}"\n' ' key_datum_list ::= key_datum ("," key_datum)* [","]\n' ' key_datum ::= expression ":" expression\n' ' dict_comprehension ::= expression ":" expression comp_for\n' '\n' 'A dictionary display yields a new dictionary object.\n' '\n' 'If a comma-separated sequence of key/datum pairs is given, they ' 'are\n' 'evaluated from left to right to define the entries of the ' 'dictionary:\n' 'each key object is used as a key into the dictionary to store the\n' 'corresponding datum. This means that you can specify the same ' 'key\n' "multiple times in the key/datum list, and the final dictionary's " 'value\n' 'for that key will be the last one given.\n' '\n' 'A dict comprehension, in contrast to list and set comprehensions,\n' 'needs two expressions separated with a colon followed by the ' 'usual\n' '"for" and "if" clauses. When the comprehension is run, the ' 'resulting\n' 'key and value elements are inserted in the new dictionary in the ' 'order\n' 'they are produced.\n' '\n' 'Restrictions on the types of the key values are listed earlier in\n' 'section The standard type hierarchy. (To summarize, the key type\n' 'should be *hashable*, which excludes all mutable objects.) ' 'Clashes\n' 'between duplicate keys are not detected; the last datum ' '(textually\n' 'rightmost in the display) stored for a given key value prevails.\n', 'dynamic-features': '\n' 'Interaction with dynamic features\n' '*********************************\n' '\n' 'There are several cases where Python statements are ' 'illegal when used\n' 'in conjunction with nested scopes that contain free ' 'variables.\n' '\n' 'If a variable is referenced in an enclosing scope, it ' 'is illegal to\n' 'delete the name. An error will be reported at compile ' 'time.\n' '\n' 'If the wild card form of import --- "import *" --- is ' 'used in a\n' 'function and the function contains or is a nested ' 'block with free\n' 'variables, the compiler will raise a "SyntaxError".\n' '\n' 'If "exec" is used in a function and the function ' 'contains or is a\n' 'nested block with free variables, the compiler will ' 'raise a\n' '"SyntaxError" unless the exec explicitly specifies the ' 'local namespace\n' 'for the "exec". (In other words, "exec obj" would be ' 'illegal, but\n' '"exec obj in ns" would be legal.)\n' '\n' 'The "eval()", "execfile()", and "input()" functions ' 'and the "exec"\n' 'statement do not have access to the full environment ' 'for resolving\n' 'names. Names may be resolved in the local and global ' 'namespaces of\n' 'the caller. Free variables are not resolved in the ' 'nearest enclosing\n' 'namespace, but in the global namespace. [1] The "exec" ' 'statement and\n' 'the "eval()" and "execfile()" functions have optional ' 'arguments to\n' 'override the global and local namespace. If only one ' 'namespace is\n' 'specified, it is used for both.\n', 'else': '\n' 'The "if" statement\n' '******************\n' '\n' 'The "if" statement is used for conditional execution:\n' '\n' ' if_stmt ::= "if" expression ":" suite\n' ' ( "elif" expression ":" suite )*\n' ' ["else" ":" suite]\n' '\n' 'It selects exactly one of the suites by evaluating the expressions ' 'one\n' 'by one until one is found to be true (see section Boolean ' 'operations\n' 'for the definition of true and false); then that suite is ' 'executed\n' '(and no other part of the "if" statement is executed or ' 'evaluated).\n' 'If all expressions are false, the suite of the "else" clause, if\n' 'present, is executed.\n', 'exceptions': '\n' 'Exceptions\n' '**********\n' '\n' 'Exceptions are a means of breaking out of the normal flow of ' 'control\n' 'of a code block in order to handle errors or other ' 'exceptional\n' 'conditions. An exception is *raised* at the point where the ' 'error is\n' 'detected; it may be *handled* by the surrounding code block ' 'or by any\n' 'code block that directly or indirectly invoked the code ' 'block where\n' 'the error occurred.\n' '\n' 'The Python interpreter raises an exception when it detects a ' 'run-time\n' 'error (such as division by zero). A Python program can ' 'also\n' 'explicitly raise an exception with the "raise" statement. ' 'Exception\n' 'handlers are specified with the "try" ... "except" ' 'statement. The\n' '"finally" clause of such a statement can be used to specify ' 'cleanup\n' 'code which does not handle the exception, but is executed ' 'whether an\n' 'exception occurred or not in the preceding code.\n' '\n' 'Python uses the "termination" model of error handling: an ' 'exception\n' 'handler can find out what happened and continue execution at ' 'an outer\n' 'level, but it cannot repair the cause of the error and retry ' 'the\n' 'failing operation (except by re-entering the offending piece ' 'of code\n' 'from the top).\n' '\n' 'When an exception is not handled at all, the interpreter ' 'terminates\n' 'execution of the program, or returns to its interactive main ' 'loop. In\n' 'either case, it prints a stack backtrace, except when the ' 'exception is\n' '"SystemExit".\n' '\n' 'Exceptions are identified by class instances. The "except" ' 'clause is\n' 'selected depending on the class of the instance: it must ' 'reference the\n' 'class of the instance or a base class thereof. The instance ' 'can be\n' 'received by the handler and can carry additional information ' 'about the\n' 'exceptional condition.\n' '\n' 'Exceptions can also be identified by strings, in which case ' 'the\n' '"except" clause is selected by object identity. An ' 'arbitrary value\n' 'can be raised along with the identifying string which can be ' 'passed to\n' 'the handler.\n' '\n' 'Note: Messages to exceptions are not part of the Python ' 'API. Their\n' ' contents may change from one version of Python to the next ' 'without\n' ' warning and should not be relied on by code which will run ' 'under\n' ' multiple versions of the interpreter.\n' '\n' 'See also the description of the "try" statement in section ' 'The try\n' 'statement and "raise" statement in section The raise ' 'statement.\n' '\n' '-[ Footnotes ]-\n' '\n' '[1] This limitation occurs because the code that is executed ' 'by\n' ' these operations is not available at the time the module ' 'is\n' ' compiled.\n', 'exec': '\n' 'The "exec" statement\n' '********************\n' '\n' ' exec_stmt ::= "exec" or_expr ["in" expression ["," ' 'expression]]\n' '\n' 'This statement supports dynamic execution of Python code. The ' 'first\n' 'expression should evaluate to either a Unicode string, a ' '*Latin-1*\n' 'encoded string, an open file object, a code object, or a tuple. ' 'If it\n' 'is a string, the string is parsed as a suite of Python statements\n' 'which is then executed (unless a syntax error occurs). [1] If it ' 'is an\n' 'open file, the file is parsed until EOF and executed. If it is a ' 'code\n' 'object, it is simply executed. For the interpretation of a tuple, ' 'see\n' "below. In all cases, the code that's executed is expected to be " 'valid\n' 'as file input (see section File input). Be aware that the ' '"return"\n' 'and "yield" statements may not be used outside of function ' 'definitions\n' 'even within the context of code passed to the "exec" statement.\n' '\n' 'In all cases, if the optional parts are omitted, the code is ' 'executed\n' 'in the current scope. If only the first expression after "in" is\n' 'specified, it should be a dictionary, which will be used for both ' 'the\n' 'global and the local variables. If two expressions are given, ' 'they\n' 'are used for the global and local variables, respectively. If\n' 'provided, *locals* can be any mapping object. Remember that at ' 'module\n' 'level, globals and locals are the same dictionary. If two ' 'separate\n' 'objects are given as *globals* and *locals*, the code will be ' 'executed\n' 'as if it were embedded in a class definition.\n' '\n' 'The first expression may also be a tuple of length 2 or 3. In ' 'this\n' 'case, the optional parts must be omitted. The form "exec(expr,\n' 'globals)" is equivalent to "exec expr in globals", while the form\n' '"exec(expr, globals, locals)" is equivalent to "exec expr in ' 'globals,\n' 'locals". The tuple form of "exec" provides compatibility with ' 'Python\n' '3, where "exec" is a function rather than a statement.\n' '\n' 'Changed in version 2.4: Formerly, *locals* was required to be a\n' 'dictionary.\n' '\n' 'As a side effect, an implementation may insert additional keys ' 'into\n' 'the dictionaries given besides those corresponding to variable ' 'names\n' 'set by the executed code. For example, the current implementation ' 'may\n' 'add a reference to the dictionary of the built-in module ' '"__builtin__"\n' 'under the key "__builtins__" (!).\n' '\n' "**Programmer's hints:** dynamic evaluation of expressions is " 'supported\n' 'by the built-in function "eval()". The built-in functions ' '"globals()"\n' 'and "locals()" return the current global and local dictionary,\n' 'respectively, which may be useful to pass around for use by ' '"exec".\n' '\n' '-[ Footnotes ]-\n' '\n' '[1] Note that the parser only accepts the Unix-style end of line\n' ' convention. If you are reading the code from a file, make sure ' 'to\n' ' use *universal newlines* mode to convert Windows or Mac-style\n' ' newlines.\n', 'execmodel': '\n' 'Execution model\n' '***************\n' '\n' '\n' 'Naming and binding\n' '==================\n' '\n' '*Names* refer to objects. Names are introduced by name ' 'binding\n' 'operations. Each occurrence of a name in the program text ' 'refers to\n' 'the *binding* of that name established in the innermost ' 'function block\n' 'containing the use.\n' '\n' 'A *block* is a piece of Python program text that is executed ' 'as a\n' 'unit. The following are blocks: a module, a function body, ' 'and a class\n' 'definition. Each command typed interactively is a block. A ' 'script\n' 'file (a file given as standard input to the interpreter or ' 'specified\n' 'on the interpreter command line the first argument) is a code ' 'block.\n' 'A script command (a command specified on the interpreter ' 'command line\n' "with the '**-c**' option) is a code block. The file read by " 'the\n' 'built-in function "execfile()" is a code block. The string ' 'argument\n' 'passed to the built-in function "eval()" and to the "exec" ' 'statement\n' 'is a code block. The expression read and evaluated by the ' 'built-in\n' 'function "input()" is a code block.\n' '\n' 'A code block is executed in an *execution frame*. A frame ' 'contains\n' 'some administrative information (used for debugging) and ' 'determines\n' "where and how execution continues after the code block's " 'execution has\n' 'completed.\n' '\n' 'A *scope* defines the visibility of a name within a block. ' 'If a local\n' 'variable is defined in a block, its scope includes that ' 'block. If the\n' 'definition occurs in a function block, the scope extends to ' 'any blocks\n' 'contained within the defining one, unless a contained block ' 'introduces\n' 'a different binding for the name. The scope of names defined ' 'in a\n' 'class block is limited to the class block; it does not extend ' 'to the\n' 'code blocks of methods -- this includes generator expressions ' 'since\n' 'they are implemented using a function scope. This means that ' 'the\n' 'following will fail:\n' '\n' ' class A:\n' ' a = 42\n' ' b = list(a + i for i in range(10))\n' '\n' 'When a name is used in a code block, it is resolved using the ' 'nearest\n' 'enclosing scope. The set of all such scopes visible to a ' 'code block\n' "is called the block's *environment*.\n" '\n' 'If a name is bound in a block, it is a local variable of that ' 'block.\n' 'If a name is bound at the module level, it is a global ' 'variable. (The\n' 'variables of the module code block are local and global.) If ' 'a\n' 'variable is used in a code block but not defined there, it is ' 'a *free\n' 'variable*.\n' '\n' 'When a name is not found at all, a "NameError" exception is ' 'raised.\n' 'If the name refers to a local variable that has not been ' 'bound, a\n' '"UnboundLocalError" exception is raised. "UnboundLocalError" ' 'is a\n' 'subclass of "NameError".\n' '\n' 'The following constructs bind names: formal parameters to ' 'functions,\n' '"import" statements, class and function definitions (these ' 'bind the\n' 'class or function name in the defining block), and targets ' 'that are\n' 'identifiers if occurring in an assignment, "for" loop header, ' 'in the\n' 'second position of an "except" clause header or after "as" in ' 'a "with"\n' 'statement. The "import" statement of the form "from ... ' 'import *"\n' 'binds all names defined in the imported module, except those ' 'beginning\n' 'with an underscore. This form may only be used at the module ' 'level.\n' '\n' 'A target occurring in a "del" statement is also considered ' 'bound for\n' 'this purpose (though the actual semantics are to unbind the ' 'name). It\n' 'is illegal to unbind a name that is referenced by an ' 'enclosing scope;\n' 'the compiler will report a "SyntaxError".\n' '\n' 'Each assignment or import statement occurs within a block ' 'defined by a\n' 'class or function definition or at the module level (the ' 'top-level\n' 'code block).\n' '\n' 'If a name binding operation occurs anywhere within a code ' 'block, all\n' 'uses of the name within the block are treated as references ' 'to the\n' 'current block. This can lead to errors when a name is used ' 'within a\n' 'block before it is bound. This rule is subtle. Python lacks\n' 'declarations and allows name binding operations to occur ' 'anywhere\n' 'within a code block. The local variables of a code block can ' 'be\n' 'determined by scanning the entire text of the block for name ' 'binding\n' 'operations.\n' '\n' 'If the global statement occurs within a block, all uses of ' 'the name\n' 'specified in the statement refer to the binding of that name ' 'in the\n' 'top-level namespace. Names are resolved in the top-level ' 'namespace by\n' 'searching the global namespace, i.e. the namespace of the ' 'module\n' 'containing the code block, and the builtins namespace, the ' 'namespace\n' 'of the module "__builtin__". The global namespace is ' 'searched first.\n' 'If the name is not found there, the builtins namespace is ' 'searched.\n' 'The global statement must precede all uses of the name.\n' '\n' 'The builtins namespace associated with the execution of a ' 'code block\n' 'is actually found by looking up the name "__builtins__" in ' 'its global\n' 'namespace; this should be a dictionary or a module (in the ' 'latter case\n' "the module's dictionary is used). By default, when in the " '"__main__"\n' 'module, "__builtins__" is the built-in module "__builtin__" ' '(note: no\n' '\'s\'); when in any other module, "__builtins__" is an alias ' 'for the\n' 'dictionary of the "__builtin__" module itself. ' '"__builtins__" can be\n' 'set to a user-created dictionary to create a weak form of ' 'restricted\n' 'execution.\n' '\n' '**CPython implementation detail:** Users should not touch\n' '"__builtins__"; it is strictly an implementation detail. ' 'Users\n' 'wanting to override values in the builtins namespace should ' '"import"\n' 'the "__builtin__" (no \'s\') module and modify its ' 'attributes\n' 'appropriately.\n' '\n' 'The namespace for a module is automatically created the first ' 'time a\n' 'module is imported. The main module for a script is always ' 'called\n' '"__main__".\n' '\n' 'The "global" statement has the same scope as a name binding ' 'operation\n' 'in the same block. If the nearest enclosing scope for a free ' 'variable\n' 'contains a global statement, the free variable is treated as ' 'a global.\n' '\n' 'A class definition is an executable statement that may use ' 'and define\n' 'names. These references follow the normal rules for name ' 'resolution.\n' 'The namespace of the class definition becomes the attribute ' 'dictionary\n' 'of the class. Names defined at the class scope are not ' 'visible in\n' 'methods.\n' '\n' '\n' 'Interaction with dynamic features\n' '---------------------------------\n' '\n' 'There are several cases where Python statements are illegal ' 'when used\n' 'in conjunction with nested scopes that contain free ' 'variables.\n' '\n' 'If a variable is referenced in an enclosing scope, it is ' 'illegal to\n' 'delete the name. An error will be reported at compile time.\n' '\n' 'If the wild card form of import --- "import *" --- is used in ' 'a\n' 'function and the function contains or is a nested block with ' 'free\n' 'variables, the compiler will raise a "SyntaxError".\n' '\n' 'If "exec" is used in a function and the function contains or ' 'is a\n' 'nested block with free variables, the compiler will raise a\n' '"SyntaxError" unless the exec explicitly specifies the local ' 'namespace\n' 'for the "exec". (In other words, "exec obj" would be ' 'illegal, but\n' '"exec obj in ns" would be legal.)\n' '\n' 'The "eval()", "execfile()", and "input()" functions and the ' '"exec"\n' 'statement do not have access to the full environment for ' 'resolving\n' 'names. Names may be resolved in the local and global ' 'namespaces of\n' 'the caller. Free variables are not resolved in the nearest ' 'enclosing\n' 'namespace, but in the global namespace. [1] The "exec" ' 'statement and\n' 'the "eval()" and "execfile()" functions have optional ' 'arguments to\n' 'override the global and local namespace. If only one ' 'namespace is\n' 'specified, it is used for both.\n' '\n' '\n' 'Exceptions\n' '==========\n' '\n' 'Exceptions are a means of breaking out of the normal flow of ' 'control\n' 'of a code block in order to handle errors or other ' 'exceptional\n' 'conditions. An exception is *raised* at the point where the ' 'error is\n' 'detected; it may be *handled* by the surrounding code block ' 'or by any\n' 'code block that directly or indirectly invoked the code block ' 'where\n' 'the error occurred.\n' '\n' 'The Python interpreter raises an exception when it detects a ' 'run-time\n' 'error (such as division by zero). A Python program can also\n' 'explicitly raise an exception with the "raise" statement. ' 'Exception\n' 'handlers are specified with the "try" ... "except" ' 'statement. The\n' '"finally" clause of such a statement can be used to specify ' 'cleanup\n' 'code which does not handle the exception, but is executed ' 'whether an\n' 'exception occurred or not in the preceding code.\n' '\n' 'Python uses the "termination" model of error handling: an ' 'exception\n' 'handler can find out what happened and continue execution at ' 'an outer\n' 'level, but it cannot repair the cause of the error and retry ' 'the\n' 'failing operation (except by re-entering the offending piece ' 'of code\n' 'from the top).\n' '\n' 'When an exception is not handled at all, the interpreter ' 'terminates\n' 'execution of the program, or returns to its interactive main ' 'loop. In\n' 'either case, it prints a stack backtrace, except when the ' 'exception is\n' '"SystemExit".\n' '\n' 'Exceptions are identified by class instances. The "except" ' 'clause is\n' 'selected depending on the class of the instance: it must ' 'reference the\n' 'class of the instance or a base class thereof. The instance ' 'can be\n' 'received by the handler and can carry additional information ' 'about the\n' 'exceptional condition.\n' '\n' 'Exceptions can also be identified by strings, in which case ' 'the\n' '"except" clause is selected by object identity. An arbitrary ' 'value\n' 'can be raised along with the identifying string which can be ' 'passed to\n' 'the handler.\n' '\n' 'Note: Messages to exceptions are not part of the Python API. ' 'Their\n' ' contents may change from one version of Python to the next ' 'without\n' ' warning and should not be relied on by code which will run ' 'under\n' ' multiple versions of the interpreter.\n' '\n' 'See also the description of the "try" statement in section ' 'The try\n' 'statement and "raise" statement in section The raise ' 'statement.\n' '\n' '-[ Footnotes ]-\n' '\n' '[1] This limitation occurs because the code that is executed ' 'by\n' ' these operations is not available at the time the module ' 'is\n' ' compiled.\n', 'exprlists': '\n' 'Expression lists\n' '****************\n' '\n' ' expression_list ::= expression ( "," expression )* [","]\n' '\n' 'An expression list containing at least one comma yields a ' 'tuple. The\n' 'length of the tuple is the number of expressions in the ' 'list. The\n' 'expressions are evaluated from left to right.\n' '\n' 'The trailing comma is required only to create a single tuple ' '(a.k.a. a\n' '*singleton*); it is optional in all other cases. A single ' 'expression\n' "without a trailing comma doesn't create a tuple, but rather " 'yields the\n' 'value of that expression. (To create an empty tuple, use an ' 'empty pair\n' 'of parentheses: "()".)\n', 'floating': '\n' 'Floating point literals\n' '***********************\n' '\n' 'Floating point literals are described by the following ' 'lexical\n' 'definitions:\n' '\n' ' floatnumber ::= pointfloat | exponentfloat\n' ' pointfloat ::= [intpart] fraction | intpart "."\n' ' exponentfloat ::= (intpart | pointfloat) exponent\n' ' intpart ::= digit+\n' ' fraction ::= "." digit+\n' ' exponent ::= ("e" | "E") ["+" | "-"] digit+\n' '\n' 'Note that the integer and exponent parts of floating point ' 'numbers can\n' 'look like octal integers, but are interpreted using radix 10. ' 'For\n' 'example, "077e010" is legal, and denotes the same number as ' '"77e10".\n' 'The allowed range of floating point literals is ' 'implementation-\n' 'dependent. Some examples of floating point literals:\n' '\n' ' 3.14 10. .001 1e100 3.14e-10 0e0\n' '\n' 'Note that numeric literals do not include a sign; a phrase ' 'like "-1"\n' 'is actually an expression composed of the unary operator "-" ' 'and the\n' 'literal "1".\n', 'for': '\n' 'The "for" statement\n' '*******************\n' '\n' 'The "for" statement is used to iterate over the elements of a ' 'sequence\n' '(such as a string, tuple or list) or other iterable object:\n' '\n' ' for_stmt ::= "for" target_list "in" expression_list ":" suite\n' ' ["else" ":" suite]\n' '\n' 'The expression list is evaluated once; it should yield an iterable\n' 'object. An iterator is created for the result of the\n' '"expression_list". The suite is then executed once for each item\n' 'provided by the iterator, in the order of ascending indices. Each\n' 'item in turn is assigned to the target list using the standard ' 'rules\n' 'for assignments, and then the suite is executed. When the items ' 'are\n' 'exhausted (which is immediately when the sequence is empty), the ' 'suite\n' 'in the "else" clause, if present, is executed, and the loop\n' 'terminates.\n' '\n' 'A "break" statement executed in the first suite terminates the ' 'loop\n' 'without executing the "else" clause\'s suite. A "continue" ' 'statement\n' 'executed in the first suite skips the rest of the suite and ' 'continues\n' 'with the next item, or with the "else" clause if there was no next\n' 'item.\n' '\n' 'The suite may assign to the variable(s) in the target list; this ' 'does\n' 'not affect the next item assigned to it.\n' '\n' 'The target list is not deleted when the loop is finished, but if ' 'the\n' 'sequence is empty, it will not have been assigned to at all by the\n' 'loop. Hint: the built-in function "range()" returns a sequence of\n' 'integers suitable to emulate the effect of Pascal\'s "for i := a to ' 'b\n' 'do"; e.g., "range(3)" returns the list "[0, 1, 2]".\n' '\n' 'Note: There is a subtlety when the sequence is being modified by ' 'the\n' ' loop (this can only occur for mutable sequences, i.e. lists). An\n' ' internal counter is used to keep track of which item is used ' 'next,\n' ' and this is incremented on each iteration. When this counter ' 'has\n' ' reached the length of the sequence the loop terminates. This ' 'means\n' ' that if the suite deletes the current (or a previous) item from ' 'the\n' ' sequence, the next item will be skipped (since it gets the index ' 'of\n' ' the current item which has already been treated). Likewise, if ' 'the\n' ' suite inserts an item in the sequence before the current item, ' 'the\n' ' current item will be treated again the next time through the ' 'loop.\n' ' This can lead to nasty bugs that can be avoided by making a\n' ' temporary copy using a slice of the whole sequence, e.g.,\n' '\n' ' for x in a[:]:\n' ' if x < 0: a.remove(x)\n', 'formatstrings': '\n' 'Format String Syntax\n' '********************\n' '\n' 'The "str.format()" method and the "Formatter" class share ' 'the same\n' 'syntax for format strings (although in the case of ' '"Formatter",\n' 'subclasses can define their own format string syntax).\n' '\n' 'Format strings contain "replacement fields" surrounded by ' 'curly braces\n' '"{}". Anything that is not contained in braces is ' 'considered literal\n' 'text, which is copied unchanged to the output. If you ' 'need to include\n' 'a brace character in the literal text, it can be escaped ' 'by doubling:\n' '"{{" and "}}".\n' '\n' 'The grammar for a replacement field is as follows:\n' '\n' ' replacement_field ::= "{" [field_name] ["!" ' 'conversion] [":" format_spec] "}"\n' ' field_name ::= arg_name ("." attribute_name ' '| "[" element_index "]")*\n' ' arg_name ::= [identifier | integer]\n' ' attribute_name ::= identifier\n' ' element_index ::= integer | index_string\n' ' index_string ::= <any source character except ' '"]"> +\n' ' conversion ::= "r" | "s"\n' ' format_spec ::= <described in the next ' 'section>\n' '\n' 'In less formal terms, the replacement field can start ' 'with a\n' '*field_name* that specifies the object whose value is to ' 'be formatted\n' 'and inserted into the output instead of the replacement ' 'field. The\n' '*field_name* is optionally followed by a *conversion* ' 'field, which is\n' 'preceded by an exclamation point "\'!\'", and a ' '*format_spec*, which is\n' 'preceded by a colon "\':\'". These specify a non-default ' 'format for the\n' 'replacement value.\n' '\n' 'See also the Format Specification Mini-Language section.\n' '\n' 'The *field_name* itself begins with an *arg_name* that is ' 'either a\n' "number or a keyword. If it's a number, it refers to a " 'positional\n' "argument, and if it's a keyword, it refers to a named " 'keyword\n' 'argument. If the numerical arg_names in a format string ' 'are 0, 1, 2,\n' '... in sequence, they can all be omitted (not just some) ' 'and the\n' 'numbers 0, 1, 2, ... will be automatically inserted in ' 'that order.\n' 'Because *arg_name* is not quote-delimited, it is not ' 'possible to\n' 'specify arbitrary dictionary keys (e.g., the strings ' '"\'10\'" or\n' '"\':-]\'") within a format string. The *arg_name* can be ' 'followed by any\n' 'number of index or attribute expressions. An expression ' 'of the form\n' '"\'.name\'" selects the named attribute using ' '"getattr()", while an\n' 'expression of the form "\'[index]\'" does an index lookup ' 'using\n' '"__getitem__()".\n' '\n' 'Changed in version 2.7: The positional argument ' 'specifiers can be\n' 'omitted, so "\'{} {}\'" is equivalent to "\'{0} {1}\'".\n' '\n' 'Some simple format string examples:\n' '\n' ' "First, thou shalt count to {0}" # References first ' 'positional argument\n' ' "Bring me a {}" # Implicitly ' 'references the first positional argument\n' ' "From {} to {}" # Same as "From {0} ' 'to {1}"\n' ' "My quest is {name}" # References keyword ' "argument 'name'\n" ' "Weight in tons {0.weight}" # \'weight\' ' 'attribute of first positional arg\n' ' "Units destroyed: {players[0]}" # First element of ' "keyword argument 'players'.\n" '\n' 'The *conversion* field causes a type coercion before ' 'formatting.\n' 'Normally, the job of formatting a value is done by the ' '"__format__()"\n' 'method of the value itself. However, in some cases it is ' 'desirable to\n' 'force a type to be formatted as a string, overriding its ' 'own\n' 'definition of formatting. By converting the value to a ' 'string before\n' 'calling "__format__()", the normal formatting logic is ' 'bypassed.\n' '\n' 'Two conversion flags are currently supported: "\'!s\'" ' 'which calls\n' '"str()" on the value, and "\'!r\'" which calls "repr()".\n' '\n' 'Some examples:\n' '\n' ' "Harold\'s a clever {0!s}" # Calls str() on the ' 'argument first\n' ' "Bring out the holy {name!r}" # Calls repr() on the ' 'argument first\n' '\n' 'The *format_spec* field contains a specification of how ' 'the value\n' 'should be presented, including such details as field ' 'width, alignment,\n' 'padding, decimal precision and so on. Each value type ' 'can define its\n' 'own "formatting mini-language" or interpretation of the ' '*format_spec*.\n' '\n' 'Most built-in types support a common formatting ' 'mini-language, which\n' 'is described in the next section.\n' '\n' 'A *format_spec* field can also include nested replacement ' 'fields\n' 'within it. These nested replacement fields can contain ' 'only a field\n' 'name; conversion flags and format specifications are not ' 'allowed. The\n' 'replacement fields within the format_spec are substituted ' 'before the\n' '*format_spec* string is interpreted. This allows the ' 'formatting of a\n' 'value to be dynamically specified.\n' '\n' 'See the Format examples section for some examples.\n' '\n' '\n' 'Format Specification Mini-Language\n' '==================================\n' '\n' '"Format specifications" are used within replacement ' 'fields contained\n' 'within a format string to define how individual values ' 'are presented\n' '(see Format String Syntax). They can also be passed ' 'directly to the\n' 'built-in "format()" function. Each formattable type may ' 'define how\n' 'the format specification is to be interpreted.\n' '\n' 'Most built-in types implement the following options for ' 'format\n' 'specifications, although some of the formatting options ' 'are only\n' 'supported by the numeric types.\n' '\n' 'A general convention is that an empty format string ' '("""") produces\n' 'the same result as if you had called "str()" on the ' 'value. A non-empty\n' 'format string typically modifies the result.\n' '\n' 'The general form of a *standard format specifier* is:\n' '\n' ' format_spec ::= ' '[[fill]align][sign][#][0][width][,][.precision][type]\n' ' fill ::= <any character>\n' ' align ::= "<" | ">" | "=" | "^"\n' ' sign ::= "+" | "-" | " "\n' ' width ::= integer\n' ' precision ::= integer\n' ' type ::= "b" | "c" | "d" | "e" | "E" | "f" | ' '"F" | "g" | "G" | "n" | "o" | "s" | "x" | "X" | "%"\n' '\n' 'If a valid *align* value is specified, it can be preceded ' 'by a *fill*\n' 'character that can be any character and defaults to a ' 'space if\n' 'omitted. Note that it is not possible to use "{" and "}" ' 'as *fill*\n' 'char while using the "str.format()" method; this ' 'limitation however\n' 'doesn\'t affect the "format()" function.\n' '\n' 'The meaning of the various alignment options is as ' 'follows:\n' '\n' ' ' '+-----------+------------------------------------------------------------+\n' ' | Option | ' 'Meaning ' '|\n' ' ' '+===========+============================================================+\n' ' | "\'<\'" | Forces the field to be left-aligned ' 'within the available |\n' ' | | space (this is the default for most ' 'objects). |\n' ' ' '+-----------+------------------------------------------------------------+\n' ' | "\'>\'" | Forces the field to be right-aligned ' 'within the available |\n' ' | | space (this is the default for ' 'numbers). |\n' ' ' '+-----------+------------------------------------------------------------+\n' ' | "\'=\'" | Forces the padding to be placed after ' 'the sign (if any) |\n' ' | | but before the digits. This is used for ' 'printing fields |\n' " | | in the form '+000000120'. This alignment " 'option is only |\n' ' | | valid for numeric ' 'types. |\n' ' ' '+-----------+------------------------------------------------------------+\n' ' | "\'^\'" | Forces the field to be centered within ' 'the available |\n' ' | | ' 'space. ' '|\n' ' ' '+-----------+------------------------------------------------------------+\n' '\n' 'Note that unless a minimum field width is defined, the ' 'field width\n' 'will always be the same size as the data to fill it, so ' 'that the\n' 'alignment option has no meaning in this case.\n' '\n' 'The *sign* option is only valid for number types, and can ' 'be one of\n' 'the following:\n' '\n' ' ' '+-----------+------------------------------------------------------------+\n' ' | Option | ' 'Meaning ' '|\n' ' ' '+===========+============================================================+\n' ' | "\'+\'" | indicates that a sign should be used ' 'for both positive as |\n' ' | | well as negative ' 'numbers. |\n' ' ' '+-----------+------------------------------------------------------------+\n' ' | "\'-\'" | indicates that a sign should be used ' 'only for negative |\n' ' | | numbers (this is the default ' 'behavior). |\n' ' ' '+-----------+------------------------------------------------------------+\n' ' | space | indicates that a leading space should be ' 'used on positive |\n' ' | | numbers, and a minus sign on negative ' 'numbers. |\n' ' ' '+-----------+------------------------------------------------------------+\n' '\n' 'The "\'#\'" option is only valid for integers, and only ' 'for binary,\n' 'octal, or hexadecimal output. If present, it specifies ' 'that the\n' 'output will be prefixed by "\'0b\'", "\'0o\'", or ' '"\'0x\'", respectively.\n' '\n' 'The "\',\'" option signals the use of a comma for a ' 'thousands separator.\n' 'For a locale aware separator, use the "\'n\'" integer ' 'presentation type\n' 'instead.\n' '\n' 'Changed in version 2.7: Added the "\',\'" option (see ' 'also **PEP 378**).\n' '\n' '*width* is a decimal integer defining the minimum field ' 'width. If not\n' 'specified, then the field width will be determined by the ' 'content.\n' '\n' 'Preceding the *width* field by a zero ("\'0\'") character ' 'enables sign-\n' 'aware zero-padding for numeric types. This is equivalent ' 'to a *fill*\n' 'character of "\'0\'" with an *alignment* type of ' '"\'=\'".\n' '\n' 'The *precision* is a decimal number indicating how many ' 'digits should\n' 'be displayed after the decimal point for a floating point ' 'value\n' 'formatted with "\'f\'" and "\'F\'", or before and after ' 'the decimal point\n' 'for a floating point value formatted with "\'g\'" or ' '"\'G\'". For non-\n' 'number types the field indicates the maximum field size - ' 'in other\n' 'words, how many characters will be used from the field ' 'content. The\n' '*precision* is not allowed for integer values.\n' '\n' 'Finally, the *type* determines how the data should be ' 'presented.\n' '\n' 'The available string presentation types are:\n' '\n' ' ' '+-----------+------------------------------------------------------------+\n' ' | Type | ' 'Meaning ' '|\n' ' ' '+===========+============================================================+\n' ' | "\'s\'" | String format. This is the default ' 'type for strings and |\n' ' | | may be ' 'omitted. |\n' ' ' '+-----------+------------------------------------------------------------+\n' ' | None | The same as ' '"\'s\'". |\n' ' ' '+-----------+------------------------------------------------------------+\n' '\n' 'The available integer presentation types are:\n' '\n' ' ' '+-----------+------------------------------------------------------------+\n' ' | Type | ' 'Meaning ' '|\n' ' ' '+===========+============================================================+\n' ' | "\'b\'" | Binary format. Outputs the number in ' 'base 2. |\n' ' ' '+-----------+------------------------------------------------------------+\n' ' | "\'c\'" | Character. Converts the integer to the ' 'corresponding |\n' ' | | unicode character before ' 'printing. |\n' ' ' '+-----------+------------------------------------------------------------+\n' ' | "\'d\'" | Decimal Integer. Outputs the number in ' 'base 10. |\n' ' ' '+-----------+------------------------------------------------------------+\n' ' | "\'o\'" | Octal format. Outputs the number in ' 'base 8. |\n' ' ' '+-----------+------------------------------------------------------------+\n' ' | "\'x\'" | Hex format. Outputs the number in base ' '16, using lower- |\n' ' | | case letters for the digits above ' '9. |\n' ' ' '+-----------+------------------------------------------------------------+\n' ' | "\'X\'" | Hex format. Outputs the number in base ' '16, using upper- |\n' ' | | case letters for the digits above ' '9. |\n' ' ' '+-----------+------------------------------------------------------------+\n' ' | "\'n\'" | Number. This is the same as "\'d\'", ' 'except that it uses the |\n' ' | | current locale setting to insert the ' 'appropriate number |\n' ' | | separator ' 'characters. |\n' ' ' '+-----------+------------------------------------------------------------+\n' ' | None | The same as ' '"\'d\'". |\n' ' ' '+-----------+------------------------------------------------------------+\n' '\n' 'In addition to the above presentation types, integers can ' 'be formatted\n' 'with the floating point presentation types listed below ' '(except "\'n\'"\n' 'and None). When doing so, "float()" is used to convert ' 'the integer to\n' 'a floating point number before formatting.\n' '\n' 'The available presentation types for floating point and ' 'decimal values\n' 'are:\n' '\n' ' ' '+-----------+------------------------------------------------------------+\n' ' | Type | ' 'Meaning ' '|\n' ' ' '+===========+============================================================+\n' ' | "\'e\'" | Exponent notation. Prints the number ' 'in scientific |\n' " | | notation using the letter 'e' to " 'indicate the exponent. |\n' ' | | The default precision is ' '"6". |\n' ' ' '+-----------+------------------------------------------------------------+\n' ' | "\'E\'" | Exponent notation. Same as "\'e\'" ' 'except it uses an upper |\n' " | | case 'E' as the separator " 'character. |\n' ' ' '+-----------+------------------------------------------------------------+\n' ' | "\'f\'" | Fixed point. Displays the number as a ' 'fixed-point number. |\n' ' | | The default precision is ' '"6". |\n' ' ' '+-----------+------------------------------------------------------------+\n' ' | "\'F\'" | Fixed point. Same as ' '"\'f\'". |\n' ' ' '+-----------+------------------------------------------------------------+\n' ' | "\'g\'" | General format. For a given precision ' '"p >= 1", this |\n' ' | | rounds the number to "p" significant ' 'digits and then |\n' ' | | formats the result in either fixed-point ' 'format or in |\n' ' | | scientific notation, depending on its ' 'magnitude. The |\n' ' | | precise rules are as follows: suppose ' 'that the result |\n' ' | | formatted with presentation type "\'e\'" ' 'and precision "p-1" |\n' ' | | would have exponent "exp". Then if "-4 ' '<= exp < p", the |\n' ' | | number is formatted with presentation ' 'type "\'f\'" and |\n' ' | | precision "p-1-exp". Otherwise, the ' 'number is formatted |\n' ' | | with presentation type "\'e\'" and ' 'precision "p-1". In both |\n' ' | | cases insignificant trailing zeros are ' 'removed from the |\n' ' | | significand, and the decimal point is ' 'also removed if |\n' ' | | there are no remaining digits following ' 'it. Positive and |\n' ' | | negative infinity, positive and negative ' 'zero, and nans, |\n' ' | | are formatted as "inf", "-inf", "0", ' '"-0" and "nan" |\n' ' | | respectively, regardless of the ' 'precision. A precision of |\n' ' | | "0" is treated as equivalent to a ' 'precision of "1". The |\n' ' | | default precision is ' '"6". |\n' ' ' '+-----------+------------------------------------------------------------+\n' ' | "\'G\'" | General format. Same as "\'g\'" except ' 'switches to "\'E\'" if |\n' ' | | the number gets too large. The ' 'representations of infinity |\n' ' | | and NaN are uppercased, ' 'too. |\n' ' ' '+-----------+------------------------------------------------------------+\n' ' | "\'n\'" | Number. This is the same as "\'g\'", ' 'except that it uses the |\n' ' | | current locale setting to insert the ' 'appropriate number |\n' ' | | separator ' 'characters. |\n' ' ' '+-----------+------------------------------------------------------------+\n' ' | "\'%\'" | Percentage. Multiplies the number by ' '100 and displays in |\n' ' | | fixed ("\'f\'") format, followed by a ' 'percent sign. |\n' ' ' '+-----------+------------------------------------------------------------+\n' ' | None | The same as ' '"\'g\'". |\n' ' ' '+-----------+------------------------------------------------------------+\n' '\n' '\n' 'Format examples\n' '===============\n' '\n' 'This section contains examples of the new format syntax ' 'and comparison\n' 'with the old "%"-formatting.\n' '\n' 'In most of the cases the syntax is similar to the old ' '"%"-formatting,\n' 'with the addition of the "{}" and with ":" used instead ' 'of "%". For\n' 'example, "\'%03.2f\'" can be translated to ' '"\'{:03.2f}\'".\n' '\n' 'The new format syntax also supports new and different ' 'options, shown\n' 'in the follow examples.\n' '\n' 'Accessing arguments by position:\n' '\n' " >>> '{0}, {1}, {2}'.format('a', 'b', 'c')\n" " 'a, b, c'\n" " >>> '{}, {}, {}'.format('a', 'b', 'c') # 2.7+ only\n" " 'a, b, c'\n" " >>> '{2}, {1}, {0}'.format('a', 'b', 'c')\n" " 'c, b, a'\n" " >>> '{2}, {1}, {0}'.format(*'abc') # unpacking " 'argument sequence\n' " 'c, b, a'\n" " >>> '{0}{1}{0}'.format('abra', 'cad') # arguments' " 'indices can be repeated\n' " 'abracadabra'\n" '\n' 'Accessing arguments by name:\n' '\n' " >>> 'Coordinates: {latitude}, " "{longitude}'.format(latitude='37.24N', " "longitude='-115.81W')\n" " 'Coordinates: 37.24N, -115.81W'\n" " >>> coord = {'latitude': '37.24N', 'longitude': " "'-115.81W'}\n" " >>> 'Coordinates: {latitude}, " "{longitude}'.format(**coord)\n" " 'Coordinates: 37.24N, -115.81W'\n" '\n' "Accessing arguments' attributes:\n" '\n' ' >>> c = 3-5j\n' " >>> ('The complex number {0} is formed from the real " "part {0.real} '\n" " ... 'and the imaginary part {0.imag}.').format(c)\n" " 'The complex number (3-5j) is formed from the real " "part 3.0 and the imaginary part -5.0.'\n" ' >>> class Point(object):\n' ' ... def __init__(self, x, y):\n' ' ... self.x, self.y = x, y\n' ' ... def __str__(self):\n' " ... return 'Point({self.x}, " "{self.y})'.format(self=self)\n" ' ...\n' ' >>> str(Point(4, 2))\n' " 'Point(4, 2)'\n" '\n' "Accessing arguments' items:\n" '\n' ' >>> coord = (3, 5)\n' " >>> 'X: {0[0]}; Y: {0[1]}'.format(coord)\n" " 'X: 3; Y: 5'\n" '\n' 'Replacing "%s" and "%r":\n' '\n' ' >>> "repr() shows quotes: {!r}; str() doesn\'t: ' '{!s}".format(\'test1\', \'test2\')\n' ' "repr() shows quotes: \'test1\'; str() doesn\'t: ' 'test2"\n' '\n' 'Aligning the text and specifying a width:\n' '\n' " >>> '{:<30}'.format('left aligned')\n" " 'left aligned '\n" " >>> '{:>30}'.format('right aligned')\n" " ' right aligned'\n" " >>> '{:^30}'.format('centered')\n" " ' centered '\n" " >>> '{:*^30}'.format('centered') # use '*' as a fill " 'char\n' " '***********centered***********'\n" '\n' 'Replacing "%+f", "%-f", and "% f" and specifying a sign:\n' '\n' " >>> '{:+f}; {:+f}'.format(3.14, -3.14) # show it " 'always\n' " '+3.140000; -3.140000'\n" " >>> '{: f}; {: f}'.format(3.14, -3.14) # show a space " 'for positive numbers\n' " ' 3.140000; -3.140000'\n" " >>> '{:-f}; {:-f}'.format(3.14, -3.14) # show only " "the minus -- same as '{:f}; {:f}'\n" " '3.140000; -3.140000'\n" '\n' 'Replacing "%x" and "%o" and converting the value to ' 'different bases:\n' '\n' ' >>> # format also supports binary numbers\n' ' >>> "int: {0:d}; hex: {0:x}; oct: {0:o}; bin: ' '{0:b}".format(42)\n' " 'int: 42; hex: 2a; oct: 52; bin: 101010'\n" ' >>> # with 0x, 0o, or 0b as prefix:\n' ' >>> "int: {0:d}; hex: {0:#x}; oct: {0:#o}; bin: ' '{0:#b}".format(42)\n' " 'int: 42; hex: 0x2a; oct: 0o52; bin: 0b101010'\n" '\n' 'Using the comma as a thousands separator:\n' '\n' " >>> '{:,}'.format(1234567890)\n" " '1,234,567,890'\n" '\n' 'Expressing a percentage:\n' '\n' ' >>> points = 19.5\n' ' >>> total = 22\n' " >>> 'Correct answers: {:.2%}'.format(points/total)\n" " 'Correct answers: 88.64%'\n" '\n' 'Using type-specific formatting:\n' '\n' ' >>> import datetime\n' ' >>> d = datetime.datetime(2010, 7, 4, 12, 15, 58)\n' " >>> '{:%Y-%m-%d %H:%M:%S}'.format(d)\n" " '2010-07-04 12:15:58'\n" '\n' 'Nesting arguments and more complex examples:\n' '\n' " >>> for align, text in zip('<^>', ['left', 'center', " "'right']):\n" " ... '{0:{fill}{align}16}'.format(text, fill=align, " 'align=align)\n' ' ...\n' " 'left<<<<<<<<<<<<'\n" " '^^^^^center^^^^^'\n" " '>>>>>>>>>>>right'\n" ' >>>\n' ' >>> octets = [192, 168, 0, 1]\n' " >>> '{:02X}{:02X}{:02X}{:02X}'.format(*octets)\n" " 'C0A80001'\n" ' >>> int(_, 16)\n' ' 3232235521\n' ' >>>\n' ' >>> width = 5\n' ' >>> for num in range(5,12):\n' " ... for base in 'dXob':\n" " ... print '{0:{width}{base}}'.format(num, " 'base=base, width=width),\n' ' ... print\n' ' ...\n' ' 5 5 5 101\n' ' 6 6 6 110\n' ' 7 7 7 111\n' ' 8 8 10 1000\n' ' 9 9 11 1001\n' ' 10 A 12 1010\n' ' 11 B 13 1011\n', 'function': '\n' 'Function definitions\n' '********************\n' '\n' 'A function definition defines a user-defined function object ' '(see\n' 'section The standard type hierarchy):\n' '\n' ' decorated ::= decorators (classdef | funcdef)\n' ' decorators ::= decorator+\n' ' decorator ::= "@" dotted_name ["(" [argument_list ' '[","]] ")"] NEWLINE\n' ' funcdef ::= "def" funcname "(" [parameter_list] ")" ' '":" suite\n' ' dotted_name ::= identifier ("." identifier)*\n' ' parameter_list ::= (defparameter ",")*\n' ' ( "*" identifier ["," "**" identifier]\n' ' | "**" identifier\n' ' | defparameter [","] )\n' ' defparameter ::= parameter ["=" expression]\n' ' sublist ::= parameter ("," parameter)* [","]\n' ' parameter ::= identifier | "(" sublist ")"\n' ' funcname ::= identifier\n' '\n' 'A function definition is an executable statement. Its ' 'execution binds\n' 'the function name in the current local namespace to a function ' 'object\n' '(a wrapper around the executable code for the function). ' 'This\n' 'function object contains a reference to the current global ' 'namespace\n' 'as the global namespace to be used when the function is ' 'called.\n' '\n' 'The function definition does not execute the function body; ' 'this gets\n' 'executed only when the function is called. [3]\n' '\n' 'A function definition may be wrapped by one or more ' '*decorator*\n' 'expressions. Decorator expressions are evaluated when the ' 'function is\n' 'defined, in the scope that contains the function definition. ' 'The\n' 'result must be a callable, which is invoked with the function ' 'object\n' 'as the only argument. The returned value is bound to the ' 'function name\n' 'instead of the function object. Multiple decorators are ' 'applied in\n' 'nested fashion. For example, the following code:\n' '\n' ' @f1(arg)\n' ' @f2\n' ' def func(): pass\n' '\n' 'is equivalent to:\n' '\n' ' def func(): pass\n' ' func = f1(arg)(f2(func))\n' '\n' 'When one or more top-level *parameters* have the form ' '*parameter* "="\n' '*expression*, the function is said to have "default parameter ' 'values."\n' 'For a parameter with a default value, the corresponding ' '*argument* may\n' "be omitted from a call, in which case the parameter's default " 'value is\n' 'substituted. If a parameter has a default value, all ' 'following\n' 'parameters must also have a default value --- this is a ' 'syntactic\n' 'restriction that is not expressed by the grammar.\n' '\n' '**Default parameter values are evaluated when the function ' 'definition\n' 'is executed.** This means that the expression is evaluated ' 'once, when\n' 'the function is defined, and that the same "pre-computed" ' 'value is\n' 'used for each call. This is especially important to ' 'understand when a\n' 'default parameter is a mutable object, such as a list or a ' 'dictionary:\n' 'if the function modifies the object (e.g. by appending an item ' 'to a\n' 'list), the default value is in effect modified. This is ' 'generally not\n' 'what was intended. A way around this is to use "None" as ' 'the\n' 'default, and explicitly test for it in the body of the ' 'function, e.g.:\n' '\n' ' def whats_on_the_telly(penguin=None):\n' ' if penguin is None:\n' ' penguin = []\n' ' penguin.append("property of the zoo")\n' ' return penguin\n' '\n' 'Function call semantics are described in more detail in ' 'section Calls.\n' 'A function call always assigns values to all parameters ' 'mentioned in\n' 'the parameter list, either from position arguments, from ' 'keyword\n' 'arguments, or from default values. If the form ' '""*identifier"" is\n' 'present, it is initialized to a tuple receiving any excess ' 'positional\n' 'parameters, defaulting to the empty tuple. If the form\n' '""**identifier"" is present, it is initialized to a new ' 'dictionary\n' 'receiving any excess keyword arguments, defaulting to a new ' 'empty\n' 'dictionary.\n' '\n' 'It is also possible to create anonymous functions (functions ' 'not bound\n' 'to a name), for immediate use in expressions. This uses ' 'lambda\n' 'expressions, described in section Lambdas. Note that the ' 'lambda\n' 'expression is merely a shorthand for a simplified function ' 'definition;\n' 'a function defined in a ""def"" statement can be passed around ' 'or\n' 'assigned to another name just like a function defined by a ' 'lambda\n' 'expression. The ""def"" form is actually more powerful since ' 'it\n' 'allows the execution of multiple statements.\n' '\n' "**Programmer's note:** Functions are first-class objects. A " '""def""\n' 'form executed inside a function definition defines a local ' 'function\n' 'that can be returned or passed around. Free variables used in ' 'the\n' 'nested function can access the local variables of the ' 'function\n' 'containing the def. See section Naming and binding for ' 'details.\n', 'global': '\n' 'The "global" statement\n' '**********************\n' '\n' ' global_stmt ::= "global" identifier ("," identifier)*\n' '\n' 'The "global" statement is a declaration which holds for the ' 'entire\n' 'current code block. It means that the listed identifiers are to ' 'be\n' 'interpreted as globals. It would be impossible to assign to a ' 'global\n' 'variable without "global", although free variables may refer to\n' 'globals without being declared global.\n' '\n' 'Names listed in a "global" statement must not be used in the ' 'same code\n' 'block textually preceding that "global" statement.\n' '\n' 'Names listed in a "global" statement must not be defined as ' 'formal\n' 'parameters or in a "for" loop control target, "class" ' 'definition,\n' 'function definition, or "import" statement.\n' '\n' '**CPython implementation detail:** The current implementation ' 'does not\n' 'enforce the latter two restrictions, but programs should not ' 'abuse\n' 'this freedom, as future implementations may enforce them or ' 'silently\n' 'change the meaning of the program.\n' '\n' '**Programmer\'s note:** the "global" is a directive to the ' 'parser. It\n' 'applies only to code parsed at the same time as the "global"\n' 'statement. In particular, a "global" statement contained in an ' '"exec"\n' 'statement does not affect the code block *containing* the ' '"exec"\n' 'statement, and code contained in an "exec" statement is ' 'unaffected by\n' '"global" statements in the code containing the "exec" ' 'statement. The\n' 'same applies to the "eval()", "execfile()" and "compile()" ' 'functions.\n', 'id-classes': '\n' 'Reserved classes of identifiers\n' '*******************************\n' '\n' 'Certain classes of identifiers (besides keywords) have ' 'special\n' 'meanings. These classes are identified by the patterns of ' 'leading and\n' 'trailing underscore characters:\n' '\n' '"_*"\n' ' Not imported by "from module import *". The special ' 'identifier "_"\n' ' is used in the interactive interpreter to store the ' 'result of the\n' ' last evaluation; it is stored in the "__builtin__" ' 'module. When\n' ' not in interactive mode, "_" has no special meaning and ' 'is not\n' ' defined. See section The import statement.\n' '\n' ' Note: The name "_" is often used in conjunction with\n' ' internationalization; refer to the documentation for ' 'the\n' ' "gettext" module for more information on this ' 'convention.\n' '\n' '"__*__"\n' ' System-defined names. These names are defined by the ' 'interpreter\n' ' and its implementation (including the standard library). ' 'Current\n' ' system names are discussed in the Special method names ' 'section and\n' ' elsewhere. More will likely be defined in future ' 'versions of\n' ' Python. *Any* use of "__*__" names, in any context, that ' 'does not\n' ' follow explicitly documented use, is subject to breakage ' 'without\n' ' warning.\n' '\n' '"__*"\n' ' Class-private names. Names in this category, when used ' 'within the\n' ' context of a class definition, are re-written to use a ' 'mangled form\n' ' to help avoid name clashes between "private" attributes ' 'of base and\n' ' derived classes. See section Identifiers (Names).\n', 'identifiers': '\n' 'Identifiers and keywords\n' '************************\n' '\n' 'Identifiers (also referred to as *names*) are described by ' 'the\n' 'following lexical definitions:\n' '\n' ' identifier ::= (letter|"_") (letter | digit | "_")*\n' ' letter ::= lowercase | uppercase\n' ' lowercase ::= "a"..."z"\n' ' uppercase ::= "A"..."Z"\n' ' digit ::= "0"..."9"\n' '\n' 'Identifiers are unlimited in length. Case is significant.\n' '\n' '\n' 'Keywords\n' '========\n' '\n' 'The following identifiers are used as reserved words, or ' '*keywords* of\n' 'the language, and cannot be used as ordinary identifiers. ' 'They must\n' 'be spelled exactly as written here:\n' '\n' ' and del from not while\n' ' as elif global or with\n' ' assert else if pass yield\n' ' break except import print\n' ' class exec in raise\n' ' continue finally is return\n' ' def for lambda try\n' '\n' 'Changed in version 2.4: "None" became a constant and is now ' 'recognized\n' 'by the compiler as a name for the built-in object "None". ' 'Although it\n' 'is not a keyword, you cannot assign a different object to ' 'it.\n' '\n' 'Changed in version 2.5: Using "as" and "with" as ' 'identifiers triggers\n' 'a warning. To use them as keywords, enable the ' '"with_statement"\n' 'future feature .\n' '\n' 'Changed in version 2.6: "as" and "with" are full keywords.\n' '\n' '\n' 'Reserved classes of identifiers\n' '===============================\n' '\n' 'Certain classes of identifiers (besides keywords) have ' 'special\n' 'meanings. These classes are identified by the patterns of ' 'leading and\n' 'trailing underscore characters:\n' '\n' '"_*"\n' ' Not imported by "from module import *". The special ' 'identifier "_"\n' ' is used in the interactive interpreter to store the ' 'result of the\n' ' last evaluation; it is stored in the "__builtin__" ' 'module. When\n' ' not in interactive mode, "_" has no special meaning and ' 'is not\n' ' defined. See section The import statement.\n' '\n' ' Note: The name "_" is often used in conjunction with\n' ' internationalization; refer to the documentation for ' 'the\n' ' "gettext" module for more information on this ' 'convention.\n' '\n' '"__*__"\n' ' System-defined names. These names are defined by the ' 'interpreter\n' ' and its implementation (including the standard ' 'library). Current\n' ' system names are discussed in the Special method names ' 'section and\n' ' elsewhere. More will likely be defined in future ' 'versions of\n' ' Python. *Any* use of "__*__" names, in any context, ' 'that does not\n' ' follow explicitly documented use, is subject to breakage ' 'without\n' ' warning.\n' '\n' '"__*"\n' ' Class-private names. Names in this category, when used ' 'within the\n' ' context of a class definition, are re-written to use a ' 'mangled form\n' ' to help avoid name clashes between "private" attributes ' 'of base and\n' ' derived classes. See section Identifiers (Names).\n', 'if': '\n' 'The "if" statement\n' '******************\n' '\n' 'The "if" statement is used for conditional execution:\n' '\n' ' if_stmt ::= "if" expression ":" suite\n' ' ( "elif" expression ":" suite )*\n' ' ["else" ":" suite]\n' '\n' 'It selects exactly one of the suites by evaluating the expressions ' 'one\n' 'by one until one is found to be true (see section Boolean ' 'operations\n' 'for the definition of true and false); then that suite is executed\n' '(and no other part of the "if" statement is executed or evaluated).\n' 'If all expressions are false, the suite of the "else" clause, if\n' 'present, is executed.\n', 'imaginary': '\n' 'Imaginary literals\n' '******************\n' '\n' 'Imaginary literals are described by the following lexical ' 'definitions:\n' '\n' ' imagnumber ::= (floatnumber | intpart) ("j" | "J")\n' '\n' 'An imaginary literal yields a complex number with a real part ' 'of 0.0.\n' 'Complex numbers are represented as a pair of floating point ' 'numbers\n' 'and have the same restrictions on their range. To create a ' 'complex\n' 'number with a nonzero real part, add a floating point number ' 'to it,\n' 'e.g., "(3+4j)". Some examples of imaginary literals:\n' '\n' ' 3.14j 10.j 10j .001j 1e100j 3.14e-10j\n', 'import': '\n' 'The "import" statement\n' '**********************\n' '\n' ' import_stmt ::= "import" module ["as" name] ( "," module ' '["as" name] )*\n' ' | "from" relative_module "import" identifier ' '["as" name]\n' ' ( "," identifier ["as" name] )*\n' ' | "from" relative_module "import" "(" ' 'identifier ["as" name]\n' ' ( "," identifier ["as" name] )* [","] ")"\n' ' | "from" module "import" "*"\n' ' module ::= (identifier ".")* identifier\n' ' relative_module ::= "."* module | "."+\n' ' name ::= identifier\n' '\n' 'Import statements are executed in two steps: (1) find a module, ' 'and\n' 'initialize it if necessary; (2) define a name or names in the ' 'local\n' 'namespace (of the scope where the "import" statement occurs). ' 'The\n' 'statement comes in two forms differing on whether it uses the ' '"from"\n' 'keyword. The first form (without "from") repeats these steps for ' 'each\n' 'identifier in the list. The form with "from" performs step (1) ' 'once,\n' 'and then performs step (2) repeatedly.\n' '\n' 'To understand how step (1) occurs, one must first understand ' 'how\n' 'Python handles hierarchical naming of modules. To help organize\n' 'modules and provide a hierarchy in naming, Python has a concept ' 'of\n' 'packages. A package can contain other packages and modules ' 'while\n' 'modules cannot contain other modules or packages. From a file ' 'system\n' 'perspective, packages are directories and modules are files.\n' '\n' 'Once the name of the module is known (unless otherwise ' 'specified, the\n' 'term "module" will refer to both packages and modules), ' 'searching for\n' 'the module or package can begin. The first place checked is\n' '"sys.modules", the cache of all modules that have been imported\n' 'previously. If the module is found there then it is used in step ' '(2)\n' 'of import.\n' '\n' 'If the module is not found in the cache, then "sys.meta_path" ' 'is\n' 'searched (the specification for "sys.meta_path" can be found in ' '**PEP\n' '302**). The object is a list of *finder* objects which are ' 'queried in\n' 'order as to whether they know how to load the module by calling ' 'their\n' '"find_module()" method with the name of the module. If the ' 'module\n' 'happens to be contained within a package (as denoted by the ' 'existence\n' 'of a dot in the name), then a second argument to "find_module()" ' 'is\n' 'given as the value of the "__path__" attribute from the parent ' 'package\n' '(everything up to the last dot in the name of the module being\n' 'imported). If a finder can find the module it returns a ' '*loader*\n' '(discussed later) or returns "None".\n' '\n' 'If none of the finders on "sys.meta_path" are able to find the ' 'module\n' 'then some implicitly defined finders are queried. ' 'Implementations of\n' 'Python vary in what implicit meta path finders are defined. The ' 'one\n' 'they all do define, though, is one that handles ' '"sys.path_hooks",\n' '"sys.path_importer_cache", and "sys.path".\n' '\n' 'The implicit finder searches for the requested module in the ' '"paths"\n' 'specified in one of two places ("paths" do not have to be file ' 'system\n' 'paths). If the module being imported is supposed to be ' 'contained\n' 'within a package then the second argument passed to ' '"find_module()",\n' '"__path__" on the parent package, is used as the source of ' 'paths. If\n' 'the module is not contained in a package then "sys.path" is used ' 'as\n' 'the source of paths.\n' '\n' 'Once the source of paths is chosen it is iterated over to find ' 'a\n' 'finder that can handle that path. The dict at\n' '"sys.path_importer_cache" caches finders for paths and is ' 'checked for\n' 'a finder. If the path does not have a finder cached then\n' '"sys.path_hooks" is searched by calling each object in the list ' 'with a\n' 'single argument of the path, returning a finder or raises\n' '"ImportError". If a finder is returned then it is cached in\n' '"sys.path_importer_cache" and then used for that path entry. If ' 'no\n' 'finder can be found but the path exists then a value of "None" ' 'is\n' 'stored in "sys.path_importer_cache" to signify that an implicit, ' 'file-\n' 'based finder that handles modules stored as individual files ' 'should be\n' 'used for that path. If the path does not exist then a finder ' 'which\n' 'always returns "None" is placed in the cache for the path.\n' '\n' 'If no finder can find the module then "ImportError" is raised.\n' 'Otherwise some finder returned a loader whose "load_module()" ' 'method\n' 'is called with the name of the module to load (see **PEP 302** ' 'for the\n' 'original definition of loaders). A loader has several ' 'responsibilities\n' 'to perform on a module it loads. First, if the module already ' 'exists\n' 'in "sys.modules" (a possibility if the loader is called outside ' 'of the\n' 'import machinery) then it is to use that module for ' 'initialization and\n' 'not a new module. But if the module does not exist in ' '"sys.modules"\n' 'then it is to be added to that dict before initialization ' 'begins. If\n' 'an error occurs during loading of the module and it was added ' 'to\n' '"sys.modules" it is to be removed from the dict. If an error ' 'occurs\n' 'but the module was already in "sys.modules" it is left in the ' 'dict.\n' '\n' 'The loader must set several attributes on the module. "__name__" ' 'is to\n' 'be set to the name of the module. "__file__" is to be the "path" ' 'to\n' 'the file unless the module is built-in (and thus listed in\n' '"sys.builtin_module_names") in which case the attribute is not ' 'set. If\n' 'what is being imported is a package then "__path__" is to be set ' 'to a\n' 'list of paths to be searched when looking for modules and ' 'packages\n' 'contained within the package being imported. "__package__" is ' 'optional\n' 'but should be set to the name of package that contains the ' 'module or\n' 'package (the empty string is used for module not contained in a\n' 'package). "__loader__" is also optional but should be set to ' 'the\n' 'loader object that is loading the module.\n' '\n' 'If an error occurs during loading then the loader raises ' '"ImportError"\n' 'if some other exception is not already being propagated. ' 'Otherwise the\n' 'loader returns the module that was loaded and initialized.\n' '\n' 'When step (1) finishes without raising an exception, step (2) ' 'can\n' 'begin.\n' '\n' 'The first form of "import" statement binds the module name in ' 'the\n' 'local namespace to the module object, and then goes on to import ' 'the\n' 'next identifier, if any. If the module name is followed by ' '"as", the\n' 'name following "as" is used as the local name for the module.\n' '\n' 'The "from" form does not bind the module name: it goes through ' 'the\n' 'list of identifiers, looks each one of them up in the module ' 'found in\n' 'step (1), and binds the name in the local namespace to the ' 'object thus\n' 'found. As with the first form of "import", an alternate local ' 'name\n' 'can be supplied by specifying ""as" localname". If a name is ' 'not\n' 'found, "ImportError" is raised. If the list of identifiers is\n' 'replaced by a star ("\'*\'"), all public names defined in the ' 'module are\n' 'bound in the local namespace of the "import" statement..\n' '\n' 'The *public names* defined by a module are determined by ' 'checking the\n' 'module\'s namespace for a variable named "__all__"; if defined, ' 'it must\n' 'be a sequence of strings which are names defined or imported by ' 'that\n' 'module. The names given in "__all__" are all considered public ' 'and\n' 'are required to exist. If "__all__" is not defined, the set of ' 'public\n' "names includes all names found in the module's namespace which " 'do not\n' 'begin with an underscore character ("\'_\'"). "__all__" should ' 'contain\n' 'the entire public API. It is intended to avoid accidentally ' 'exporting\n' 'items that are not part of the API (such as library modules ' 'which were\n' 'imported and used within the module).\n' '\n' 'The "from" form with "*" may only occur in a module scope. If ' 'the\n' 'wild card form of import --- "import *" --- is used in a ' 'function and\n' 'the function contains or is a nested block with free variables, ' 'the\n' 'compiler will raise a "SyntaxError".\n' '\n' 'When specifying what module to import you do not have to specify ' 'the\n' 'absolute name of the module. When a module or package is ' 'contained\n' 'within another package it is possible to make a relative import ' 'within\n' 'the same top package without having to mention the package name. ' 'By\n' 'using leading dots in the specified module or package after ' '"from" you\n' 'can specify how high to traverse up the current package ' 'hierarchy\n' 'without specifying exact names. One leading dot means the ' 'current\n' 'package where the module making the import exists. Two dots ' 'means up\n' 'one package level. Three dots is up two levels, etc. So if you ' 'execute\n' '"from . import mod" from a module in the "pkg" package then you ' 'will\n' 'end up importing "pkg.mod". If you execute "from ..subpkg2 ' 'import mod"\n' 'from within "pkg.subpkg1" you will import "pkg.subpkg2.mod". ' 'The\n' 'specification for relative imports is contained within **PEP ' '328**.\n' '\n' '"importlib.import_module()" is provided to support applications ' 'that\n' 'determine which modules need to be loaded dynamically.\n' '\n' '\n' 'Future statements\n' '=================\n' '\n' 'A *future statement* is a directive to the compiler that a ' 'particular\n' 'module should be compiled using syntax or semantics that will ' 'be\n' 'available in a specified future release of Python. The future\n' 'statement is intended to ease migration to future versions of ' 'Python\n' 'that introduce incompatible changes to the language. It allows ' 'use of\n' 'the new features on a per-module basis before the release in ' 'which the\n' 'feature becomes standard.\n' '\n' ' future_statement ::= "from" "__future__" "import" feature ' '["as" name]\n' ' ("," feature ["as" name])*\n' ' | "from" "__future__" "import" "(" ' 'feature ["as" name]\n' ' ("," feature ["as" name])* [","] ")"\n' ' feature ::= identifier\n' ' name ::= identifier\n' '\n' 'A future statement must appear near the top of the module. The ' 'only\n' 'lines that can appear before a future statement are:\n' '\n' '* the module docstring (if any),\n' '\n' '* comments,\n' '\n' '* blank lines, and\n' '\n' '* other future statements.\n' '\n' 'The features recognized by Python 2.6 are "unicode_literals",\n' '"print_function", "absolute_import", "division", "generators",\n' '"nested_scopes" and "with_statement". "generators", ' '"with_statement",\n' '"nested_scopes" are redundant in Python version 2.6 and above ' 'because\n' 'they are always enabled.\n' '\n' 'A future statement is recognized and treated specially at ' 'compile\n' 'time: Changes to the semantics of core constructs are often\n' 'implemented by generating different code. It may even be the ' 'case\n' 'that a new feature introduces new incompatible syntax (such as a ' 'new\n' 'reserved word), in which case the compiler may need to parse ' 'the\n' 'module differently. Such decisions cannot be pushed off until\n' 'runtime.\n' '\n' 'For any given release, the compiler knows which feature names ' 'have\n' 'been defined, and raises a compile-time error if a future ' 'statement\n' 'contains a feature not known to it.\n' '\n' 'The direct runtime semantics are the same as for any import ' 'statement:\n' 'there is a standard module "__future__", described later, and it ' 'will\n' 'be imported in the usual way at the time the future statement ' 'is\n' 'executed.\n' '\n' 'The interesting runtime semantics depend on the specific ' 'feature\n' 'enabled by the future statement.\n' '\n' 'Note that there is nothing special about the statement:\n' '\n' ' import __future__ [as name]\n' '\n' "That is not a future statement; it's an ordinary import " 'statement with\n' 'no special semantics or syntax restrictions.\n' '\n' 'Code compiled by an "exec" statement or calls to the built-in\n' 'functions "compile()" and "execfile()" that occur in a module ' '"M"\n' 'containing a future statement will, by default, use the new ' 'syntax or\n' 'semantics associated with the future statement. This can, ' 'starting\n' 'with Python 2.2 be controlled by optional arguments to ' '"compile()" ---\n' 'see the documentation of that function for details.\n' '\n' 'A future statement typed at an interactive interpreter prompt ' 'will\n' 'take effect for the rest of the interpreter session. If an\n' 'interpreter is started with the "-i" option, is passed a script ' 'name\n' 'to execute, and the script includes a future statement, it will ' 'be in\n' 'effect in the interactive session started after the script is\n' 'executed.\n' '\n' 'See also: **PEP 236** - Back to the __future__\n' '\n' ' The original proposal for the __future__ mechanism.\n', 'in': '\n' 'Comparisons\n' '***********\n' '\n' 'Unlike C, all comparison operations in Python have the same ' 'priority,\n' 'which is lower than that of any arithmetic, shifting or bitwise\n' 'operation. Also unlike C, expressions like "a < b < c" have the\n' 'interpretation that is conventional in mathematics:\n' '\n' ' comparison ::= or_expr ( comp_operator or_expr )*\n' ' comp_operator ::= "<" | ">" | "==" | ">=" | "<=" | "<>" | "!="\n' ' | "is" ["not"] | ["not"] "in"\n' '\n' 'Comparisons yield boolean values: "True" or "False".\n' '\n' 'Comparisons can be chained arbitrarily, e.g., "x < y <= z" is\n' 'equivalent to "x < y and y <= z", except that "y" is evaluated only\n' 'once (but in both cases "z" is not evaluated at all when "x < y" is\n' 'found to be false).\n' '\n' 'Formally, if *a*, *b*, *c*, ..., *y*, *z* are expressions and ' '*op1*,\n' '*op2*, ..., *opN* are comparison operators, then "a op1 b op2 c ... ' 'y\n' 'opN z" is equivalent to "a op1 b and b op2 c and ... y opN z", ' 'except\n' 'that each expression is evaluated at most once.\n' '\n' 'Note that "a op1 b op2 c" doesn\'t imply any kind of comparison ' 'between\n' '*a* and *c*, so that, e.g., "x < y > z" is perfectly legal (though\n' 'perhaps not pretty).\n' '\n' 'The forms "<>" and "!=" are equivalent; for consistency with C, ' '"!="\n' 'is preferred; where "!=" is mentioned below "<>" is also accepted.\n' 'The "<>" spelling is considered obsolescent.\n' '\n' 'The operators "<", ">", "==", ">=", "<=", and "!=" compare the ' 'values\n' 'of two objects. The objects need not have the same type. If both ' 'are\n' 'numbers, they are converted to a common type. Otherwise, objects ' 'of\n' 'different types *always* compare unequal, and are ordered ' 'consistently\n' 'but arbitrarily. You can control comparison behavior of objects of\n' 'non-built-in types by defining a "__cmp__" method or rich ' 'comparison\n' 'methods like "__gt__", described in section Special method names.\n' '\n' '(This unusual definition of comparison was used to simplify the\n' 'definition of operations like sorting and the "in" and "not in"\n' 'operators. In the future, the comparison rules for objects of\n' 'different types are likely to change.)\n' '\n' 'Comparison of objects of the same type depends on the type:\n' '\n' '* Numbers are compared arithmetically.\n' '\n' '* Strings are compared lexicographically using the numeric\n' ' equivalents (the result of the built-in function "ord()") of ' 'their\n' ' characters. Unicode and 8-bit strings are fully interoperable in\n' ' this behavior. [4]\n' '\n' '* Tuples and lists are compared lexicographically using comparison\n' ' of corresponding elements. This means that to compare equal, ' 'each\n' ' element must compare equal and the two sequences must be of the ' 'same\n' ' type and have the same length.\n' '\n' ' If not equal, the sequences are ordered the same as their first\n' ' differing elements. For example, "cmp([1,2,x], [1,2,y])" returns\n' ' the same as "cmp(x,y)". If the corresponding element does not\n' ' exist, the shorter sequence is ordered first (for example, "[1,2] ' '<\n' ' [1,2,3]").\n' '\n' '* Mappings (dictionaries) compare equal if and only if their sorted\n' ' (key, value) lists compare equal. [5] Outcomes other than ' 'equality\n' ' are resolved consistently, but are not otherwise defined. [6]\n' '\n' '* Most other objects of built-in types compare unequal unless they\n' ' are the same object; the choice whether one object is considered\n' ' smaller or larger than another one is made arbitrarily but\n' ' consistently within one execution of a program.\n' '\n' 'The operators "in" and "not in" test for collection membership. "x ' 'in\n' 's" evaluates to true if *x* is a member of the collection *s*, and\n' 'false otherwise. "x not in s" returns the negation of "x in s". ' 'The\n' 'collection membership test has traditionally been bound to ' 'sequences;\n' 'an object is a member of a collection if the collection is a ' 'sequence\n' 'and contains an element equal to that object. However, it make ' 'sense\n' 'for many other object types to support membership tests without ' 'being\n' 'a sequence. In particular, dictionaries (for keys) and sets ' 'support\n' 'membership testing.\n' '\n' 'For the list and tuple types, "x in y" is true if and only if there\n' 'exists an index *i* such that "x == y[i]" is true.\n' '\n' 'For the Unicode and string types, "x in y" is true if and only if ' '*x*\n' 'is a substring of *y*. An equivalent test is "y.find(x) != -1".\n' 'Note, *x* and *y* need not be the same type; consequently, "u\'ab\' ' 'in\n' '\'abc\'" will return "True". Empty strings are always considered to ' 'be a\n' 'substring of any other string, so """ in "abc"" will return "True".\n' '\n' 'Changed in version 2.3: Previously, *x* was required to be a string ' 'of\n' 'length "1".\n' '\n' 'For user-defined classes which define the "__contains__()" method, ' '"x\n' 'in y" is true if and only if "y.__contains__(x)" is true.\n' '\n' 'For user-defined classes which do not define "__contains__()" but ' 'do\n' 'define "__iter__()", "x in y" is true if some value "z" with "x == ' 'z"\n' 'is produced while iterating over "y". If an exception is raised\n' 'during the iteration, it is as if "in" raised that exception.\n' '\n' 'Lastly, the old-style iteration protocol is tried: if a class ' 'defines\n' '"__getitem__()", "x in y" is true if and only if there is a non-\n' 'negative integer index *i* such that "x == y[i]", and all lower\n' 'integer indices do not raise "IndexError" exception. (If any other\n' 'exception is raised, it is as if "in" raised that exception).\n' '\n' 'The operator "not in" is defined to have the inverse true value of\n' '"in".\n' '\n' 'The operators "is" and "is not" test for object identity: "x is y" ' 'is\n' 'true if and only if *x* and *y* are the same object. "x is not y"\n' 'yields the inverse truth value. [7]\n', 'integers': '\n' 'Integer and long integer literals\n' '*********************************\n' '\n' 'Integer and long integer literals are described by the ' 'following\n' 'lexical definitions:\n' '\n' ' longinteger ::= integer ("l" | "L")\n' ' integer ::= decimalinteger | octinteger | hexinteger ' '| bininteger\n' ' decimalinteger ::= nonzerodigit digit* | "0"\n' ' octinteger ::= "0" ("o" | "O") octdigit+ | "0" ' 'octdigit+\n' ' hexinteger ::= "0" ("x" | "X") hexdigit+\n' ' bininteger ::= "0" ("b" | "B") bindigit+\n' ' nonzerodigit ::= "1"..."9"\n' ' octdigit ::= "0"..."7"\n' ' bindigit ::= "0" | "1"\n' ' hexdigit ::= digit | "a"..."f" | "A"..."F"\n' '\n' 'Although both lower case "\'l\'" and upper case "\'L\'" are ' 'allowed as\n' 'suffix for long integers, it is strongly recommended to always ' 'use\n' '"\'L\'", since the letter "\'l\'" looks too much like the ' 'digit "\'1\'".\n' '\n' 'Plain integer literals that are above the largest ' 'representable plain\n' 'integer (e.g., 2147483647 when using 32-bit arithmetic) are ' 'accepted\n' 'as if they were long integers instead. [1] There is no limit ' 'for long\n' 'integer literals apart from what can be stored in available ' 'memory.\n' '\n' 'Some examples of plain integer literals (first row) and long ' 'integer\n' 'literals (second and third rows):\n' '\n' ' 7 2147483647 0177\n' ' 3L 79228162514264337593543950336L 0377L ' '0x100000000L\n' ' 79228162514264337593543950336 0xdeadbeef\n', 'lambda': '\n' 'Lambdas\n' '*******\n' '\n' ' lambda_expr ::= "lambda" [parameter_list]: expression\n' ' old_lambda_expr ::= "lambda" [parameter_list]: ' 'old_expression\n' '\n' 'Lambda expressions (sometimes called lambda forms) have the ' 'same\n' 'syntactic position as expressions. They are a shorthand to ' 'create\n' 'anonymous functions; the expression "lambda arguments: ' 'expression"\n' 'yields a function object. The unnamed object behaves like a ' 'function\n' 'object defined with\n' '\n' ' def name(arguments):\n' ' return expression\n' '\n' 'See section Function definitions for the syntax of parameter ' 'lists.\n' 'Note that functions created with lambda expressions cannot ' 'contain\n' 'statements.\n', 'lists': '\n' 'List displays\n' '*************\n' '\n' 'A list display is a possibly empty series of expressions enclosed ' 'in\n' 'square brackets:\n' '\n' ' list_display ::= "[" [expression_list | ' 'list_comprehension] "]"\n' ' list_comprehension ::= expression list_for\n' ' list_for ::= "for" target_list "in" ' 'old_expression_list [list_iter]\n' ' old_expression_list ::= old_expression [("," old_expression)+ ' '[","]]\n' ' old_expression ::= or_test | old_lambda_expr\n' ' list_iter ::= list_for | list_if\n' ' list_if ::= "if" old_expression [list_iter]\n' '\n' 'A list display yields a new list object. Its contents are ' 'specified\n' 'by providing either a list of expressions or a list ' 'comprehension.\n' 'When a comma-separated list of expressions is supplied, its ' 'elements\n' 'are evaluated from left to right and placed into the list object ' 'in\n' 'that order. When a list comprehension is supplied, it consists ' 'of a\n' 'single expression followed by at least one "for" clause and zero ' 'or\n' 'more "for" or "if" clauses. In this case, the elements of the ' 'new\n' 'list are those that would be produced by considering each of the ' '"for"\n' 'or "if" clauses a block, nesting from left to right, and ' 'evaluating\n' 'the expression to produce a list element each time the innermost ' 'block\n' 'is reached [1].\n', 'naming': '\n' 'Naming and binding\n' '******************\n' '\n' '*Names* refer to objects. Names are introduced by name binding\n' 'operations. Each occurrence of a name in the program text refers ' 'to\n' 'the *binding* of that name established in the innermost function ' 'block\n' 'containing the use.\n' '\n' 'A *block* is a piece of Python program text that is executed as ' 'a\n' 'unit. The following are blocks: a module, a function body, and a ' 'class\n' 'definition. Each command typed interactively is a block. A ' 'script\n' 'file (a file given as standard input to the interpreter or ' 'specified\n' 'on the interpreter command line the first argument) is a code ' 'block.\n' 'A script command (a command specified on the interpreter command ' 'line\n' "with the '**-c**' option) is a code block. The file read by " 'the\n' 'built-in function "execfile()" is a code block. The string ' 'argument\n' 'passed to the built-in function "eval()" and to the "exec" ' 'statement\n' 'is a code block. The expression read and evaluated by the ' 'built-in\n' 'function "input()" is a code block.\n' '\n' 'A code block is executed in an *execution frame*. A frame ' 'contains\n' 'some administrative information (used for debugging) and ' 'determines\n' "where and how execution continues after the code block's " 'execution has\n' 'completed.\n' '\n' 'A *scope* defines the visibility of a name within a block. If a ' 'local\n' 'variable is defined in a block, its scope includes that block. ' 'If the\n' 'definition occurs in a function block, the scope extends to any ' 'blocks\n' 'contained within the defining one, unless a contained block ' 'introduces\n' 'a different binding for the name. The scope of names defined in ' 'a\n' 'class block is limited to the class block; it does not extend to ' 'the\n' 'code blocks of methods -- this includes generator expressions ' 'since\n' 'they are implemented using a function scope. This means that ' 'the\n' 'following will fail:\n' '\n' ' class A:\n' ' a = 42\n' ' b = list(a + i for i in range(10))\n' '\n' 'When a name is used in a code block, it is resolved using the ' 'nearest\n' 'enclosing scope. The set of all such scopes visible to a code ' 'block\n' "is called the block's *environment*.\n" '\n' 'If a name is bound in a block, it is a local variable of that ' 'block.\n' 'If a name is bound at the module level, it is a global ' 'variable. (The\n' 'variables of the module code block are local and global.) If a\n' 'variable is used in a code block but not defined there, it is a ' '*free\n' 'variable*.\n' '\n' 'When a name is not found at all, a "NameError" exception is ' 'raised.\n' 'If the name refers to a local variable that has not been bound, ' 'a\n' '"UnboundLocalError" exception is raised. "UnboundLocalError" is ' 'a\n' 'subclass of "NameError".\n' '\n' 'The following constructs bind names: formal parameters to ' 'functions,\n' '"import" statements, class and function definitions (these bind ' 'the\n' 'class or function name in the defining block), and targets that ' 'are\n' 'identifiers if occurring in an assignment, "for" loop header, in ' 'the\n' 'second position of an "except" clause header or after "as" in a ' '"with"\n' 'statement. The "import" statement of the form "from ... import ' '*"\n' 'binds all names defined in the imported module, except those ' 'beginning\n' 'with an underscore. This form may only be used at the module ' 'level.\n' '\n' 'A target occurring in a "del" statement is also considered bound ' 'for\n' 'this purpose (though the actual semantics are to unbind the ' 'name). It\n' 'is illegal to unbind a name that is referenced by an enclosing ' 'scope;\n' 'the compiler will report a "SyntaxError".\n' '\n' 'Each assignment or import statement occurs within a block ' 'defined by a\n' 'class or function definition or at the module level (the ' 'top-level\n' 'code block).\n' '\n' 'If a name binding operation occurs anywhere within a code block, ' 'all\n' 'uses of the name within the block are treated as references to ' 'the\n' 'current block. This can lead to errors when a name is used ' 'within a\n' 'block before it is bound. This rule is subtle. Python lacks\n' 'declarations and allows name binding operations to occur ' 'anywhere\n' 'within a code block. The local variables of a code block can ' 'be\n' 'determined by scanning the entire text of the block for name ' 'binding\n' 'operations.\n' '\n' 'If the global statement occurs within a block, all uses of the ' 'name\n' 'specified in the statement refer to the binding of that name in ' 'the\n' 'top-level namespace. Names are resolved in the top-level ' 'namespace by\n' 'searching the global namespace, i.e. the namespace of the ' 'module\n' 'containing the code block, and the builtins namespace, the ' 'namespace\n' 'of the module "__builtin__". The global namespace is searched ' 'first.\n' 'If the name is not found there, the builtins namespace is ' 'searched.\n' 'The global statement must precede all uses of the name.\n' '\n' 'The builtins namespace associated with the execution of a code ' 'block\n' 'is actually found by looking up the name "__builtins__" in its ' 'global\n' 'namespace; this should be a dictionary or a module (in the ' 'latter case\n' "the module's dictionary is used). By default, when in the " '"__main__"\n' 'module, "__builtins__" is the built-in module "__builtin__" ' '(note: no\n' '\'s\'); when in any other module, "__builtins__" is an alias for ' 'the\n' 'dictionary of the "__builtin__" module itself. "__builtins__" ' 'can be\n' 'set to a user-created dictionary to create a weak form of ' 'restricted\n' 'execution.\n' '\n' '**CPython implementation detail:** Users should not touch\n' '"__builtins__"; it is strictly an implementation detail. Users\n' 'wanting to override values in the builtins namespace should ' '"import"\n' 'the "__builtin__" (no \'s\') module and modify its attributes\n' 'appropriately.\n' '\n' 'The namespace for a module is automatically created the first ' 'time a\n' 'module is imported. The main module for a script is always ' 'called\n' '"__main__".\n' '\n' 'The "global" statement has the same scope as a name binding ' 'operation\n' 'in the same block. If the nearest enclosing scope for a free ' 'variable\n' 'contains a global statement, the free variable is treated as a ' 'global.\n' '\n' 'A class definition is an executable statement that may use and ' 'define\n' 'names. These references follow the normal rules for name ' 'resolution.\n' 'The namespace of the class definition becomes the attribute ' 'dictionary\n' 'of the class. Names defined at the class scope are not visible ' 'in\n' 'methods.\n' '\n' '\n' 'Interaction with dynamic features\n' '=================================\n' '\n' 'There are several cases where Python statements are illegal when ' 'used\n' 'in conjunction with nested scopes that contain free variables.\n' '\n' 'If a variable is referenced in an enclosing scope, it is illegal ' 'to\n' 'delete the name. An error will be reported at compile time.\n' '\n' 'If the wild card form of import --- "import *" --- is used in a\n' 'function and the function contains or is a nested block with ' 'free\n' 'variables, the compiler will raise a "SyntaxError".\n' '\n' 'If "exec" is used in a function and the function contains or is ' 'a\n' 'nested block with free variables, the compiler will raise a\n' '"SyntaxError" unless the exec explicitly specifies the local ' 'namespace\n' 'for the "exec". (In other words, "exec obj" would be illegal, ' 'but\n' '"exec obj in ns" would be legal.)\n' '\n' 'The "eval()", "execfile()", and "input()" functions and the ' '"exec"\n' 'statement do not have access to the full environment for ' 'resolving\n' 'names. Names may be resolved in the local and global namespaces ' 'of\n' 'the caller. Free variables are not resolved in the nearest ' 'enclosing\n' 'namespace, but in the global namespace. [1] The "exec" statement ' 'and\n' 'the "eval()" and "execfile()" functions have optional arguments ' 'to\n' 'override the global and local namespace. If only one namespace ' 'is\n' 'specified, it is used for both.\n', 'numbers': '\n' 'Numeric literals\n' '****************\n' '\n' 'There are four types of numeric literals: plain integers, long\n' 'integers, floating point numbers, and imaginary numbers. There ' 'are no\n' 'complex literals (complex numbers can be formed by adding a ' 'real\n' 'number and an imaginary number).\n' '\n' 'Note that numeric literals do not include a sign; a phrase like ' '"-1"\n' 'is actually an expression composed of the unary operator ' '\'"-"\' and the\n' 'literal "1".\n', 'numeric-types': '\n' 'Emulating numeric types\n' '***********************\n' '\n' 'The following methods can be defined to emulate numeric ' 'objects.\n' 'Methods corresponding to operations that are not ' 'supported by the\n' 'particular kind of number implemented (e.g., bitwise ' 'operations for\n' 'non-integral numbers) should be left undefined.\n' '\n' 'object.__add__(self, other)\n' 'object.__sub__(self, other)\n' 'object.__mul__(self, other)\n' 'object.__floordiv__(self, other)\n' 'object.__mod__(self, other)\n' 'object.__divmod__(self, other)\n' 'object.__pow__(self, other[, modulo])\n' 'object.__lshift__(self, other)\n' 'object.__rshift__(self, other)\n' 'object.__and__(self, other)\n' 'object.__xor__(self, other)\n' 'object.__or__(self, other)\n' '\n' ' These methods are called to implement the binary ' 'arithmetic\n' ' operations ("+", "-", "*", "//", "%", "divmod()", ' '"pow()", "**",\n' ' "<<", ">>", "&", "^", "|"). For instance, to evaluate ' 'the\n' ' expression "x + y", where *x* is an instance of a ' 'class that has an\n' ' "__add__()" method, "x.__add__(y)" is called. The ' '"__divmod__()"\n' ' method should be the equivalent to using ' '"__floordiv__()" and\n' ' "__mod__()"; it should not be related to ' '"__truediv__()" (described\n' ' below). Note that "__pow__()" should be defined to ' 'accept an\n' ' optional third argument if the ternary version of the ' 'built-in\n' ' "pow()" function is to be supported.\n' '\n' ' If one of those methods does not support the operation ' 'with the\n' ' supplied arguments, it should return ' '"NotImplemented".\n' '\n' 'object.__div__(self, other)\n' 'object.__truediv__(self, other)\n' '\n' ' The division operator ("/") is implemented by these ' 'methods. The\n' ' "__truediv__()" method is used when ' '"__future__.division" is in\n' ' effect, otherwise "__div__()" is used. If only one of ' 'these two\n' ' methods is defined, the object will not support ' 'division in the\n' ' alternate context; "TypeError" will be raised ' 'instead.\n' '\n' 'object.__radd__(self, other)\n' 'object.__rsub__(self, other)\n' 'object.__rmul__(self, other)\n' 'object.__rdiv__(self, other)\n' 'object.__rtruediv__(self, other)\n' 'object.__rfloordiv__(self, other)\n' 'object.__rmod__(self, other)\n' 'object.__rdivmod__(self, other)\n' 'object.__rpow__(self, other)\n' 'object.__rlshift__(self, other)\n' 'object.__rrshift__(self, other)\n' 'object.__rand__(self, other)\n' 'object.__rxor__(self, other)\n' 'object.__ror__(self, other)\n' '\n' ' These methods are called to implement the binary ' 'arithmetic\n' ' operations ("+", "-", "*", "/", "%", "divmod()", ' '"pow()", "**",\n' ' "<<", ">>", "&", "^", "|") with reflected (swapped) ' 'operands.\n' ' These functions are only called if the left operand ' 'does not\n' ' support the corresponding operation and the operands ' 'are of\n' ' different types. [2] For instance, to evaluate the ' 'expression "x -\n' ' y", where *y* is an instance of a class that has an ' '"__rsub__()"\n' ' method, "y.__rsub__(x)" is called if "x.__sub__(y)" ' 'returns\n' ' *NotImplemented*.\n' '\n' ' Note that ternary "pow()" will not try calling ' '"__rpow__()" (the\n' ' coercion rules would become too complicated).\n' '\n' " Note: If the right operand's type is a subclass of the " 'left\n' " operand's type and that subclass provides the " 'reflected method\n' ' for the operation, this method will be called before ' 'the left\n' " operand's non-reflected method. This behavior " 'allows subclasses\n' " to override their ancestors' operations.\n" '\n' 'object.__iadd__(self, other)\n' 'object.__isub__(self, other)\n' 'object.__imul__(self, other)\n' 'object.__idiv__(self, other)\n' 'object.__itruediv__(self, other)\n' 'object.__ifloordiv__(self, other)\n' 'object.__imod__(self, other)\n' 'object.__ipow__(self, other[, modulo])\n' 'object.__ilshift__(self, other)\n' 'object.__irshift__(self, other)\n' 'object.__iand__(self, other)\n' 'object.__ixor__(self, other)\n' 'object.__ior__(self, other)\n' '\n' ' These methods are called to implement the augmented ' 'arithmetic\n' ' assignments ("+=", "-=", "*=", "/=", "//=", "%=", ' '"**=", "<<=",\n' ' ">>=", "&=", "^=", "|="). These methods should ' 'attempt to do the\n' ' operation in-place (modifying *self*) and return the ' 'result (which\n' ' could be, but does not have to be, *self*). If a ' 'specific method\n' ' is not defined, the augmented assignment falls back to ' 'the normal\n' ' methods. For instance, to execute the statement "x += ' 'y", where\n' ' *x* is an instance of a class that has an "__iadd__()" ' 'method,\n' ' "x.__iadd__(y)" is called. If *x* is an instance of a ' 'class that\n' ' does not define a "__iadd__()" method, "x.__add__(y)" ' 'and\n' ' "y.__radd__(x)" are considered, as with the evaluation ' 'of "x + y".\n' '\n' 'object.__neg__(self)\n' 'object.__pos__(self)\n' 'object.__abs__(self)\n' 'object.__invert__(self)\n' '\n' ' Called to implement the unary arithmetic operations ' '("-", "+",\n' ' "abs()" and "~").\n' '\n' 'object.__complex__(self)\n' 'object.__int__(self)\n' 'object.__long__(self)\n' 'object.__float__(self)\n' '\n' ' Called to implement the built-in functions ' '"complex()", "int()",\n' ' "long()", and "float()". Should return a value of the ' 'appropriate\n' ' type.\n' '\n' 'object.__oct__(self)\n' 'object.__hex__(self)\n' '\n' ' Called to implement the built-in functions "oct()" and ' '"hex()".\n' ' Should return a string value.\n' '\n' 'object.__index__(self)\n' '\n' ' Called to implement "operator.index()". Also called ' 'whenever\n' ' Python needs an integer object (such as in slicing). ' 'Must return\n' ' an integer (int or long).\n' '\n' ' New in version 2.5.\n' '\n' 'object.__coerce__(self, other)\n' '\n' ' Called to implement "mixed-mode" numeric arithmetic. ' 'Should either\n' ' return a 2-tuple containing *self* and *other* ' 'converted to a\n' ' common numeric type, or "None" if conversion is ' 'impossible. When\n' ' the common type would be the type of "other", it is ' 'sufficient to\n' ' return "None", since the interpreter will also ask the ' 'other object\n' ' to attempt a coercion (but sometimes, if the ' 'implementation of the\n' ' other type cannot be changed, it is useful to do the ' 'conversion to\n' ' the other type here). A return value of ' '"NotImplemented" is\n' ' equivalent to returning "None".\n', 'objects': '\n' 'Objects, values and types\n' '*************************\n' '\n' "*Objects* are Python's abstraction for data. All data in a " 'Python\n' 'program is represented by objects or by relations between ' 'objects. (In\n' "a sense, and in conformance to Von Neumann's model of a " '"stored\n' 'program computer," code is also represented by objects.)\n' '\n' "Every object has an identity, a type and a value. An object's\n" '*identity* never changes once it has been created; you may ' 'think of it\n' 'as the object\'s address in memory. The \'"is"\' operator ' 'compares the\n' 'identity of two objects; the "id()" function returns an ' 'integer\n' 'representing its identity (currently implemented as its ' 'address). An\n' "object's *type* is also unchangeable. [1] An object's type " 'determines\n' 'the operations that the object supports (e.g., "does it have a\n' 'length?") and also defines the possible values for objects of ' 'that\n' 'type. The "type()" function returns an object\'s type (which ' 'is an\n' 'object itself). The *value* of some objects can change. ' 'Objects\n' 'whose value can change are said to be *mutable*; objects whose ' 'value\n' 'is unchangeable once they are created are called *immutable*. ' '(The\n' 'value of an immutable container object that contains a ' 'reference to a\n' "mutable object can change when the latter's value is changed; " 'however\n' 'the container is still considered immutable, because the ' 'collection of\n' 'objects it contains cannot be changed. So, immutability is ' 'not\n' 'strictly the same as having an unchangeable value, it is more ' 'subtle.)\n' "An object's mutability is determined by its type; for " 'instance,\n' 'numbers, strings and tuples are immutable, while dictionaries ' 'and\n' 'lists are mutable.\n' '\n' 'Objects are never explicitly destroyed; however, when they ' 'become\n' 'unreachable they may be garbage-collected. An implementation ' 'is\n' 'allowed to postpone garbage collection or omit it altogether ' '--- it is\n' 'a matter of implementation quality how garbage collection is\n' 'implemented, as long as no objects are collected that are ' 'still\n' 'reachable.\n' '\n' '**CPython implementation detail:** CPython currently uses a ' 'reference-\n' 'counting scheme with (optional) delayed detection of cyclically ' 'linked\n' 'garbage, which collects most objects as soon as they become\n' 'unreachable, but is not guaranteed to collect garbage ' 'containing\n' 'circular references. See the documentation of the "gc" module ' 'for\n' 'information on controlling the collection of cyclic garbage. ' 'Other\n' 'implementations act differently and CPython may change. Do not ' 'depend\n' 'on immediate finalization of objects when they become ' 'unreachable (ex:\n' 'always close files).\n' '\n' "Note that the use of the implementation's tracing or debugging\n" 'facilities may keep objects alive that would normally be ' 'collectable.\n' 'Also note that catching an exception with a ' '\'"try"..."except"\'\n' 'statement may keep objects alive.\n' '\n' 'Some objects contain references to "external" resources such as ' 'open\n' 'files or windows. It is understood that these resources are ' 'freed\n' 'when the object is garbage-collected, but since garbage ' 'collection is\n' 'not guaranteed to happen, such objects also provide an explicit ' 'way to\n' 'release the external resource, usually a "close()" method. ' 'Programs\n' 'are strongly recommended to explicitly close such objects. ' 'The\n' '\'"try"..."finally"\' statement provides a convenient way to do ' 'this.\n' '\n' 'Some objects contain references to other objects; these are ' 'called\n' '*containers*. Examples of containers are tuples, lists and\n' "dictionaries. The references are part of a container's value. " 'In\n' 'most cases, when we talk about the value of a container, we ' 'imply the\n' 'values, not the identities of the contained objects; however, ' 'when we\n' 'talk about the mutability of a container, only the identities ' 'of the\n' 'immediately contained objects are implied. So, if an ' 'immutable\n' 'container (like a tuple) contains a reference to a mutable ' 'object, its\n' 'value changes if that mutable object is changed.\n' '\n' 'Types affect almost all aspects of object behavior. Even the\n' 'importance of object identity is affected in some sense: for ' 'immutable\n' 'types, operations that compute new values may actually return ' 'a\n' 'reference to any existing object with the same type and value, ' 'while\n' 'for mutable objects this is not allowed. E.g., after "a = 1; b ' '= 1",\n' '"a" and "b" may or may not refer to the same object with the ' 'value\n' 'one, depending on the implementation, but after "c = []; d = ' '[]", "c"\n' 'and "d" are guaranteed to refer to two different, unique, ' 'newly\n' 'created empty lists. (Note that "c = d = []" assigns the same ' 'object\n' 'to both "c" and "d".)\n', 'operator-summary': '\n' 'Operator precedence\n' '*******************\n' '\n' 'The following table summarizes the operator ' 'precedences in Python,\n' 'from lowest precedence (least binding) to highest ' 'precedence (most\n' 'binding). Operators in the same box have the same ' 'precedence. Unless\n' 'the syntax is explicitly given, operators are binary. ' 'Operators in\n' 'the same box group left to right (except for ' 'comparisons, including\n' 'tests, which all have the same precedence and chain ' 'from left to right\n' '--- see section Comparisons --- and exponentiation, ' 'which groups from\n' 'right to left).\n' '\n' '+-------------------------------------------------+---------------------------------------+\n' '| Operator | ' 'Description |\n' '+=================================================+=======================================+\n' '| "lambda" | ' 'Lambda expression |\n' '+-------------------------------------------------+---------------------------------------+\n' '| "if" -- "else" | ' 'Conditional expression |\n' '+-------------------------------------------------+---------------------------------------+\n' '| "or" | ' 'Boolean OR |\n' '+-------------------------------------------------+---------------------------------------+\n' '| "and" | ' 'Boolean AND |\n' '+-------------------------------------------------+---------------------------------------+\n' '| "not" "x" | ' 'Boolean NOT |\n' '+-------------------------------------------------+---------------------------------------+\n' '| "in", "not in", "is", "is not", "<", "<=", ">", | ' 'Comparisons, including membership |\n' '| ">=", "<>", "!=", "==" | ' 'tests and identity tests |\n' '+-------------------------------------------------+---------------------------------------+\n' '| "|" | ' 'Bitwise OR |\n' '+-------------------------------------------------+---------------------------------------+\n' '| "^" | ' 'Bitwise XOR |\n' '+-------------------------------------------------+---------------------------------------+\n' '| "&" | ' 'Bitwise AND |\n' '+-------------------------------------------------+---------------------------------------+\n' '| "<<", ">>" | ' 'Shifts |\n' '+-------------------------------------------------+---------------------------------------+\n' '| "+", "-" | ' 'Addition and subtraction |\n' '+-------------------------------------------------+---------------------------------------+\n' '| "*", "/", "//", "%" | ' 'Multiplication, division, remainder |\n' '| | ' '[8] |\n' '+-------------------------------------------------+---------------------------------------+\n' '| "+x", "-x", "~x" | ' 'Positive, negative, bitwise NOT |\n' '+-------------------------------------------------+---------------------------------------+\n' '| "**" | ' 'Exponentiation [9] |\n' '+-------------------------------------------------+---------------------------------------+\n' '| "x[index]", "x[index:index]", | ' 'Subscription, slicing, call, |\n' '| "x(arguments...)", "x.attribute" | ' 'attribute reference |\n' '+-------------------------------------------------+---------------------------------------+\n' '| "(expressions...)", "[expressions...]", "{key: | ' 'Binding or tuple display, list |\n' '| value...}", "`expressions...`" | ' 'display, dictionary display, string |\n' '| | ' 'conversion |\n' '+-------------------------------------------------+---------------------------------------+\n' '\n' '-[ Footnotes ]-\n' '\n' '[1] In Python 2.3 and later releases, a list ' 'comprehension "leaks"\n' ' the control variables of each "for" it contains ' 'into the\n' ' containing scope. However, this behavior is ' 'deprecated, and\n' ' relying on it will not work in Python 3.\n' '\n' '[2] While "abs(x%y) < abs(y)" is true mathematically, ' 'for floats\n' ' it may not be true numerically due to roundoff. ' 'For example, and\n' ' assuming a platform on which a Python float is an ' 'IEEE 754 double-\n' ' precision number, in order that "-1e-100 % 1e100" ' 'have the same\n' ' sign as "1e100", the computed result is "-1e-100 + ' '1e100", which\n' ' is numerically exactly equal to "1e100". The ' 'function\n' ' "math.fmod()" returns a result whose sign matches ' 'the sign of the\n' ' first argument instead, and so returns "-1e-100" ' 'in this case.\n' ' Which approach is more appropriate depends on the ' 'application.\n' '\n' '[3] If x is very close to an exact integer multiple of ' "y, it's\n" ' possible for "floor(x/y)" to be one larger than ' '"(x-x%y)/y" due to\n' ' rounding. In such cases, Python returns the ' 'latter result, in\n' ' order to preserve that "divmod(x,y)[0] * y + x % ' 'y" be very close\n' ' to "x".\n' '\n' '[4] While comparisons between unicode strings make ' 'sense at the\n' ' byte level, they may be counter-intuitive to ' 'users. For example,\n' ' the strings "u"\\u00C7"" and "u"\\u0043\\u0327"" ' 'compare differently,\n' ' even though they both represent the same unicode ' 'character (LATIN\n' ' CAPITAL LETTER C WITH CEDILLA). To compare strings ' 'in a human\n' ' recognizable way, compare using ' '"unicodedata.normalize()".\n' '\n' '[5] The implementation computes this efficiently, ' 'without\n' ' constructing lists or sorting.\n' '\n' '[6] Earlier versions of Python used lexicographic ' 'comparison of\n' ' the sorted (key, value) lists, but this was very ' 'expensive for the\n' ' common case of comparing for equality. An even ' 'earlier version of\n' ' Python compared dictionaries by identity only, but ' 'this caused\n' ' surprises because people expected to be able to ' 'test a dictionary\n' ' for emptiness by comparing it to "{}".\n' '\n' '[7] Due to automatic garbage-collection, free lists, ' 'and the\n' ' dynamic nature of descriptors, you may notice ' 'seemingly unusual\n' ' behaviour in certain uses of the "is" operator, ' 'like those\n' ' involving comparisons between instance methods, or ' 'constants.\n' ' Check their documentation for more info.\n' '\n' '[8] The "%" operator is also used for string ' 'formatting; the same\n' ' precedence applies.\n' '\n' '[9] The power operator "**" binds less tightly than an ' 'arithmetic\n' ' or bitwise unary operator on its right, that is, ' '"2**-1" is "0.5".\n', 'pass': '\n' 'The "pass" statement\n' '********************\n' '\n' ' pass_stmt ::= "pass"\n' '\n' '"pass" is a null operation --- when it is executed, nothing ' 'happens.\n' 'It is useful as a placeholder when a statement is required\n' 'syntactically, but no code needs to be executed, for example:\n' '\n' ' def f(arg): pass # a function that does nothing (yet)\n' '\n' ' class C: pass # a class with no methods (yet)\n', 'power': '\n' 'The power operator\n' '******************\n' '\n' 'The power operator binds more tightly than unary operators on ' 'its\n' 'left; it binds less tightly than unary operators on its right. ' 'The\n' 'syntax is:\n' '\n' ' power ::= primary ["**" u_expr]\n' '\n' 'Thus, in an unparenthesized sequence of power and unary ' 'operators, the\n' 'operators are evaluated from right to left (this does not ' 'constrain\n' 'the evaluation order for the operands): "-1**2" results in "-1".\n' '\n' 'The power operator has the same semantics as the built-in ' '"pow()"\n' 'function, when called with two arguments: it yields its left ' 'argument\n' 'raised to the power of its right argument. The numeric arguments ' 'are\n' 'first converted to a common type. The result type is that of ' 'the\n' 'arguments after coercion.\n' '\n' 'With mixed operand types, the coercion rules for binary ' 'arithmetic\n' 'operators apply. For int and long int operands, the result has ' 'the\n' 'same type as the operands (after coercion) unless the second ' 'argument\n' 'is negative; in that case, all arguments are converted to float ' 'and a\n' 'float result is delivered. For example, "10**2" returns "100", ' 'but\n' '"10**-2" returns "0.01". (This last feature was added in Python ' '2.2.\n' 'In Python 2.1 and before, if both arguments were of integer types ' 'and\n' 'the second argument was negative, an exception was raised).\n' '\n' 'Raising "0.0" to a negative power results in a ' '"ZeroDivisionError".\n' 'Raising a negative number to a fractional power results in a\n' '"ValueError".\n', 'print': '\n' 'The "print" statement\n' '*********************\n' '\n' ' print_stmt ::= "print" ([expression ("," expression)* [","]]\n' ' | ">>" expression [("," expression)+ [","]])\n' '\n' '"print" evaluates each expression in turn and writes the ' 'resulting\n' 'object to standard output (see below). If an object is not a ' 'string,\n' 'it is first converted to a string using the rules for string\n' 'conversions. The (resulting or original) string is then ' 'written. A\n' 'space is written before each object is (converted and) written, ' 'unless\n' 'the output system believes it is positioned at the beginning of ' 'a\n' 'line. This is the case (1) when no characters have yet been ' 'written\n' 'to standard output, (2) when the last character written to ' 'standard\n' 'output is a whitespace character except "\' \'", or (3) when the ' 'last\n' 'write operation on standard output was not a "print" statement. ' '(In\n' 'some cases it may be functional to write an empty string to ' 'standard\n' 'output for this reason.)\n' '\n' 'Note: Objects which act like file objects but which are not the\n' ' built-in file objects often do not properly emulate this aspect ' 'of\n' " the file object's behavior, so it is best not to rely on this.\n" '\n' 'A "\'\\n\'" character is written at the end, unless the "print" ' 'statement\n' 'ends with a comma. This is the only action if the statement ' 'contains\n' 'just the keyword "print".\n' '\n' 'Standard output is defined as the file object named "stdout" in ' 'the\n' 'built-in module "sys". If no such object exists, or if it does ' 'not\n' 'have a "write()" method, a "RuntimeError" exception is raised.\n' '\n' '"print" also has an extended form, defined by the second portion ' 'of\n' 'the syntax described above. This form is sometimes referred to ' 'as\n' '""print" chevron." In this form, the first expression after the ' '">>"\n' 'must evaluate to a "file-like" object, specifically an object ' 'that has\n' 'a "write()" method as described above. With this extended form, ' 'the\n' 'subsequent expressions are printed to this file object. If the ' 'first\n' 'expression evaluates to "None", then "sys.stdout" is used as the ' 'file\n' 'for output.\n', 'raise': '\n' 'The "raise" statement\n' '*********************\n' '\n' ' raise_stmt ::= "raise" [expression ["," expression ["," ' 'expression]]]\n' '\n' 'If no expressions are present, "raise" re-raises the last ' 'exception\n' 'that was active in the current scope. If no exception is active ' 'in\n' 'the current scope, a "TypeError" exception is raised indicating ' 'that\n' 'this is an error (if running under IDLE, a "Queue.Empty" ' 'exception is\n' 'raised instead).\n' '\n' 'Otherwise, "raise" evaluates the expressions to get three ' 'objects,\n' 'using "None" as the value of omitted expressions. The first two\n' 'objects are used to determine the *type* and *value* of the ' 'exception.\n' '\n' 'If the first object is an instance, the type of the exception is ' 'the\n' 'class of the instance, the instance itself is the value, and the\n' 'second object must be "None".\n' '\n' 'If the first object is a class, it becomes the type of the ' 'exception.\n' 'The second object is used to determine the exception value: If it ' 'is\n' 'an instance of the class, the instance becomes the exception ' 'value. If\n' 'the second object is a tuple, it is used as the argument list for ' 'the\n' 'class constructor; if it is "None", an empty argument list is ' 'used,\n' 'and any other object is treated as a single argument to the\n' 'constructor. The instance so created by calling the constructor ' 'is\n' 'used as the exception value.\n' '\n' 'If a third object is present and not "None", it must be a ' 'traceback\n' 'object (see section The standard type hierarchy), and it is\n' 'substituted instead of the current location as the place where ' 'the\n' 'exception occurred. If the third object is present and not a\n' 'traceback object or "None", a "TypeError" exception is raised. ' 'The\n' 'three-expression form of "raise" is useful to re-raise an ' 'exception\n' 'transparently in an except clause, but "raise" with no ' 'expressions\n' 'should be preferred if the exception to be re-raised was the ' 'most\n' 'recently active exception in the current scope.\n' '\n' 'Additional information on exceptions can be found in section\n' 'Exceptions, and information about handling exceptions is in ' 'section\n' 'The try statement.\n', 'return': '\n' 'The "return" statement\n' '**********************\n' '\n' ' return_stmt ::= "return" [expression_list]\n' '\n' '"return" may only occur syntactically nested in a function ' 'definition,\n' 'not within a nested class definition.\n' '\n' 'If an expression list is present, it is evaluated, else "None" ' 'is\n' 'substituted.\n' '\n' '"return" leaves the current function call with the expression ' 'list (or\n' '"None") as return value.\n' '\n' 'When "return" passes control out of a "try" statement with a ' '"finally"\n' 'clause, that "finally" clause is executed before really leaving ' 'the\n' 'function.\n' '\n' 'In a generator function, the "return" statement is not allowed ' 'to\n' 'include an "expression_list". In that context, a bare "return"\n' 'indicates that the generator is done and will cause ' '"StopIteration" to\n' 'be raised.\n', 'sequence-types': '\n' 'Emulating container types\n' '*************************\n' '\n' 'The following methods can be defined to implement ' 'container objects.\n' 'Containers usually are sequences (such as lists or ' 'tuples) or mappings\n' '(like dictionaries), but can represent other containers ' 'as well. The\n' 'first set of methods is used either to emulate a ' 'sequence or to\n' 'emulate a mapping; the difference is that for a ' 'sequence, the\n' 'allowable keys should be the integers *k* for which "0 ' '<= k < N" where\n' '*N* is the length of the sequence, or slice objects, ' 'which define a\n' 'range of items. (For backwards compatibility, the ' 'method\n' '"__getslice__()" (see below) can also be defined to ' 'handle simple, but\n' 'not extended slices.) It is also recommended that ' 'mappings provide the\n' 'methods "keys()", "values()", "items()", "has_key()", ' '"get()",\n' '"clear()", "setdefault()", "iterkeys()", ' '"itervalues()",\n' '"iteritems()", "pop()", "popitem()", "copy()", and ' '"update()" behaving\n' "similar to those for Python's standard dictionary " 'objects. The\n' '"UserDict" module provides a "DictMixin" class to help ' 'create those\n' 'methods from a base set of "__getitem__()", ' '"__setitem__()",\n' '"__delitem__()", and "keys()". Mutable sequences should ' 'provide\n' 'methods "append()", "count()", "index()", "extend()", ' '"insert()",\n' '"pop()", "remove()", "reverse()" and "sort()", like ' 'Python standard\n' 'list objects. Finally, sequence types should implement ' 'addition\n' '(meaning concatenation) and multiplication (meaning ' 'repetition) by\n' 'defining the methods "__add__()", "__radd__()", ' '"__iadd__()",\n' '"__mul__()", "__rmul__()" and "__imul__()" described ' 'below; they\n' 'should not define "__coerce__()" or other numerical ' 'operators. It is\n' 'recommended that both mappings and sequences implement ' 'the\n' '"__contains__()" method to allow efficient use of the ' '"in" operator;\n' 'for mappings, "in" should be equivalent of "has_key()"; ' 'for sequences,\n' 'it should search through the values. It is further ' 'recommended that\n' 'both mappings and sequences implement the "__iter__()" ' 'method to allow\n' 'efficient iteration through the container; for mappings, ' '"__iter__()"\n' 'should be the same as "iterkeys()"; for sequences, it ' 'should iterate\n' 'through the values.\n' '\n' 'object.__len__(self)\n' '\n' ' Called to implement the built-in function "len()". ' 'Should return\n' ' the length of the object, an integer ">=" 0. Also, ' 'an object that\n' ' doesn\'t define a "__nonzero__()" method and whose ' '"__len__()"\n' ' method returns zero is considered to be false in a ' 'Boolean context.\n' '\n' 'object.__getitem__(self, key)\n' '\n' ' Called to implement evaluation of "self[key]". For ' 'sequence types,\n' ' the accepted keys should be integers and slice ' 'objects. Note that\n' ' the special interpretation of negative indexes (if ' 'the class wishes\n' ' to emulate a sequence type) is up to the ' '"__getitem__()" method. If\n' ' *key* is of an inappropriate type, "TypeError" may be ' 'raised; if of\n' ' a value outside the set of indexes for the sequence ' '(after any\n' ' special interpretation of negative values), ' '"IndexError" should be\n' ' raised. For mapping types, if *key* is missing (not ' 'in the\n' ' container), "KeyError" should be raised.\n' '\n' ' Note: "for" loops expect that an "IndexError" will be ' 'raised for\n' ' illegal indexes to allow proper detection of the ' 'end of the\n' ' sequence.\n' '\n' 'object.__missing__(self, key)\n' '\n' ' Called by "dict"."__getitem__()" to implement ' '"self[key]" for dict\n' ' subclasses when key is not in the dictionary.\n' '\n' 'object.__setitem__(self, key, value)\n' '\n' ' Called to implement assignment to "self[key]". Same ' 'note as for\n' ' "__getitem__()". This should only be implemented for ' 'mappings if\n' ' the objects support changes to the values for keys, ' 'or if new keys\n' ' can be added, or for sequences if elements can be ' 'replaced. The\n' ' same exceptions should be raised for improper *key* ' 'values as for\n' ' the "__getitem__()" method.\n' '\n' 'object.__delitem__(self, key)\n' '\n' ' Called to implement deletion of "self[key]". Same ' 'note as for\n' ' "__getitem__()". This should only be implemented for ' 'mappings if\n' ' the objects support removal of keys, or for sequences ' 'if elements\n' ' can be removed from the sequence. The same ' 'exceptions should be\n' ' raised for improper *key* values as for the ' '"__getitem__()" method.\n' '\n' 'object.__iter__(self)\n' '\n' ' This method is called when an iterator is required ' 'for a container.\n' ' This method should return a new iterator object that ' 'can iterate\n' ' over all the objects in the container. For mappings, ' 'it should\n' ' iterate over the keys of the container, and should ' 'also be made\n' ' available as the method "iterkeys()".\n' '\n' ' Iterator objects also need to implement this method; ' 'they are\n' ' required to return themselves. For more information ' 'on iterator\n' ' objects, see Iterator Types.\n' '\n' 'object.__reversed__(self)\n' '\n' ' Called (if present) by the "reversed()" built-in to ' 'implement\n' ' reverse iteration. It should return a new iterator ' 'object that\n' ' iterates over all the objects in the container in ' 'reverse order.\n' '\n' ' If the "__reversed__()" method is not provided, the ' '"reversed()"\n' ' built-in will fall back to using the sequence ' 'protocol ("__len__()"\n' ' and "__getitem__()"). Objects that support the ' 'sequence protocol\n' ' should only provide "__reversed__()" if they can ' 'provide an\n' ' implementation that is more efficient than the one ' 'provided by\n' ' "reversed()".\n' '\n' ' New in version 2.6.\n' '\n' 'The membership test operators ("in" and "not in") are ' 'normally\n' 'implemented as an iteration through a sequence. ' 'However, container\n' 'objects can supply the following special method with a ' 'more efficient\n' 'implementation, which also does not require the object ' 'be a sequence.\n' '\n' 'object.__contains__(self, item)\n' '\n' ' Called to implement membership test operators. ' 'Should return true\n' ' if *item* is in *self*, false otherwise. For mapping ' 'objects, this\n' ' should consider the keys of the mapping rather than ' 'the values or\n' ' the key-item pairs.\n' '\n' ' For objects that don\'t define "__contains__()", the ' 'membership test\n' ' first tries iteration via "__iter__()", then the old ' 'sequence\n' ' iteration protocol via "__getitem__()", see this ' 'section in the\n' ' language reference.\n', 'shifting': '\n' 'Shifting operations\n' '*******************\n' '\n' 'The shifting operations have lower priority than the ' 'arithmetic\n' 'operations:\n' '\n' ' shift_expr ::= a_expr | shift_expr ( "<<" | ">>" ) a_expr\n' '\n' 'These operators accept plain or long integers as arguments. ' 'The\n' 'arguments are converted to a common type. They shift the ' 'first\n' 'argument to the left or right by the number of bits given by ' 'the\n' 'second argument.\n' '\n' 'A right shift by *n* bits is defined as division by "pow(2, ' 'n)". A\n' 'left shift by *n* bits is defined as multiplication with ' '"pow(2, n)".\n' 'Negative shift counts raise a "ValueError" exception.\n' '\n' 'Note: In the current implementation, the right-hand operand ' 'is\n' ' required to be at most "sys.maxsize". If the right-hand ' 'operand is\n' ' larger than "sys.maxsize" an "OverflowError" exception is ' 'raised.\n', 'slicings': '\n' 'Slicings\n' '********\n' '\n' 'A slicing selects a range of items in a sequence object (e.g., ' 'a\n' 'string, tuple or list). Slicings may be used as expressions ' 'or as\n' 'targets in assignment or "del" statements. The syntax for a ' 'slicing:\n' '\n' ' slicing ::= simple_slicing | extended_slicing\n' ' simple_slicing ::= primary "[" short_slice "]"\n' ' extended_slicing ::= primary "[" slice_list "]"\n' ' slice_list ::= slice_item ("," slice_item)* [","]\n' ' slice_item ::= expression | proper_slice | ellipsis\n' ' proper_slice ::= short_slice | long_slice\n' ' short_slice ::= [lower_bound] ":" [upper_bound]\n' ' long_slice ::= short_slice ":" [stride]\n' ' lower_bound ::= expression\n' ' upper_bound ::= expression\n' ' stride ::= expression\n' ' ellipsis ::= "..."\n' '\n' 'There is ambiguity in the formal syntax here: anything that ' 'looks like\n' 'an expression list also looks like a slice list, so any ' 'subscription\n' 'can be interpreted as a slicing. Rather than further ' 'complicating the\n' 'syntax, this is disambiguated by defining that in this case ' 'the\n' 'interpretation as a subscription takes priority over the\n' 'interpretation as a slicing (this is the case if the slice ' 'list\n' 'contains no proper slice nor ellipses). Similarly, when the ' 'slice\n' 'list has exactly one short slice and no trailing comma, the\n' 'interpretation as a simple slicing takes priority over that as ' 'an\n' 'extended slicing.\n' '\n' 'The semantics for a simple slicing are as follows. The ' 'primary must\n' 'evaluate to a sequence object. The lower and upper bound ' 'expressions,\n' 'if present, must evaluate to plain integers; defaults are zero ' 'and the\n' '"sys.maxint", respectively. If either bound is negative, the\n' "sequence's length is added to it. The slicing now selects all " 'items\n' 'with index *k* such that "i <= k < j" where *i* and *j* are ' 'the\n' 'specified lower and upper bounds. This may be an empty ' 'sequence. It\n' 'is not an error if *i* or *j* lie outside the range of valid ' 'indexes\n' "(such items don't exist so they aren't selected).\n" '\n' 'The semantics for an extended slicing are as follows. The ' 'primary\n' 'must evaluate to a mapping object, and it is indexed with a ' 'key that\n' 'is constructed from the slice list, as follows. If the slice ' 'list\n' 'contains at least one comma, the key is a tuple containing ' 'the\n' 'conversion of the slice items; otherwise, the conversion of ' 'the lone\n' 'slice item is the key. The conversion of a slice item that is ' 'an\n' 'expression is that expression. The conversion of an ellipsis ' 'slice\n' 'item is the built-in "Ellipsis" object. The conversion of a ' 'proper\n' 'slice is a slice object (see section The standard type ' 'hierarchy)\n' 'whose "start", "stop" and "step" attributes are the values of ' 'the\n' 'expressions given as lower bound, upper bound and stride,\n' 'respectively, substituting "None" for missing expressions.\n', 'specialattrs': '\n' 'Special Attributes\n' '******************\n' '\n' 'The implementation adds a few special read-only attributes ' 'to several\n' 'object types, where they are relevant. Some of these are ' 'not reported\n' 'by the "dir()" built-in function.\n' '\n' 'object.__dict__\n' '\n' ' A dictionary or other mapping object used to store an ' "object's\n" ' (writable) attributes.\n' '\n' 'object.__methods__\n' '\n' ' Deprecated since version 2.2: Use the built-in function ' '"dir()" to\n' " get a list of an object's attributes. This attribute is " 'no longer\n' ' available.\n' '\n' 'object.__members__\n' '\n' ' Deprecated since version 2.2: Use the built-in function ' '"dir()" to\n' " get a list of an object's attributes. This attribute is " 'no longer\n' ' available.\n' '\n' 'instance.__class__\n' '\n' ' The class to which a class instance belongs.\n' '\n' 'class.__bases__\n' '\n' ' The tuple of base classes of a class object.\n' '\n' 'class.__name__\n' '\n' ' The name of the class or type.\n' '\n' 'The following attributes are only supported by *new-style ' 'class*es.\n' '\n' 'class.__mro__\n' '\n' ' This attribute is a tuple of classes that are ' 'considered when\n' ' looking for base classes during method resolution.\n' '\n' 'class.mro()\n' '\n' ' This method can be overridden by a metaclass to ' 'customize the\n' ' method resolution order for its instances. It is ' 'called at class\n' ' instantiation, and its result is stored in "__mro__".\n' '\n' 'class.__subclasses__()\n' '\n' ' Each new-style class keeps a list of weak references to ' 'its\n' ' immediate subclasses. This method returns a list of ' 'all those\n' ' references still alive. Example:\n' '\n' ' >>> int.__subclasses__()\n' " [<type 'bool'>]\n" '\n' '-[ Footnotes ]-\n' '\n' '[1] Additional information on these special methods may be ' 'found\n' ' in the Python Reference Manual (Basic customization).\n' '\n' '[2] As a consequence, the list "[1, 2]" is considered ' 'equal to\n' ' "[1.0, 2.0]", and similarly for tuples.\n' '\n' "[3] They must have since the parser can't tell the type of " 'the\n' ' operands.\n' '\n' '[4] Cased characters are those with general category ' 'property\n' ' being one of "Lu" (Letter, uppercase), "Ll" (Letter, ' 'lowercase),\n' ' or "Lt" (Letter, titlecase).\n' '\n' '[5] To format only a tuple you should therefore provide a\n' ' singleton tuple whose only element is the tuple to be ' 'formatted.\n' '\n' '[6] The advantage of leaving the newline on is that ' 'returning an\n' ' empty string is then an unambiguous EOF indication. ' 'It is also\n' ' possible (in cases where it might matter, for example, ' 'if you want\n' ' to make an exact copy of a file while scanning its ' 'lines) to tell\n' ' whether the last line of a file ended in a newline or ' 'not (yes\n' ' this happens!).\n', 'specialnames': '\n' 'Special method names\n' '********************\n' '\n' 'A class can implement certain operations that are invoked ' 'by special\n' 'syntax (such as arithmetic operations or subscripting and ' 'slicing) by\n' "defining methods with special names. This is Python's " 'approach to\n' '*operator overloading*, allowing classes to define their ' 'own behavior\n' 'with respect to language operators. For instance, if a ' 'class defines\n' 'a method named "__getitem__()", and "x" is an instance of ' 'this class,\n' 'then "x[i]" is roughly equivalent to "x.__getitem__(i)" ' 'for old-style\n' 'classes and "type(x).__getitem__(x, i)" for new-style ' 'classes. Except\n' 'where mentioned, attempts to execute an operation raise an ' 'exception\n' 'when no appropriate method is defined (typically ' '"AttributeError" or\n' '"TypeError").\n' '\n' 'When implementing a class that emulates any built-in type, ' 'it is\n' 'important that the emulation only be implemented to the ' 'degree that it\n' 'makes sense for the object being modelled. For example, ' 'some\n' 'sequences may work well with retrieval of individual ' 'elements, but\n' 'extracting a slice may not make sense. (One example of ' 'this is the\n' '"NodeList" interface in the W3C\'s Document Object ' 'Model.)\n' '\n' '\n' 'Basic customization\n' '===================\n' '\n' 'object.__new__(cls[, ...])\n' '\n' ' Called to create a new instance of class *cls*. ' '"__new__()" is a\n' ' static method (special-cased so you need not declare it ' 'as such)\n' ' that takes the class of which an instance was requested ' 'as its\n' ' first argument. The remaining arguments are those ' 'passed to the\n' ' object constructor expression (the call to the class). ' 'The return\n' ' value of "__new__()" should be the new object instance ' '(usually an\n' ' instance of *cls*).\n' '\n' ' Typical implementations create a new instance of the ' 'class by\n' ' invoking the superclass\'s "__new__()" method using\n' ' "super(currentclass, cls).__new__(cls[, ...])" with ' 'appropriate\n' ' arguments and then modifying the newly-created instance ' 'as\n' ' necessary before returning it.\n' '\n' ' If "__new__()" returns an instance of *cls*, then the ' 'new\n' ' instance\'s "__init__()" method will be invoked like\n' ' "__init__(self[, ...])", where *self* is the new ' 'instance and the\n' ' remaining arguments are the same as were passed to ' '"__new__()".\n' '\n' ' If "__new__()" does not return an instance of *cls*, ' 'then the new\n' ' instance\'s "__init__()" method will not be invoked.\n' '\n' ' "__new__()" is intended mainly to allow subclasses of ' 'immutable\n' ' types (like int, str, or tuple) to customize instance ' 'creation. It\n' ' is also commonly overridden in custom metaclasses in ' 'order to\n' ' customize class creation.\n' '\n' 'object.__init__(self[, ...])\n' '\n' ' Called after the instance has been created (by ' '"__new__()"), but\n' ' before it is returned to the caller. The arguments are ' 'those\n' ' passed to the class constructor expression. If a base ' 'class has an\n' ' "__init__()" method, the derived class\'s "__init__()" ' 'method, if\n' ' any, must explicitly call it to ensure proper ' 'initialization of the\n' ' base class part of the instance; for example:\n' ' "BaseClass.__init__(self, [args...])".\n' '\n' ' Because "__new__()" and "__init__()" work together in ' 'constructing\n' ' objects ("__new__()" to create it, and "__init__()" to ' 'customise\n' ' it), no non-"None" value may be returned by ' '"__init__()"; doing so\n' ' will cause a "TypeError" to be raised at runtime.\n' '\n' 'object.__del__(self)\n' '\n' ' Called when the instance is about to be destroyed. ' 'This is also\n' ' called a destructor. If a base class has a "__del__()" ' 'method, the\n' ' derived class\'s "__del__()" method, if any, must ' 'explicitly call it\n' ' to ensure proper deletion of the base class part of the ' 'instance.\n' ' Note that it is possible (though not recommended!) for ' 'the\n' ' "__del__()" method to postpone destruction of the ' 'instance by\n' ' creating a new reference to it. It may then be called ' 'at a later\n' ' time when this new reference is deleted. It is not ' 'guaranteed that\n' ' "__del__()" methods are called for objects that still ' 'exist when\n' ' the interpreter exits.\n' '\n' ' Note: "del x" doesn\'t directly call "x.__del__()" --- ' 'the former\n' ' decrements the reference count for "x" by one, and ' 'the latter is\n' ' only called when "x"\'s reference count reaches ' 'zero. Some common\n' ' situations that may prevent the reference count of an ' 'object from\n' ' going to zero include: circular references between ' 'objects (e.g.,\n' ' a doubly-linked list or a tree data structure with ' 'parent and\n' ' child pointers); a reference to the object on the ' 'stack frame of\n' ' a function that caught an exception (the traceback ' 'stored in\n' ' "sys.exc_traceback" keeps the stack frame alive); or ' 'a reference\n' ' to the object on the stack frame that raised an ' 'unhandled\n' ' exception in interactive mode (the traceback stored ' 'in\n' ' "sys.last_traceback" keeps the stack frame alive). ' 'The first\n' ' situation can only be remedied by explicitly breaking ' 'the cycles;\n' ' the latter two situations can be resolved by storing ' '"None" in\n' ' "sys.exc_traceback" or "sys.last_traceback". ' 'Circular references\n' ' which are garbage are detected when the option cycle ' 'detector is\n' " enabled (it's on by default), but can only be cleaned " 'up if there\n' ' are no Python-level "__del__()" methods involved. ' 'Refer to the\n' ' documentation for the "gc" module for more ' 'information about how\n' ' "__del__()" methods are handled by the cycle ' 'detector,\n' ' particularly the description of the "garbage" value.\n' '\n' ' Warning: Due to the precarious circumstances under ' 'which\n' ' "__del__()" methods are invoked, exceptions that ' 'occur during\n' ' their execution are ignored, and a warning is printed ' 'to\n' ' "sys.stderr" instead. Also, when "__del__()" is ' 'invoked in\n' ' response to a module being deleted (e.g., when ' 'execution of the\n' ' program is done), other globals referenced by the ' '"__del__()"\n' ' method may already have been deleted or in the ' 'process of being\n' ' torn down (e.g. the import machinery shutting down). ' 'For this\n' ' reason, "__del__()" methods should do the absolute ' 'minimum needed\n' ' to maintain external invariants. Starting with ' 'version 1.5,\n' ' Python guarantees that globals whose name begins with ' 'a single\n' ' underscore are deleted from their module before other ' 'globals are\n' ' deleted; if no other references to such globals ' 'exist, this may\n' ' help in assuring that imported modules are still ' 'available at the\n' ' time when the "__del__()" method is called.\n' '\n' ' See also the "-R" command-line option.\n' '\n' 'object.__repr__(self)\n' '\n' ' Called by the "repr()" built-in function and by string ' 'conversions\n' ' (reverse quotes) to compute the "official" string ' 'representation of\n' ' an object. If at all possible, this should look like a ' 'valid\n' ' Python expression that could be used to recreate an ' 'object with the\n' ' same value (given an appropriate environment). If this ' 'is not\n' ' possible, a string of the form "<...some useful ' 'description...>"\n' ' should be returned. The return value must be a string ' 'object. If a\n' ' class defines "__repr__()" but not "__str__()", then ' '"__repr__()"\n' ' is also used when an "informal" string representation ' 'of instances\n' ' of that class is required.\n' '\n' ' This is typically used for debugging, so it is ' 'important that the\n' ' representation is information-rich and unambiguous.\n' '\n' 'object.__str__(self)\n' '\n' ' Called by the "str()" built-in function and by the ' '"print"\n' ' statement to compute the "informal" string ' 'representation of an\n' ' object. This differs from "__repr__()" in that it does ' 'not have to\n' ' be a valid Python expression: a more convenient or ' 'concise\n' ' representation may be used instead. The return value ' 'must be a\n' ' string object.\n' '\n' 'object.__lt__(self, other)\n' 'object.__le__(self, other)\n' 'object.__eq__(self, other)\n' 'object.__ne__(self, other)\n' 'object.__gt__(self, other)\n' 'object.__ge__(self, other)\n' '\n' ' New in version 2.1.\n' '\n' ' These are the so-called "rich comparison" methods, and ' 'are called\n' ' for comparison operators in preference to "__cmp__()" ' 'below. The\n' ' correspondence between operator symbols and method ' 'names is as\n' ' follows: "x<y" calls "x.__lt__(y)", "x<=y" calls ' '"x.__le__(y)",\n' ' "x==y" calls "x.__eq__(y)", "x!=y" and "x<>y" call ' '"x.__ne__(y)",\n' ' "x>y" calls "x.__gt__(y)", and "x>=y" calls ' '"x.__ge__(y)".\n' '\n' ' A rich comparison method may return the singleton ' '"NotImplemented"\n' ' if it does not implement the operation for a given pair ' 'of\n' ' arguments. By convention, "False" and "True" are ' 'returned for a\n' ' successful comparison. However, these methods can ' 'return any value,\n' ' so if the comparison operator is used in a Boolean ' 'context (e.g.,\n' ' in the condition of an "if" statement), Python will ' 'call "bool()"\n' ' on the value to determine if the result is true or ' 'false.\n' '\n' ' There are no implied relationships among the comparison ' 'operators.\n' ' The truth of "x==y" does not imply that "x!=y" is ' 'false.\n' ' Accordingly, when defining "__eq__()", one should also ' 'define\n' ' "__ne__()" so that the operators will behave as ' 'expected. See the\n' ' paragraph on "__hash__()" for some important notes on ' 'creating\n' ' *hashable* objects which support custom comparison ' 'operations and\n' ' are usable as dictionary keys.\n' '\n' ' There are no swapped-argument versions of these methods ' '(to be used\n' ' when the left argument does not support the operation ' 'but the right\n' ' argument does); rather, "__lt__()" and "__gt__()" are ' "each other's\n" ' reflection, "__le__()" and "__ge__()" are each other\'s ' 'reflection,\n' ' and "__eq__()" and "__ne__()" are their own ' 'reflection.\n' '\n' ' Arguments to rich comparison methods are never ' 'coerced.\n' '\n' ' To automatically generate ordering operations from a ' 'single root\n' ' operation, see "functools.total_ordering()".\n' '\n' 'object.__cmp__(self, other)\n' '\n' ' Called by comparison operations if rich comparison (see ' 'above) is\n' ' not defined. Should return a negative integer if "self ' '< other",\n' ' zero if "self == other", a positive integer if "self > ' 'other". If\n' ' no "__cmp__()", "__eq__()" or "__ne__()" operation is ' 'defined,\n' ' class instances are compared by object identity ' '("address"). See\n' ' also the description of "__hash__()" for some important ' 'notes on\n' ' creating *hashable* objects which support custom ' 'comparison\n' ' operations and are usable as dictionary keys. (Note: ' 'the\n' ' restriction that exceptions are not propagated by ' '"__cmp__()" has\n' ' been removed since Python 1.5.)\n' '\n' 'object.__rcmp__(self, other)\n' '\n' ' Changed in version 2.1: No longer supported.\n' '\n' 'object.__hash__(self)\n' '\n' ' Called by built-in function "hash()" and for operations ' 'on members\n' ' of hashed collections including "set", "frozenset", and ' '"dict".\n' ' "__hash__()" should return an integer. The only ' 'required property\n' ' is that objects which compare equal have the same hash ' 'value; it is\n' ' advised to somehow mix together (e.g. using exclusive ' 'or) the hash\n' ' values for the components of the object that also play ' 'a part in\n' ' comparison of objects.\n' '\n' ' If a class does not define a "__cmp__()" or "__eq__()" ' 'method it\n' ' should not define a "__hash__()" operation either; if ' 'it defines\n' ' "__cmp__()" or "__eq__()" but not "__hash__()", its ' 'instances will\n' ' not be usable in hashed collections. If a class ' 'defines mutable\n' ' objects and implements a "__cmp__()" or "__eq__()" ' 'method, it\n' ' should not implement "__hash__()", since hashable ' 'collection\n' " implementations require that a object's hash value is " 'immutable (if\n' " the object's hash value changes, it will be in the " 'wrong hash\n' ' bucket).\n' '\n' ' User-defined classes have "__cmp__()" and "__hash__()" ' 'methods by\n' ' default; with them, all objects compare unequal (except ' 'with\n' ' themselves) and "x.__hash__()" returns a result derived ' 'from\n' ' "id(x)".\n' '\n' ' Classes which inherit a "__hash__()" method from a ' 'parent class but\n' ' change the meaning of "__cmp__()" or "__eq__()" such ' 'that the hash\n' ' value returned is no longer appropriate (e.g. by ' 'switching to a\n' ' value-based concept of equality instead of the default ' 'identity\n' ' based equality) can explicitly flag themselves as being ' 'unhashable\n' ' by setting "__hash__ = None" in the class definition. ' 'Doing so\n' ' means that not only will instances of the class raise ' 'an\n' ' appropriate "TypeError" when a program attempts to ' 'retrieve their\n' ' hash value, but they will also be correctly identified ' 'as\n' ' unhashable when checking "isinstance(obj, ' 'collections.Hashable)"\n' ' (unlike classes which define their own "__hash__()" to ' 'explicitly\n' ' raise "TypeError").\n' '\n' ' Changed in version 2.5: "__hash__()" may now also ' 'return a long\n' ' integer object; the 32-bit integer is then derived from ' 'the hash of\n' ' that object.\n' '\n' ' Changed in version 2.6: "__hash__" may now be set to ' '"None" to\n' ' explicitly flag instances of a class as unhashable.\n' '\n' 'object.__nonzero__(self)\n' '\n' ' Called to implement truth value testing and the ' 'built-in operation\n' ' "bool()"; should return "False" or "True", or their ' 'integer\n' ' equivalents "0" or "1". When this method is not ' 'defined,\n' ' "__len__()" is called, if it is defined, and the object ' 'is\n' ' considered true if its result is nonzero. If a class ' 'defines\n' ' neither "__len__()" nor "__nonzero__()", all its ' 'instances are\n' ' considered true.\n' '\n' 'object.__unicode__(self)\n' '\n' ' Called to implement "unicode()" built-in; should return ' 'a Unicode\n' ' object. When this method is not defined, string ' 'conversion is\n' ' attempted, and the result of string conversion is ' 'converted to\n' ' Unicode using the system default encoding.\n' '\n' '\n' 'Customizing attribute access\n' '============================\n' '\n' 'The following methods can be defined to customize the ' 'meaning of\n' 'attribute access (use of, assignment to, or deletion of ' '"x.name") for\n' 'class instances.\n' '\n' 'object.__getattr__(self, name)\n' '\n' ' Called when an attribute lookup has not found the ' 'attribute in the\n' ' usual places (i.e. it is not an instance attribute nor ' 'is it found\n' ' in the class tree for "self"). "name" is the attribute ' 'name. This\n' ' method should return the (computed) attribute value or ' 'raise an\n' ' "AttributeError" exception.\n' '\n' ' Note that if the attribute is found through the normal ' 'mechanism,\n' ' "__getattr__()" is not called. (This is an intentional ' 'asymmetry\n' ' between "__getattr__()" and "__setattr__()".) This is ' 'done both for\n' ' efficiency reasons and because otherwise ' '"__getattr__()" would have\n' ' no way to access other attributes of the instance. ' 'Note that at\n' ' least for instance variables, you can fake total ' 'control by not\n' ' inserting any values in the instance attribute ' 'dictionary (but\n' ' instead inserting them in another object). See the\n' ' "__getattribute__()" method below for a way to actually ' 'get total\n' ' control in new-style classes.\n' '\n' 'object.__setattr__(self, name, value)\n' '\n' ' Called when an attribute assignment is attempted. This ' 'is called\n' ' instead of the normal mechanism (i.e. store the value ' 'in the\n' ' instance dictionary). *name* is the attribute name, ' '*value* is the\n' ' value to be assigned to it.\n' '\n' ' If "__setattr__()" wants to assign to an instance ' 'attribute, it\n' ' should not simply execute "self.name = value" --- this ' 'would cause\n' ' a recursive call to itself. Instead, it should insert ' 'the value in\n' ' the dictionary of instance attributes, e.g., ' '"self.__dict__[name] =\n' ' value". For new-style classes, rather than accessing ' 'the instance\n' ' dictionary, it should call the base class method with ' 'the same\n' ' name, for example, "object.__setattr__(self, name, ' 'value)".\n' '\n' 'object.__delattr__(self, name)\n' '\n' ' Like "__setattr__()" but for attribute deletion instead ' 'of\n' ' assignment. This should only be implemented if "del ' 'obj.name" is\n' ' meaningful for the object.\n' '\n' '\n' 'More attribute access for new-style classes\n' '-------------------------------------------\n' '\n' 'The following methods only apply to new-style classes.\n' '\n' 'object.__getattribute__(self, name)\n' '\n' ' Called unconditionally to implement attribute accesses ' 'for\n' ' instances of the class. If the class also defines ' '"__getattr__()",\n' ' the latter will not be called unless ' '"__getattribute__()" either\n' ' calls it explicitly or raises an "AttributeError". This ' 'method\n' ' should return the (computed) attribute value or raise ' 'an\n' ' "AttributeError" exception. In order to avoid infinite ' 'recursion in\n' ' this method, its implementation should always call the ' 'base class\n' ' method with the same name to access any attributes it ' 'needs, for\n' ' example, "object.__getattribute__(self, name)".\n' '\n' ' Note: This method may still be bypassed when looking up ' 'special\n' ' methods as the result of implicit invocation via ' 'language syntax\n' ' or built-in functions. See Special method lookup for ' 'new-style\n' ' classes.\n' '\n' '\n' 'Implementing Descriptors\n' '------------------------\n' '\n' 'The following methods only apply when an instance of the ' 'class\n' 'containing the method (a so-called *descriptor* class) ' 'appears in an\n' '*owner* class (the descriptor must be in either the ' "owner's class\n" 'dictionary or in the class dictionary for one of its ' 'parents). In the\n' 'examples below, "the attribute" refers to the attribute ' 'whose name is\n' 'the key of the property in the owner class\' "__dict__".\n' '\n' 'object.__get__(self, instance, owner)\n' '\n' ' Called to get the attribute of the owner class (class ' 'attribute\n' ' access) or of an instance of that class (instance ' 'attribute\n' ' access). *owner* is always the owner class, while ' '*instance* is the\n' ' instance that the attribute was accessed through, or ' '"None" when\n' ' the attribute is accessed through the *owner*. This ' 'method should\n' ' return the (computed) attribute value or raise an ' '"AttributeError"\n' ' exception.\n' '\n' 'object.__set__(self, instance, value)\n' '\n' ' Called to set the attribute on an instance *instance* ' 'of the owner\n' ' class to a new value, *value*.\n' '\n' 'object.__delete__(self, instance)\n' '\n' ' Called to delete the attribute on an instance ' '*instance* of the\n' ' owner class.\n' '\n' '\n' 'Invoking Descriptors\n' '--------------------\n' '\n' 'In general, a descriptor is an object attribute with ' '"binding\n' 'behavior", one whose attribute access has been overridden ' 'by methods\n' 'in the descriptor protocol: "__get__()", "__set__()", ' 'and\n' '"__delete__()". If any of those methods are defined for an ' 'object, it\n' 'is said to be a descriptor.\n' '\n' 'The default behavior for attribute access is to get, set, ' 'or delete\n' "the attribute from an object's dictionary. For instance, " '"a.x" has a\n' 'lookup chain starting with "a.__dict__[\'x\']", then\n' '"type(a).__dict__[\'x\']", and continuing through the base ' 'classes of\n' '"type(a)" excluding metaclasses.\n' '\n' 'However, if the looked-up value is an object defining one ' 'of the\n' 'descriptor methods, then Python may override the default ' 'behavior and\n' 'invoke the descriptor method instead. Where this occurs ' 'in the\n' 'precedence chain depends on which descriptor methods were ' 'defined and\n' 'how they were called. Note that descriptors are only ' 'invoked for new\n' 'style objects or classes (ones that subclass "object()" or ' '"type()").\n' '\n' 'The starting point for descriptor invocation is a binding, ' '"a.x". How\n' 'the arguments are assembled depends on "a":\n' '\n' 'Direct Call\n' ' The simplest and least common call is when user code ' 'directly\n' ' invokes a descriptor method: "x.__get__(a)".\n' '\n' 'Instance Binding\n' ' If binding to a new-style object instance, "a.x" is ' 'transformed\n' ' into the call: "type(a).__dict__[\'x\'].__get__(a, ' 'type(a))".\n' '\n' 'Class Binding\n' ' If binding to a new-style class, "A.x" is transformed ' 'into the\n' ' call: "A.__dict__[\'x\'].__get__(None, A)".\n' '\n' 'Super Binding\n' ' If "a" is an instance of "super", then the binding ' '"super(B,\n' ' obj).m()" searches "obj.__class__.__mro__" for the base ' 'class "A"\n' ' immediately preceding "B" and then invokes the ' 'descriptor with the\n' ' call: "A.__dict__[\'m\'].__get__(obj, obj.__class__)".\n' '\n' 'For instance bindings, the precedence of descriptor ' 'invocation depends\n' 'on the which descriptor methods are defined. A descriptor ' 'can define\n' 'any combination of "__get__()", "__set__()" and ' '"__delete__()". If it\n' 'does not define "__get__()", then accessing the attribute ' 'will return\n' 'the descriptor object itself unless there is a value in ' "the object's\n" 'instance dictionary. If the descriptor defines ' '"__set__()" and/or\n' '"__delete__()", it is a data descriptor; if it defines ' 'neither, it is\n' 'a non-data descriptor. Normally, data descriptors define ' 'both\n' '"__get__()" and "__set__()", while non-data descriptors ' 'have just the\n' '"__get__()" method. Data descriptors with "__set__()" and ' '"__get__()"\n' 'defined always override a redefinition in an instance ' 'dictionary. In\n' 'contrast, non-data descriptors can be overridden by ' 'instances.\n' '\n' 'Python methods (including "staticmethod()" and ' '"classmethod()") are\n' 'implemented as non-data descriptors. Accordingly, ' 'instances can\n' 'redefine and override methods. This allows individual ' 'instances to\n' 'acquire behaviors that differ from other instances of the ' 'same class.\n' '\n' 'The "property()" function is implemented as a data ' 'descriptor.\n' 'Accordingly, instances cannot override the behavior of a ' 'property.\n' '\n' '\n' '__slots__\n' '---------\n' '\n' 'By default, instances of both old and new-style classes ' 'have a\n' 'dictionary for attribute storage. This wastes space for ' 'objects\n' 'having very few instance variables. The space consumption ' 'can become\n' 'acute when creating large numbers of instances.\n' '\n' 'The default can be overridden by defining *__slots__* in a ' 'new-style\n' 'class definition. The *__slots__* declaration takes a ' 'sequence of\n' 'instance variables and reserves just enough space in each ' 'instance to\n' 'hold a value for each variable. Space is saved because ' '*__dict__* is\n' 'not created for each instance.\n' '\n' '__slots__\n' '\n' ' This class variable can be assigned a string, iterable, ' 'or sequence\n' ' of strings with variable names used by instances. If ' 'defined in a\n' ' new-style class, *__slots__* reserves space for the ' 'declared\n' ' variables and prevents the automatic creation of ' '*__dict__* and\n' ' *__weakref__* for each instance.\n' '\n' ' New in version 2.2.\n' '\n' 'Notes on using *__slots__*\n' '\n' '* When inheriting from a class without *__slots__*, the ' '*__dict__*\n' ' attribute of that class will always be accessible, so a ' '*__slots__*\n' ' definition in the subclass is meaningless.\n' '\n' '* Without a *__dict__* variable, instances cannot be ' 'assigned new\n' ' variables not listed in the *__slots__* definition. ' 'Attempts to\n' ' assign to an unlisted variable name raises ' '"AttributeError". If\n' ' dynamic assignment of new variables is desired, then ' 'add\n' ' "\'__dict__\'" to the sequence of strings in the ' '*__slots__*\n' ' declaration.\n' '\n' ' Changed in version 2.3: Previously, adding ' '"\'__dict__\'" to the\n' ' *__slots__* declaration would not enable the assignment ' 'of new\n' ' attributes not specifically listed in the sequence of ' 'instance\n' ' variable names.\n' '\n' '* Without a *__weakref__* variable for each instance, ' 'classes\n' ' defining *__slots__* do not support weak references to ' 'its\n' ' instances. If weak reference support is needed, then ' 'add\n' ' "\'__weakref__\'" to the sequence of strings in the ' '*__slots__*\n' ' declaration.\n' '\n' ' Changed in version 2.3: Previously, adding ' '"\'__weakref__\'" to the\n' ' *__slots__* declaration would not enable support for ' 'weak\n' ' references.\n' '\n' '* *__slots__* are implemented at the class level by ' 'creating\n' ' descriptors (Implementing Descriptors) for each variable ' 'name. As a\n' ' result, class attributes cannot be used to set default ' 'values for\n' ' instance variables defined by *__slots__*; otherwise, ' 'the class\n' ' attribute would overwrite the descriptor assignment.\n' '\n' '* The action of a *__slots__* declaration is limited to ' 'the class\n' ' where it is defined. As a result, subclasses will have ' 'a *__dict__*\n' ' unless they also define *__slots__* (which must only ' 'contain names\n' ' of any *additional* slots).\n' '\n' '* If a class defines a slot also defined in a base class, ' 'the\n' ' instance variable defined by the base class slot is ' 'inaccessible\n' ' (except by retrieving its descriptor directly from the ' 'base class).\n' ' This renders the meaning of the program undefined. In ' 'the future, a\n' ' check may be added to prevent this.\n' '\n' '* Nonempty *__slots__* does not work for classes derived ' 'from\n' ' "variable-length" built-in types such as "long", "str" ' 'and "tuple".\n' '\n' '* Any non-string iterable may be assigned to *__slots__*. ' 'Mappings\n' ' may also be used; however, in the future, special ' 'meaning may be\n' ' assigned to the values corresponding to each key.\n' '\n' '* *__class__* assignment works only if both classes have ' 'the same\n' ' *__slots__*.\n' '\n' ' Changed in version 2.6: Previously, *__class__* ' 'assignment raised an\n' ' error if either new or old class had *__slots__*.\n' '\n' '\n' 'Customizing class creation\n' '==========================\n' '\n' 'By default, new-style classes are constructed using ' '"type()". A class\n' 'definition is read into a separate namespace and the value ' 'of class\n' 'name is bound to the result of "type(name, bases, dict)".\n' '\n' 'When the class definition is read, if *__metaclass__* is ' 'defined then\n' 'the callable assigned to it will be called instead of ' '"type()". This\n' 'allows classes or functions to be written which monitor or ' 'alter the\n' 'class creation process:\n' '\n' '* Modifying the class dictionary prior to the class being ' 'created.\n' '\n' '* Returning an instance of another class -- essentially ' 'performing\n' ' the role of a factory function.\n' '\n' "These steps will have to be performed in the metaclass's " '"__new__()"\n' 'method -- "type.__new__()" can then be called from this ' 'method to\n' 'create a class with different properties. This example ' 'adds a new\n' 'element to the class dictionary before creating the ' 'class:\n' '\n' ' class metacls(type):\n' ' def __new__(mcs, name, bases, dict):\n' " dict['foo'] = 'metacls was here'\n" ' return type.__new__(mcs, name, bases, dict)\n' '\n' 'You can of course also override other class methods (or ' 'add new\n' 'methods); for example defining a custom "__call__()" ' 'method in the\n' 'metaclass allows custom behavior when the class is called, ' 'e.g. not\n' 'always creating a new instance.\n' '\n' '__metaclass__\n' '\n' ' This variable can be any callable accepting arguments ' 'for "name",\n' ' "bases", and "dict". Upon class creation, the callable ' 'is used\n' ' instead of the built-in "type()".\n' '\n' ' New in version 2.2.\n' '\n' 'The appropriate metaclass is determined by the following ' 'precedence\n' 'rules:\n' '\n' '* If "dict[\'__metaclass__\']" exists, it is used.\n' '\n' '* Otherwise, if there is at least one base class, its ' 'metaclass is\n' ' used (this looks for a *__class__* attribute first and ' 'if not found,\n' ' uses its type).\n' '\n' '* Otherwise, if a global variable named __metaclass__ ' 'exists, it is\n' ' used.\n' '\n' '* Otherwise, the old-style, classic metaclass ' '(types.ClassType) is\n' ' used.\n' '\n' 'The potential uses for metaclasses are boundless. Some ' 'ideas that have\n' 'been explored including logging, interface checking, ' 'automatic\n' 'delegation, automatic property creation, proxies, ' 'frameworks, and\n' 'automatic resource locking/synchronization.\n' '\n' '\n' 'Customizing instance and subclass checks\n' '========================================\n' '\n' 'New in version 2.6.\n' '\n' 'The following methods are used to override the default ' 'behavior of the\n' '"isinstance()" and "issubclass()" built-in functions.\n' '\n' 'In particular, the metaclass "abc.ABCMeta" implements ' 'these methods in\n' 'order to allow the addition of Abstract Base Classes ' '(ABCs) as\n' '"virtual base classes" to any class or type (including ' 'built-in\n' 'types), including other ABCs.\n' '\n' 'class.__instancecheck__(self, instance)\n' '\n' ' Return true if *instance* should be considered a ' '(direct or\n' ' indirect) instance of *class*. If defined, called to ' 'implement\n' ' "isinstance(instance, class)".\n' '\n' 'class.__subclasscheck__(self, subclass)\n' '\n' ' Return true if *subclass* should be considered a ' '(direct or\n' ' indirect) subclass of *class*. If defined, called to ' 'implement\n' ' "issubclass(subclass, class)".\n' '\n' 'Note that these methods are looked up on the type ' '(metaclass) of a\n' 'class. They cannot be defined as class methods in the ' 'actual class.\n' 'This is consistent with the lookup of special methods that ' 'are called\n' 'on instances, only in this case the instance is itself a ' 'class.\n' '\n' 'See also: **PEP 3119** - Introducing Abstract Base ' 'Classes\n' '\n' ' Includes the specification for customizing ' '"isinstance()" and\n' ' "issubclass()" behavior through "__instancecheck__()" ' 'and\n' ' "__subclasscheck__()", with motivation for this ' 'functionality in\n' ' the context of adding Abstract Base Classes (see the ' '"abc"\n' ' module) to the language.\n' '\n' '\n' 'Emulating callable objects\n' '==========================\n' '\n' 'object.__call__(self[, args...])\n' '\n' ' Called when the instance is "called" as a function; if ' 'this method\n' ' is defined, "x(arg1, arg2, ...)" is a shorthand for\n' ' "x.__call__(arg1, arg2, ...)".\n' '\n' '\n' 'Emulating container types\n' '=========================\n' '\n' 'The following methods can be defined to implement ' 'container objects.\n' 'Containers usually are sequences (such as lists or tuples) ' 'or mappings\n' '(like dictionaries), but can represent other containers as ' 'well. The\n' 'first set of methods is used either to emulate a sequence ' 'or to\n' 'emulate a mapping; the difference is that for a sequence, ' 'the\n' 'allowable keys should be the integers *k* for which "0 <= ' 'k < N" where\n' '*N* is the length of the sequence, or slice objects, which ' 'define a\n' 'range of items. (For backwards compatibility, the method\n' '"__getslice__()" (see below) can also be defined to handle ' 'simple, but\n' 'not extended slices.) It is also recommended that mappings ' 'provide the\n' 'methods "keys()", "values()", "items()", "has_key()", ' '"get()",\n' '"clear()", "setdefault()", "iterkeys()", "itervalues()",\n' '"iteritems()", "pop()", "popitem()", "copy()", and ' '"update()" behaving\n' "similar to those for Python's standard dictionary " 'objects. The\n' '"UserDict" module provides a "DictMixin" class to help ' 'create those\n' 'methods from a base set of "__getitem__()", ' '"__setitem__()",\n' '"__delitem__()", and "keys()". Mutable sequences should ' 'provide\n' 'methods "append()", "count()", "index()", "extend()", ' '"insert()",\n' '"pop()", "remove()", "reverse()" and "sort()", like Python ' 'standard\n' 'list objects. Finally, sequence types should implement ' 'addition\n' '(meaning concatenation) and multiplication (meaning ' 'repetition) by\n' 'defining the methods "__add__()", "__radd__()", ' '"__iadd__()",\n' '"__mul__()", "__rmul__()" and "__imul__()" described ' 'below; they\n' 'should not define "__coerce__()" or other numerical ' 'operators. It is\n' 'recommended that both mappings and sequences implement ' 'the\n' '"__contains__()" method to allow efficient use of the "in" ' 'operator;\n' 'for mappings, "in" should be equivalent of "has_key()"; ' 'for sequences,\n' 'it should search through the values. It is further ' 'recommended that\n' 'both mappings and sequences implement the "__iter__()" ' 'method to allow\n' 'efficient iteration through the container; for mappings, ' '"__iter__()"\n' 'should be the same as "iterkeys()"; for sequences, it ' 'should iterate\n' 'through the values.\n' '\n' 'object.__len__(self)\n' '\n' ' Called to implement the built-in function "len()". ' 'Should return\n' ' the length of the object, an integer ">=" 0. Also, an ' 'object that\n' ' doesn\'t define a "__nonzero__()" method and whose ' '"__len__()"\n' ' method returns zero is considered to be false in a ' 'Boolean context.\n' '\n' 'object.__getitem__(self, key)\n' '\n' ' Called to implement evaluation of "self[key]". For ' 'sequence types,\n' ' the accepted keys should be integers and slice ' 'objects. Note that\n' ' the special interpretation of negative indexes (if the ' 'class wishes\n' ' to emulate a sequence type) is up to the ' '"__getitem__()" method. If\n' ' *key* is of an inappropriate type, "TypeError" may be ' 'raised; if of\n' ' a value outside the set of indexes for the sequence ' '(after any\n' ' special interpretation of negative values), ' '"IndexError" should be\n' ' raised. For mapping types, if *key* is missing (not in ' 'the\n' ' container), "KeyError" should be raised.\n' '\n' ' Note: "for" loops expect that an "IndexError" will be ' 'raised for\n' ' illegal indexes to allow proper detection of the end ' 'of the\n' ' sequence.\n' '\n' 'object.__missing__(self, key)\n' '\n' ' Called by "dict"."__getitem__()" to implement ' '"self[key]" for dict\n' ' subclasses when key is not in the dictionary.\n' '\n' 'object.__setitem__(self, key, value)\n' '\n' ' Called to implement assignment to "self[key]". Same ' 'note as for\n' ' "__getitem__()". This should only be implemented for ' 'mappings if\n' ' the objects support changes to the values for keys, or ' 'if new keys\n' ' can be added, or for sequences if elements can be ' 'replaced. The\n' ' same exceptions should be raised for improper *key* ' 'values as for\n' ' the "__getitem__()" method.\n' '\n' 'object.__delitem__(self, key)\n' '\n' ' Called to implement deletion of "self[key]". Same note ' 'as for\n' ' "__getitem__()". This should only be implemented for ' 'mappings if\n' ' the objects support removal of keys, or for sequences ' 'if elements\n' ' can be removed from the sequence. The same exceptions ' 'should be\n' ' raised for improper *key* values as for the ' '"__getitem__()" method.\n' '\n' 'object.__iter__(self)\n' '\n' ' This method is called when an iterator is required for ' 'a container.\n' ' This method should return a new iterator object that ' 'can iterate\n' ' over all the objects in the container. For mappings, ' 'it should\n' ' iterate over the keys of the container, and should also ' 'be made\n' ' available as the method "iterkeys()".\n' '\n' ' Iterator objects also need to implement this method; ' 'they are\n' ' required to return themselves. For more information on ' 'iterator\n' ' objects, see Iterator Types.\n' '\n' 'object.__reversed__(self)\n' '\n' ' Called (if present) by the "reversed()" built-in to ' 'implement\n' ' reverse iteration. It should return a new iterator ' 'object that\n' ' iterates over all the objects in the container in ' 'reverse order.\n' '\n' ' If the "__reversed__()" method is not provided, the ' '"reversed()"\n' ' built-in will fall back to using the sequence protocol ' '("__len__()"\n' ' and "__getitem__()"). Objects that support the ' 'sequence protocol\n' ' should only provide "__reversed__()" if they can ' 'provide an\n' ' implementation that is more efficient than the one ' 'provided by\n' ' "reversed()".\n' '\n' ' New in version 2.6.\n' '\n' 'The membership test operators ("in" and "not in") are ' 'normally\n' 'implemented as an iteration through a sequence. However, ' 'container\n' 'objects can supply the following special method with a ' 'more efficient\n' 'implementation, which also does not require the object be ' 'a sequence.\n' '\n' 'object.__contains__(self, item)\n' '\n' ' Called to implement membership test operators. Should ' 'return true\n' ' if *item* is in *self*, false otherwise. For mapping ' 'objects, this\n' ' should consider the keys of the mapping rather than the ' 'values or\n' ' the key-item pairs.\n' '\n' ' For objects that don\'t define "__contains__()", the ' 'membership test\n' ' first tries iteration via "__iter__()", then the old ' 'sequence\n' ' iteration protocol via "__getitem__()", see this ' 'section in the\n' ' language reference.\n' '\n' '\n' 'Additional methods for emulation of sequence types\n' '==================================================\n' '\n' 'The following optional methods can be defined to further ' 'emulate\n' 'sequence objects. Immutable sequences methods should at ' 'most only\n' 'define "__getslice__()"; mutable sequences might define ' 'all three\n' 'methods.\n' '\n' 'object.__getslice__(self, i, j)\n' '\n' ' Deprecated since version 2.0: Support slice objects as ' 'parameters\n' ' to the "__getitem__()" method. (However, built-in types ' 'in CPython\n' ' currently still implement "__getslice__()". Therefore, ' 'you have to\n' ' override it in derived classes when implementing ' 'slicing.)\n' '\n' ' Called to implement evaluation of "self[i:j]". The ' 'returned object\n' ' should be of the same type as *self*. Note that ' 'missing *i* or *j*\n' ' in the slice expression are replaced by zero or ' '"sys.maxsize",\n' ' respectively. If negative indexes are used in the ' 'slice, the\n' ' length of the sequence is added to that index. If the ' 'instance does\n' ' not implement the "__len__()" method, an ' '"AttributeError" is\n' ' raised. No guarantee is made that indexes adjusted this ' 'way are not\n' ' still negative. Indexes which are greater than the ' 'length of the\n' ' sequence are not modified. If no "__getslice__()" is ' 'found, a slice\n' ' object is created instead, and passed to ' '"__getitem__()" instead.\n' '\n' 'object.__setslice__(self, i, j, sequence)\n' '\n' ' Called to implement assignment to "self[i:j]". Same ' 'notes for *i*\n' ' and *j* as for "__getslice__()".\n' '\n' ' This method is deprecated. If no "__setslice__()" is ' 'found, or for\n' ' extended slicing of the form "self[i:j:k]", a slice ' 'object is\n' ' created, and passed to "__setitem__()", instead of ' '"__setslice__()"\n' ' being called.\n' '\n' 'object.__delslice__(self, i, j)\n' '\n' ' Called to implement deletion of "self[i:j]". Same notes ' 'for *i* and\n' ' *j* as for "__getslice__()". This method is deprecated. ' 'If no\n' ' "__delslice__()" is found, or for extended slicing of ' 'the form\n' ' "self[i:j:k]", a slice object is created, and passed ' 'to\n' ' "__delitem__()", instead of "__delslice__()" being ' 'called.\n' '\n' 'Notice that these methods are only invoked when a single ' 'slice with a\n' 'single colon is used, and the slice method is available. ' 'For slice\n' 'operations involving extended slice notation, or in ' 'absence of the\n' 'slice methods, "__getitem__()", "__setitem__()" or ' '"__delitem__()" is\n' 'called with a slice object as argument.\n' '\n' 'The following example demonstrate how to make your program ' 'or module\n' 'compatible with earlier versions of Python (assuming that ' 'methods\n' '"__getitem__()", "__setitem__()" and "__delitem__()" ' 'support slice\n' 'objects as arguments):\n' '\n' ' class MyClass:\n' ' ...\n' ' def __getitem__(self, index):\n' ' ...\n' ' def __setitem__(self, index, value):\n' ' ...\n' ' def __delitem__(self, index):\n' ' ...\n' '\n' ' if sys.version_info < (2, 0):\n' " # They won't be defined if version is at least " '2.0 final\n' '\n' ' def __getslice__(self, i, j):\n' ' return self[max(0, i):max(0, j):]\n' ' def __setslice__(self, i, j, seq):\n' ' self[max(0, i):max(0, j):] = seq\n' ' def __delslice__(self, i, j):\n' ' del self[max(0, i):max(0, j):]\n' ' ...\n' '\n' 'Note the calls to "max()"; these are necessary because of ' 'the handling\n' 'of negative indices before the "__*slice__()" methods are ' 'called.\n' 'When negative indexes are used, the "__*item__()" methods ' 'receive them\n' 'as provided, but the "__*slice__()" methods get a "cooked" ' 'form of the\n' 'index values. For each negative index value, the length ' 'of the\n' 'sequence is added to the index before calling the method ' '(which may\n' 'still result in a negative index); this is the customary ' 'handling of\n' 'negative indexes by the built-in sequence types, and the ' '"__*item__()"\n' 'methods are expected to do this as well. However, since ' 'they should\n' 'already be doing that, negative indexes cannot be passed ' 'in; they must\n' 'be constrained to the bounds of the sequence before being ' 'passed to\n' 'the "__*item__()" methods. Calling "max(0, i)" ' 'conveniently returns\n' 'the proper value.\n' '\n' '\n' 'Emulating numeric types\n' '=======================\n' '\n' 'The following methods can be defined to emulate numeric ' 'objects.\n' 'Methods corresponding to operations that are not supported ' 'by the\n' 'particular kind of number implemented (e.g., bitwise ' 'operations for\n' 'non-integral numbers) should be left undefined.\n' '\n' 'object.__add__(self, other)\n' 'object.__sub__(self, other)\n' 'object.__mul__(self, other)\n' 'object.__floordiv__(self, other)\n' 'object.__mod__(self, other)\n' 'object.__divmod__(self, other)\n' 'object.__pow__(self, other[, modulo])\n' 'object.__lshift__(self, other)\n' 'object.__rshift__(self, other)\n' 'object.__and__(self, other)\n' 'object.__xor__(self, other)\n' 'object.__or__(self, other)\n' '\n' ' These methods are called to implement the binary ' 'arithmetic\n' ' operations ("+", "-", "*", "//", "%", "divmod()", ' '"pow()", "**",\n' ' "<<", ">>", "&", "^", "|"). For instance, to evaluate ' 'the\n' ' expression "x + y", where *x* is an instance of a class ' 'that has an\n' ' "__add__()" method, "x.__add__(y)" is called. The ' '"__divmod__()"\n' ' method should be the equivalent to using ' '"__floordiv__()" and\n' ' "__mod__()"; it should not be related to ' '"__truediv__()" (described\n' ' below). Note that "__pow__()" should be defined to ' 'accept an\n' ' optional third argument if the ternary version of the ' 'built-in\n' ' "pow()" function is to be supported.\n' '\n' ' If one of those methods does not support the operation ' 'with the\n' ' supplied arguments, it should return "NotImplemented".\n' '\n' 'object.__div__(self, other)\n' 'object.__truediv__(self, other)\n' '\n' ' The division operator ("/") is implemented by these ' 'methods. The\n' ' "__truediv__()" method is used when ' '"__future__.division" is in\n' ' effect, otherwise "__div__()" is used. If only one of ' 'these two\n' ' methods is defined, the object will not support ' 'division in the\n' ' alternate context; "TypeError" will be raised instead.\n' '\n' 'object.__radd__(self, other)\n' 'object.__rsub__(self, other)\n' 'object.__rmul__(self, other)\n' 'object.__rdiv__(self, other)\n' 'object.__rtruediv__(self, other)\n' 'object.__rfloordiv__(self, other)\n' 'object.__rmod__(self, other)\n' 'object.__rdivmod__(self, other)\n' 'object.__rpow__(self, other)\n' 'object.__rlshift__(self, other)\n' 'object.__rrshift__(self, other)\n' 'object.__rand__(self, other)\n' 'object.__rxor__(self, other)\n' 'object.__ror__(self, other)\n' '\n' ' These methods are called to implement the binary ' 'arithmetic\n' ' operations ("+", "-", "*", "/", "%", "divmod()", ' '"pow()", "**",\n' ' "<<", ">>", "&", "^", "|") with reflected (swapped) ' 'operands.\n' ' These functions are only called if the left operand ' 'does not\n' ' support the corresponding operation and the operands ' 'are of\n' ' different types. [2] For instance, to evaluate the ' 'expression "x -\n' ' y", where *y* is an instance of a class that has an ' '"__rsub__()"\n' ' method, "y.__rsub__(x)" is called if "x.__sub__(y)" ' 'returns\n' ' *NotImplemented*.\n' '\n' ' Note that ternary "pow()" will not try calling ' '"__rpow__()" (the\n' ' coercion rules would become too complicated).\n' '\n' " Note: If the right operand's type is a subclass of the " 'left\n' " operand's type and that subclass provides the " 'reflected method\n' ' for the operation, this method will be called before ' 'the left\n' " operand's non-reflected method. This behavior allows " 'subclasses\n' " to override their ancestors' operations.\n" '\n' 'object.__iadd__(self, other)\n' 'object.__isub__(self, other)\n' 'object.__imul__(self, other)\n' 'object.__idiv__(self, other)\n' 'object.__itruediv__(self, other)\n' 'object.__ifloordiv__(self, other)\n' 'object.__imod__(self, other)\n' 'object.__ipow__(self, other[, modulo])\n' 'object.__ilshift__(self, other)\n' 'object.__irshift__(self, other)\n' 'object.__iand__(self, other)\n' 'object.__ixor__(self, other)\n' 'object.__ior__(self, other)\n' '\n' ' These methods are called to implement the augmented ' 'arithmetic\n' ' assignments ("+=", "-=", "*=", "/=", "//=", "%=", ' '"**=", "<<=",\n' ' ">>=", "&=", "^=", "|="). These methods should attempt ' 'to do the\n' ' operation in-place (modifying *self*) and return the ' 'result (which\n' ' could be, but does not have to be, *self*). If a ' 'specific method\n' ' is not defined, the augmented assignment falls back to ' 'the normal\n' ' methods. For instance, to execute the statement "x += ' 'y", where\n' ' *x* is an instance of a class that has an "__iadd__()" ' 'method,\n' ' "x.__iadd__(y)" is called. If *x* is an instance of a ' 'class that\n' ' does not define a "__iadd__()" method, "x.__add__(y)" ' 'and\n' ' "y.__radd__(x)" are considered, as with the evaluation ' 'of "x + y".\n' '\n' 'object.__neg__(self)\n' 'object.__pos__(self)\n' 'object.__abs__(self)\n' 'object.__invert__(self)\n' '\n' ' Called to implement the unary arithmetic operations ' '("-", "+",\n' ' "abs()" and "~").\n' '\n' 'object.__complex__(self)\n' 'object.__int__(self)\n' 'object.__long__(self)\n' 'object.__float__(self)\n' '\n' ' Called to implement the built-in functions "complex()", ' '"int()",\n' ' "long()", and "float()". Should return a value of the ' 'appropriate\n' ' type.\n' '\n' 'object.__oct__(self)\n' 'object.__hex__(self)\n' '\n' ' Called to implement the built-in functions "oct()" and ' '"hex()".\n' ' Should return a string value.\n' '\n' 'object.__index__(self)\n' '\n' ' Called to implement "operator.index()". Also called ' 'whenever\n' ' Python needs an integer object (such as in slicing). ' 'Must return\n' ' an integer (int or long).\n' '\n' ' New in version 2.5.\n' '\n' 'object.__coerce__(self, other)\n' '\n' ' Called to implement "mixed-mode" numeric arithmetic. ' 'Should either\n' ' return a 2-tuple containing *self* and *other* ' 'converted to a\n' ' common numeric type, or "None" if conversion is ' 'impossible. When\n' ' the common type would be the type of "other", it is ' 'sufficient to\n' ' return "None", since the interpreter will also ask the ' 'other object\n' ' to attempt a coercion (but sometimes, if the ' 'implementation of the\n' ' other type cannot be changed, it is useful to do the ' 'conversion to\n' ' the other type here). A return value of ' '"NotImplemented" is\n' ' equivalent to returning "None".\n' '\n' '\n' 'Coercion rules\n' '==============\n' '\n' 'This section used to document the rules for coercion. As ' 'the language\n' 'has evolved, the coercion rules have become hard to ' 'document\n' 'precisely; documenting what one version of one particular\n' 'implementation does is undesirable. Instead, here are ' 'some informal\n' 'guidelines regarding coercion. In Python 3, coercion will ' 'not be\n' 'supported.\n' '\n' '* If the left operand of a % operator is a string or ' 'Unicode object,\n' ' no coercion takes place and the string formatting ' 'operation is\n' ' invoked instead.\n' '\n' '* It is no longer recommended to define a coercion ' 'operation. Mixed-\n' " mode operations on types that don't define coercion pass " 'the\n' ' original arguments to the operation.\n' '\n' '* New-style classes (those derived from "object") never ' 'invoke the\n' ' "__coerce__()" method in response to a binary operator; ' 'the only\n' ' time "__coerce__()" is invoked is when the built-in ' 'function\n' ' "coerce()" is called.\n' '\n' '* For most intents and purposes, an operator that returns\n' ' "NotImplemented" is treated the same as one that is not ' 'implemented\n' ' at all.\n' '\n' '* Below, "__op__()" and "__rop__()" are used to signify ' 'the generic\n' ' method names corresponding to an operator; "__iop__()" ' 'is used for\n' ' the corresponding in-place operator. For example, for ' 'the operator\n' ' \'"+"\', "__add__()" and "__radd__()" are used for the ' 'left and right\n' ' variant of the binary operator, and "__iadd__()" for the ' 'in-place\n' ' variant.\n' '\n' '* For objects *x* and *y*, first "x.__op__(y)" is tried. ' 'If this is\n' ' not implemented or returns "NotImplemented", ' '"y.__rop__(x)" is\n' ' tried. If this is also not implemented or returns ' '"NotImplemented",\n' ' a "TypeError" exception is raised. But see the ' 'following exception:\n' '\n' '* Exception to the previous item: if the left operand is ' 'an instance\n' ' of a built-in type or a new-style class, and the right ' 'operand is an\n' ' instance of a proper subclass of that type or class and ' 'overrides\n' ' the base\'s "__rop__()" method, the right operand\'s ' '"__rop__()"\n' ' method is tried *before* the left operand\'s "__op__()" ' 'method.\n' '\n' ' This is done so that a subclass can completely override ' 'binary\n' ' operators. Otherwise, the left operand\'s "__op__()" ' 'method would\n' ' always accept the right operand: when an instance of a ' 'given class\n' ' is expected, an instance of a subclass of that class is ' 'always\n' ' acceptable.\n' '\n' '* When either operand type defines a coercion, this ' 'coercion is\n' ' called before that type\'s "__op__()" or "__rop__()" ' 'method is\n' ' called, but no sooner. If the coercion returns an ' 'object of a\n' ' different type for the operand whose coercion is ' 'invoked, part of\n' ' the process is redone using the new object.\n' '\n' '* When an in-place operator (like \'"+="\') is used, if ' 'the left\n' ' operand implements "__iop__()", it is invoked without ' 'any coercion.\n' ' When the operation falls back to "__op__()" and/or ' '"__rop__()", the\n' ' normal coercion rules apply.\n' '\n' '* In "x + y", if *x* is a sequence that implements ' 'sequence\n' ' concatenation, sequence concatenation is invoked.\n' '\n' '* In "x * y", if one operand is a sequence that implements ' 'sequence\n' ' repetition, and the other is an integer ("int" or ' '"long"), sequence\n' ' repetition is invoked.\n' '\n' '* Rich comparisons (implemented by methods "__eq__()" and ' 'so on)\n' ' never use coercion. Three-way comparison (implemented ' 'by\n' ' "__cmp__()") does use coercion under the same conditions ' 'as other\n' ' binary operations use it.\n' '\n' '* In the current implementation, the built-in numeric ' 'types "int",\n' ' "long", "float", and "complex" do not use coercion. All ' 'these types\n' ' implement a "__coerce__()" method, for use by the ' 'built-in\n' ' "coerce()" function.\n' '\n' ' Changed in version 2.7: The complex type no longer makes ' 'implicit\n' ' calls to the "__coerce__()" method for mixed-type binary ' 'arithmetic\n' ' operations.\n' '\n' '\n' 'With Statement Context Managers\n' '===============================\n' '\n' 'New in version 2.5.\n' '\n' 'A *context manager* is an object that defines the runtime ' 'context to\n' 'be established when executing a "with" statement. The ' 'context manager\n' 'handles the entry into, and the exit from, the desired ' 'runtime context\n' 'for the execution of the block of code. Context managers ' 'are normally\n' 'invoked using the "with" statement (described in section ' 'The with\n' 'statement), but can also be used by directly invoking ' 'their methods.\n' '\n' 'Typical uses of context managers include saving and ' 'restoring various\n' 'kinds of global state, locking and unlocking resources, ' 'closing opened\n' 'files, etc.\n' '\n' 'For more information on context managers, see Context ' 'Manager Types.\n' '\n' 'object.__enter__(self)\n' '\n' ' Enter the runtime context related to this object. The ' '"with"\n' " statement will bind this method's return value to the " 'target(s)\n' ' specified in the "as" clause of the statement, if any.\n' '\n' 'object.__exit__(self, exc_type, exc_value, traceback)\n' '\n' ' Exit the runtime context related to this object. The ' 'parameters\n' ' describe the exception that caused the context to be ' 'exited. If the\n' ' context was exited without an exception, all three ' 'arguments will\n' ' be "None".\n' '\n' ' If an exception is supplied, and the method wishes to ' 'suppress the\n' ' exception (i.e., prevent it from being propagated), it ' 'should\n' ' return a true value. Otherwise, the exception will be ' 'processed\n' ' normally upon exit from this method.\n' '\n' ' Note that "__exit__()" methods should not reraise the ' 'passed-in\n' " exception; this is the caller's responsibility.\n" '\n' 'See also: **PEP 0343** - The "with" statement\n' '\n' ' The specification, background, and examples for the ' 'Python "with"\n' ' statement.\n' '\n' '\n' 'Special method lookup for old-style classes\n' '===========================================\n' '\n' 'For old-style classes, special methods are always looked ' 'up in exactly\n' 'the same way as any other method or attribute. This is the ' 'case\n' 'regardless of whether the method is being looked up ' 'explicitly as in\n' '"x.__getitem__(i)" or implicitly as in "x[i]".\n' '\n' 'This behaviour means that special methods may exhibit ' 'different\n' 'behaviour for different instances of a single old-style ' 'class if the\n' 'appropriate special attributes are set differently:\n' '\n' ' >>> class C:\n' ' ... pass\n' ' ...\n' ' >>> c1 = C()\n' ' >>> c2 = C()\n' ' >>> c1.__len__ = lambda: 5\n' ' >>> c2.__len__ = lambda: 9\n' ' >>> len(c1)\n' ' 5\n' ' >>> len(c2)\n' ' 9\n' '\n' '\n' 'Special method lookup for new-style classes\n' '===========================================\n' '\n' 'For new-style classes, implicit invocations of special ' 'methods are\n' 'only guaranteed to work correctly if defined on an ' "object's type, not\n" "in the object's instance dictionary. That behaviour is " 'the reason why\n' 'the following code raises an exception (unlike the ' 'equivalent example\n' 'with old-style classes):\n' '\n' ' >>> class C(object):\n' ' ... pass\n' ' ...\n' ' >>> c = C()\n' ' >>> c.__len__ = lambda: 5\n' ' >>> len(c)\n' ' Traceback (most recent call last):\n' ' File "<stdin>", line 1, in <module>\n' " TypeError: object of type 'C' has no len()\n" '\n' 'The rationale behind this behaviour lies with a number of ' 'special\n' 'methods such as "__hash__()" and "__repr__()" that are ' 'implemented by\n' 'all objects, including type objects. If the implicit ' 'lookup of these\n' 'methods used the conventional lookup process, they would ' 'fail when\n' 'invoked on the type object itself:\n' '\n' ' >>> 1 .__hash__() == hash(1)\n' ' True\n' ' >>> int.__hash__() == hash(int)\n' ' Traceback (most recent call last):\n' ' File "<stdin>", line 1, in <module>\n' " TypeError: descriptor '__hash__' of 'int' object needs " 'an argument\n' '\n' 'Incorrectly attempting to invoke an unbound method of a ' 'class in this\n' "way is sometimes referred to as 'metaclass confusion', and " 'is avoided\n' 'by bypassing the instance when looking up special ' 'methods:\n' '\n' ' >>> type(1).__hash__(1) == hash(1)\n' ' True\n' ' >>> type(int).__hash__(int) == hash(int)\n' ' True\n' '\n' 'In addition to bypassing any instance attributes in the ' 'interest of\n' 'correctness, implicit special method lookup generally also ' 'bypasses\n' 'the "__getattribute__()" method even of the object\'s ' 'metaclass:\n' '\n' ' >>> class Meta(type):\n' ' ... def __getattribute__(*args):\n' ' ... print "Metaclass getattribute invoked"\n' ' ... return type.__getattribute__(*args)\n' ' ...\n' ' >>> class C(object):\n' ' ... __metaclass__ = Meta\n' ' ... def __len__(self):\n' ' ... return 10\n' ' ... def __getattribute__(*args):\n' ' ... print "Class getattribute invoked"\n' ' ... return object.__getattribute__(*args)\n' ' ...\n' ' >>> c = C()\n' ' >>> c.__len__() # Explicit lookup via ' 'instance\n' ' Class getattribute invoked\n' ' 10\n' ' >>> type(c).__len__(c) # Explicit lookup via ' 'type\n' ' Metaclass getattribute invoked\n' ' 10\n' ' >>> len(c) # Implicit lookup\n' ' 10\n' '\n' 'Bypassing the "__getattribute__()" machinery in this ' 'fashion provides\n' 'significant scope for speed optimisations within the ' 'interpreter, at\n' 'the cost of some flexibility in the handling of special ' 'methods (the\n' 'special method *must* be set on the class object itself in ' 'order to be\n' 'consistently invoked by the interpreter).\n' '\n' '-[ Footnotes ]-\n' '\n' "[1] It *is* possible in some cases to change an object's " 'type,\n' ' under certain controlled conditions. It generally ' "isn't a good\n" ' idea though, since it can lead to some very strange ' 'behaviour if\n' ' it is handled incorrectly.\n' '\n' '[2] For operands of the same type, it is assumed that if ' 'the non-\n' ' reflected method (such as "__add__()") fails the ' 'operation is not\n' ' supported, which is why the reflected method is not ' 'called.\n', 'string-methods': '\n' 'String Methods\n' '**************\n' '\n' 'Below are listed the string methods which both 8-bit ' 'strings and\n' 'Unicode objects support. Some of them are also ' 'available on\n' '"bytearray" objects.\n' '\n' "In addition, Python's strings support the sequence type " 'methods\n' 'described in the Sequence Types --- str, unicode, list, ' 'tuple,\n' 'bytearray, buffer, xrange section. To output formatted ' 'strings use\n' 'template strings or the "%" operator described in the ' 'String\n' 'Formatting Operations section. Also, see the "re" module ' 'for string\n' 'functions based on regular expressions.\n' '\n' 'str.capitalize()\n' '\n' ' Return a copy of the string with its first character ' 'capitalized\n' ' and the rest lowercased.\n' '\n' ' For 8-bit strings, this method is locale-dependent.\n' '\n' 'str.center(width[, fillchar])\n' '\n' ' Return centered in a string of length *width*. ' 'Padding is done\n' ' using the specified *fillchar* (default is a space).\n' '\n' ' Changed in version 2.4: Support for the *fillchar* ' 'argument.\n' '\n' 'str.count(sub[, start[, end]])\n' '\n' ' Return the number of non-overlapping occurrences of ' 'substring *sub*\n' ' in the range [*start*, *end*]. Optional arguments ' '*start* and\n' ' *end* are interpreted as in slice notation.\n' '\n' 'str.decode([encoding[, errors]])\n' '\n' ' Decodes the string using the codec registered for ' '*encoding*.\n' ' *encoding* defaults to the default string encoding. ' '*errors* may\n' ' be given to set a different error handling scheme. ' 'The default is\n' ' "\'strict\'", meaning that encoding errors raise ' '"UnicodeError".\n' ' Other possible values are "\'ignore\'", "\'replace\'" ' 'and any other\n' ' name registered via "codecs.register_error()", see ' 'section Codec\n' ' Base Classes.\n' '\n' ' New in version 2.2.\n' '\n' ' Changed in version 2.3: Support for other error ' 'handling schemes\n' ' added.\n' '\n' ' Changed in version 2.7: Support for keyword arguments ' 'added.\n' '\n' 'str.encode([encoding[, errors]])\n' '\n' ' Return an encoded version of the string. Default ' 'encoding is the\n' ' current default string encoding. *errors* may be ' 'given to set a\n' ' different error handling scheme. The default for ' '*errors* is\n' ' "\'strict\'", meaning that encoding errors raise a ' '"UnicodeError".\n' ' Other possible values are "\'ignore\'", ' '"\'replace\'",\n' ' "\'xmlcharrefreplace\'", "\'backslashreplace\'" and ' 'any other name\n' ' registered via "codecs.register_error()", see section ' 'Codec Base\n' ' Classes. For a list of possible encodings, see ' 'section Standard\n' ' Encodings.\n' '\n' ' New in version 2.0.\n' '\n' ' Changed in version 2.3: Support for ' '"\'xmlcharrefreplace\'" and\n' ' "\'backslashreplace\'" and other error handling ' 'schemes added.\n' '\n' ' Changed in version 2.7: Support for keyword arguments ' 'added.\n' '\n' 'str.endswith(suffix[, start[, end]])\n' '\n' ' Return "True" if the string ends with the specified ' '*suffix*,\n' ' otherwise return "False". *suffix* can also be a ' 'tuple of suffixes\n' ' to look for. With optional *start*, test beginning ' 'at that\n' ' position. With optional *end*, stop comparing at ' 'that position.\n' '\n' ' Changed in version 2.5: Accept tuples as *suffix*.\n' '\n' 'str.expandtabs([tabsize])\n' '\n' ' Return a copy of the string where all tab characters ' 'are replaced\n' ' by one or more spaces, depending on the current ' 'column and the\n' ' given tab size. Tab positions occur every *tabsize* ' 'characters\n' ' (default is 8, giving tab positions at columns 0, 8, ' '16 and so on).\n' ' To expand the string, the current column is set to ' 'zero and the\n' ' string is examined character by character. If the ' 'character is a\n' ' tab ("\\t"), one or more space characters are ' 'inserted in the result\n' ' until the current column is equal to the next tab ' 'position. (The\n' ' tab character itself is not copied.) If the ' 'character is a newline\n' ' ("\\n") or return ("\\r"), it is copied and the ' 'current column is\n' ' reset to zero. Any other character is copied ' 'unchanged and the\n' ' current column is incremented by one regardless of ' 'how the\n' ' character is represented when printed.\n' '\n' " >>> '01\\t012\\t0123\\t01234'.expandtabs()\n" " '01 012 0123 01234'\n" " >>> '01\\t012\\t0123\\t01234'.expandtabs(4)\n" " '01 012 0123 01234'\n" '\n' 'str.find(sub[, start[, end]])\n' '\n' ' Return the lowest index in the string where substring ' '*sub* is\n' ' found, such that *sub* is contained in the slice ' '"s[start:end]".\n' ' Optional arguments *start* and *end* are interpreted ' 'as in slice\n' ' notation. Return "-1" if *sub* is not found.\n' '\n' ' Note: The "find()" method should be used only if you ' 'need to know\n' ' the position of *sub*. To check if *sub* is a ' 'substring or not,\n' ' use the "in" operator:\n' '\n' " >>> 'Py' in 'Python'\n" ' True\n' '\n' 'str.format(*args, **kwargs)\n' '\n' ' Perform a string formatting operation. The string on ' 'which this\n' ' method is called can contain literal text or ' 'replacement fields\n' ' delimited by braces "{}". Each replacement field ' 'contains either\n' ' the numeric index of a positional argument, or the ' 'name of a\n' ' keyword argument. Returns a copy of the string where ' 'each\n' ' replacement field is replaced with the string value ' 'of the\n' ' corresponding argument.\n' '\n' ' >>> "The sum of 1 + 2 is {0}".format(1+2)\n' " 'The sum of 1 + 2 is 3'\n" '\n' ' See Format String Syntax for a description of the ' 'various\n' ' formatting options that can be specified in format ' 'strings.\n' '\n' ' This method of string formatting is the new standard ' 'in Python 3,\n' ' and should be preferred to the "%" formatting ' 'described in String\n' ' Formatting Operations in new code.\n' '\n' ' New in version 2.6.\n' '\n' 'str.index(sub[, start[, end]])\n' '\n' ' Like "find()", but raise "ValueError" when the ' 'substring is not\n' ' found.\n' '\n' 'str.isalnum()\n' '\n' ' Return true if all characters in the string are ' 'alphanumeric and\n' ' there is at least one character, false otherwise.\n' '\n' ' For 8-bit strings, this method is locale-dependent.\n' '\n' 'str.isalpha()\n' '\n' ' Return true if all characters in the string are ' 'alphabetic and\n' ' there is at least one character, false otherwise.\n' '\n' ' For 8-bit strings, this method is locale-dependent.\n' '\n' 'str.isdigit()\n' '\n' ' Return true if all characters in the string are ' 'digits and there is\n' ' at least one character, false otherwise.\n' '\n' ' For 8-bit strings, this method is locale-dependent.\n' '\n' 'str.islower()\n' '\n' ' Return true if all cased characters [4] in the string ' 'are lowercase\n' ' and there is at least one cased character, false ' 'otherwise.\n' '\n' ' For 8-bit strings, this method is locale-dependent.\n' '\n' 'str.isspace()\n' '\n' ' Return true if there are only whitespace characters ' 'in the string\n' ' and there is at least one character, false ' 'otherwise.\n' '\n' ' For 8-bit strings, this method is locale-dependent.\n' '\n' 'str.istitle()\n' '\n' ' Return true if the string is a titlecased string and ' 'there is at\n' ' least one character, for example uppercase characters ' 'may only\n' ' follow uncased characters and lowercase characters ' 'only cased ones.\n' ' Return false otherwise.\n' '\n' ' For 8-bit strings, this method is locale-dependent.\n' '\n' 'str.isupper()\n' '\n' ' Return true if all cased characters [4] in the string ' 'are uppercase\n' ' and there is at least one cased character, false ' 'otherwise.\n' '\n' ' For 8-bit strings, this method is locale-dependent.\n' '\n' 'str.join(iterable)\n' '\n' ' Return a string which is the concatenation of the ' 'strings in the\n' ' *iterable* *iterable*. The separator between ' 'elements is the\n' ' string providing this method.\n' '\n' 'str.ljust(width[, fillchar])\n' '\n' ' Return the string left justified in a string of ' 'length *width*.\n' ' Padding is done using the specified *fillchar* ' '(default is a\n' ' space). The original string is returned if *width* ' 'is less than or\n' ' equal to "len(s)".\n' '\n' ' Changed in version 2.4: Support for the *fillchar* ' 'argument.\n' '\n' 'str.lower()\n' '\n' ' Return a copy of the string with all the cased ' 'characters [4]\n' ' converted to lowercase.\n' '\n' ' For 8-bit strings, this method is locale-dependent.\n' '\n' 'str.lstrip([chars])\n' '\n' ' Return a copy of the string with leading characters ' 'removed. The\n' ' *chars* argument is a string specifying the set of ' 'characters to be\n' ' removed. If omitted or "None", the *chars* argument ' 'defaults to\n' ' removing whitespace. The *chars* argument is not a ' 'prefix; rather,\n' ' all combinations of its values are stripped:\n' '\n' " >>> ' spacious '.lstrip()\n" " 'spacious '\n" " >>> 'www.example.com'.lstrip('cmowz.')\n" " 'example.com'\n" '\n' ' Changed in version 2.2.2: Support for the *chars* ' 'argument.\n' '\n' 'str.partition(sep)\n' '\n' ' Split the string at the first occurrence of *sep*, ' 'and return a\n' ' 3-tuple containing the part before the separator, the ' 'separator\n' ' itself, and the part after the separator. If the ' 'separator is not\n' ' found, return a 3-tuple containing the string itself, ' 'followed by\n' ' two empty strings.\n' '\n' ' New in version 2.5.\n' '\n' 'str.replace(old, new[, count])\n' '\n' ' Return a copy of the string with all occurrences of ' 'substring *old*\n' ' replaced by *new*. If the optional argument *count* ' 'is given, only\n' ' the first *count* occurrences are replaced.\n' '\n' 'str.rfind(sub[, start[, end]])\n' '\n' ' Return the highest index in the string where ' 'substring *sub* is\n' ' found, such that *sub* is contained within ' '"s[start:end]".\n' ' Optional arguments *start* and *end* are interpreted ' 'as in slice\n' ' notation. Return "-1" on failure.\n' '\n' 'str.rindex(sub[, start[, end]])\n' '\n' ' Like "rfind()" but raises "ValueError" when the ' 'substring *sub* is\n' ' not found.\n' '\n' 'str.rjust(width[, fillchar])\n' '\n' ' Return the string right justified in a string of ' 'length *width*.\n' ' Padding is done using the specified *fillchar* ' '(default is a\n' ' space). The original string is returned if *width* is ' 'less than or\n' ' equal to "len(s)".\n' '\n' ' Changed in version 2.4: Support for the *fillchar* ' 'argument.\n' '\n' 'str.rpartition(sep)\n' '\n' ' Split the string at the last occurrence of *sep*, and ' 'return a\n' ' 3-tuple containing the part before the separator, the ' 'separator\n' ' itself, and the part after the separator. If the ' 'separator is not\n' ' found, return a 3-tuple containing two empty strings, ' 'followed by\n' ' the string itself.\n' '\n' ' New in version 2.5.\n' '\n' 'str.rsplit([sep[, maxsplit]])\n' '\n' ' Return a list of the words in the string, using *sep* ' 'as the\n' ' delimiter string. If *maxsplit* is given, at most ' '*maxsplit* splits\n' ' are done, the *rightmost* ones. If *sep* is not ' 'specified or\n' ' "None", any whitespace string is a separator. Except ' 'for splitting\n' ' from the right, "rsplit()" behaves like "split()" ' 'which is\n' ' described in detail below.\n' '\n' ' New in version 2.4.\n' '\n' 'str.rstrip([chars])\n' '\n' ' Return a copy of the string with trailing characters ' 'removed. The\n' ' *chars* argument is a string specifying the set of ' 'characters to be\n' ' removed. If omitted or "None", the *chars* argument ' 'defaults to\n' ' removing whitespace. The *chars* argument is not a ' 'suffix; rather,\n' ' all combinations of its values are stripped:\n' '\n' " >>> ' spacious '.rstrip()\n" " ' spacious'\n" " >>> 'mississippi'.rstrip('ipz')\n" " 'mississ'\n" '\n' ' Changed in version 2.2.2: Support for the *chars* ' 'argument.\n' '\n' 'str.split([sep[, maxsplit]])\n' '\n' ' Return a list of the words in the string, using *sep* ' 'as the\n' ' delimiter string. If *maxsplit* is given, at most ' '*maxsplit*\n' ' splits are done (thus, the list will have at most ' '"maxsplit+1"\n' ' elements). If *maxsplit* is not specified or "-1", ' 'then there is\n' ' no limit on the number of splits (all possible splits ' 'are made).\n' '\n' ' If *sep* is given, consecutive delimiters are not ' 'grouped together\n' ' and are deemed to delimit empty strings (for ' 'example,\n' ' "\'1,,2\'.split(\',\')" returns "[\'1\', \'\', ' '\'2\']"). The *sep* argument\n' ' may consist of multiple characters (for example,\n' ' "\'1<>2<>3\'.split(\'<>\')" returns "[\'1\', \'2\', ' '\'3\']"). Splitting an\n' ' empty string with a specified separator returns ' '"[\'\']".\n' '\n' ' If *sep* is not specified or is "None", a different ' 'splitting\n' ' algorithm is applied: runs of consecutive whitespace ' 'are regarded\n' ' as a single separator, and the result will contain no ' 'empty strings\n' ' at the start or end if the string has leading or ' 'trailing\n' ' whitespace. Consequently, splitting an empty string ' 'or a string\n' ' consisting of just whitespace with a "None" separator ' 'returns "[]".\n' '\n' ' For example, "\' 1 2 3 \'.split()" returns ' '"[\'1\', \'2\', \'3\']", and\n' ' "\' 1 2 3 \'.split(None, 1)" returns "[\'1\', ' '\'2 3 \']".\n' '\n' 'str.splitlines([keepends])\n' '\n' ' Return a list of the lines in the string, breaking at ' 'line\n' ' boundaries. This method uses the *universal newlines* ' 'approach to\n' ' splitting lines. Line breaks are not included in the ' 'resulting list\n' ' unless *keepends* is given and true.\n' '\n' ' For example, "\'ab c\\n\\nde ' 'fg\\rkl\\r\\n\'.splitlines()" returns "[\'ab\n' ' c\', \'\', \'de fg\', \'kl\']", while the same call ' 'with\n' ' "splitlines(True)" returns "[\'ab c\\n\', \'\\n\', ' '\'de fg\\r\', \'kl\\r\\n\']".\n' '\n' ' Unlike "split()" when a delimiter string *sep* is ' 'given, this\n' ' method returns an empty list for the empty string, ' 'and a terminal\n' ' line break does not result in an extra line.\n' '\n' 'str.startswith(prefix[, start[, end]])\n' '\n' ' Return "True" if string starts with the *prefix*, ' 'otherwise return\n' ' "False". *prefix* can also be a tuple of prefixes to ' 'look for.\n' ' With optional *start*, test string beginning at that ' 'position.\n' ' With optional *end*, stop comparing string at that ' 'position.\n' '\n' ' Changed in version 2.5: Accept tuples as *prefix*.\n' '\n' 'str.strip([chars])\n' '\n' ' Return a copy of the string with the leading and ' 'trailing\n' ' characters removed. The *chars* argument is a string ' 'specifying the\n' ' set of characters to be removed. If omitted or ' '"None", the *chars*\n' ' argument defaults to removing whitespace. The *chars* ' 'argument is\n' ' not a prefix or suffix; rather, all combinations of ' 'its values are\n' ' stripped:\n' '\n' " >>> ' spacious '.strip()\n" " 'spacious'\n" " >>> 'www.example.com'.strip('cmowz.')\n" " 'example'\n" '\n' ' Changed in version 2.2.2: Support for the *chars* ' 'argument.\n' '\n' 'str.swapcase()\n' '\n' ' Return a copy of the string with uppercase characters ' 'converted to\n' ' lowercase and vice versa.\n' '\n' ' For 8-bit strings, this method is locale-dependent.\n' '\n' 'str.title()\n' '\n' ' Return a titlecased version of the string where words ' 'start with an\n' ' uppercase character and the remaining characters are ' 'lowercase.\n' '\n' ' The algorithm uses a simple language-independent ' 'definition of a\n' ' word as groups of consecutive letters. The ' 'definition works in\n' ' many contexts but it means that apostrophes in ' 'contractions and\n' ' possessives form word boundaries, which may not be ' 'the desired\n' ' result:\n' '\n' ' >>> "they\'re bill\'s friends from the ' 'UK".title()\n' ' "They\'Re Bill\'S Friends From The Uk"\n' '\n' ' A workaround for apostrophes can be constructed using ' 'regular\n' ' expressions:\n' '\n' ' >>> import re\n' ' >>> def titlecase(s):\n' ' ... return re.sub(r"[A-Za-z]+(\'[A-Za-z]+)?",\n' ' ... lambda mo: ' 'mo.group(0)[0].upper() +\n' ' ... ' 'mo.group(0)[1:].lower(),\n' ' ... s)\n' ' ...\n' ' >>> titlecase("they\'re bill\'s friends.")\n' ' "They\'re Bill\'s Friends."\n' '\n' ' For 8-bit strings, this method is locale-dependent.\n' '\n' 'str.translate(table[, deletechars])\n' '\n' ' Return a copy of the string where all characters ' 'occurring in the\n' ' optional argument *deletechars* are removed, and the ' 'remaining\n' ' characters have been mapped through the given ' 'translation table,\n' ' which must be a string of length 256.\n' '\n' ' You can use the "maketrans()" helper function in the ' '"string"\n' ' module to create a translation table. For string ' 'objects, set the\n' ' *table* argument to "None" for translations that only ' 'delete\n' ' characters:\n' '\n' " >>> 'read this short text'.translate(None, 'aeiou')\n" " 'rd ths shrt txt'\n" '\n' ' New in version 2.6: Support for a "None" *table* ' 'argument.\n' '\n' ' For Unicode objects, the "translate()" method does ' 'not accept the\n' ' optional *deletechars* argument. Instead, it returns ' 'a copy of the\n' ' *s* where all characters have been mapped through the ' 'given\n' ' translation table which must be a mapping of Unicode ' 'ordinals to\n' ' Unicode ordinals, Unicode strings or "None". Unmapped ' 'characters\n' ' are left untouched. Characters mapped to "None" are ' 'deleted. Note,\n' ' a more flexible approach is to create a custom ' 'character mapping\n' ' codec using the "codecs" module (see ' '"encodings.cp1251" for an\n' ' example).\n' '\n' 'str.upper()\n' '\n' ' Return a copy of the string with all the cased ' 'characters [4]\n' ' converted to uppercase. Note that ' '"str.upper().isupper()" might be\n' ' "False" if "s" contains uncased characters or if the ' 'Unicode\n' ' category of the resulting character(s) is not "Lu" ' '(Letter,\n' ' uppercase), but e.g. "Lt" (Letter, titlecase).\n' '\n' ' For 8-bit strings, this method is locale-dependent.\n' '\n' 'str.zfill(width)\n' '\n' ' Return the numeric string left filled with zeros in a ' 'string of\n' ' length *width*. A sign prefix is handled correctly. ' 'The original\n' ' string is returned if *width* is less than or equal ' 'to "len(s)".\n' '\n' ' New in version 2.2.2.\n' '\n' 'The following methods are present only on unicode ' 'objects:\n' '\n' 'unicode.isnumeric()\n' '\n' ' Return "True" if there are only numeric characters in ' 'S, "False"\n' ' otherwise. Numeric characters include digit ' 'characters, and all\n' ' characters that have the Unicode numeric value ' 'property, e.g.\n' ' U+2155, VULGAR FRACTION ONE FIFTH.\n' '\n' 'unicode.isdecimal()\n' '\n' ' Return "True" if there are only decimal characters in ' 'S, "False"\n' ' otherwise. Decimal characters include digit ' 'characters, and all\n' ' characters that can be used to form decimal-radix ' 'numbers, e.g.\n' ' U+0660, ARABIC-INDIC DIGIT ZERO.\n', 'strings': '\n' 'String literals\n' '***************\n' '\n' 'String literals are described by the following lexical ' 'definitions:\n' '\n' ' stringliteral ::= [stringprefix](shortstring | ' 'longstring)\n' ' stringprefix ::= "r" | "u" | "ur" | "R" | "U" | "UR" | ' '"Ur" | "uR"\n' ' | "b" | "B" | "br" | "Br" | "bR" | "BR"\n' ' shortstring ::= "\'" shortstringitem* "\'" | \'"\' ' 'shortstringitem* \'"\'\n' ' longstring ::= "\'\'\'" longstringitem* "\'\'\'"\n' ' | \'"""\' longstringitem* \'"""\'\n' ' shortstringitem ::= shortstringchar | escapeseq\n' ' longstringitem ::= longstringchar | escapeseq\n' ' shortstringchar ::= <any source character except "\\" or ' 'newline or the quote>\n' ' longstringchar ::= <any source character except "\\">\n' ' escapeseq ::= "\\" <any ASCII character>\n' '\n' 'One syntactic restriction not indicated by these productions is ' 'that\n' 'whitespace is not allowed between the "stringprefix" and the ' 'rest of\n' 'the string literal. The source character set is defined by the\n' 'encoding declaration; it is ASCII if no encoding declaration is ' 'given\n' 'in the source file; see section Encoding declarations.\n' '\n' 'In plain English: String literals can be enclosed in matching ' 'single\n' 'quotes ("\'") or double quotes ("""). They can also be ' 'enclosed in\n' 'matching groups of three single or double quotes (these are ' 'generally\n' 'referred to as *triple-quoted strings*). The backslash ("\\")\n' 'character is used to escape characters that otherwise have a ' 'special\n' 'meaning, such as newline, backslash itself, or the quote ' 'character.\n' 'String literals may optionally be prefixed with a letter ' '"\'r\'" or\n' '"\'R\'"; such strings are called *raw strings* and use ' 'different rules\n' 'for interpreting backslash escape sequences. A prefix of ' '"\'u\'" or\n' '"\'U\'" makes the string a Unicode string. Unicode strings use ' 'the\n' 'Unicode character set as defined by the Unicode Consortium and ' 'ISO\n' '10646. Some additional escape sequences, described below, are\n' 'available in Unicode strings. A prefix of "\'b\'" or "\'B\'" is ' 'ignored in\n' 'Python 2; it indicates that the literal should become a bytes ' 'literal\n' 'in Python 3 (e.g. when code is automatically converted with ' '2to3). A\n' '"\'u\'" or "\'b\'" prefix may be followed by an "\'r\'" ' 'prefix.\n' '\n' 'In triple-quoted strings, unescaped newlines and quotes are ' 'allowed\n' '(and are retained), except that three unescaped quotes in a ' 'row\n' 'terminate the string. (A "quote" is the character used to open ' 'the\n' 'string, i.e. either "\'" or """.)\n' '\n' 'Unless an "\'r\'" or "\'R\'" prefix is present, escape ' 'sequences in\n' 'strings are interpreted according to rules similar to those ' 'used by\n' 'Standard C. The recognized escape sequences are:\n' '\n' '+-------------------+-----------------------------------+---------+\n' '| Escape Sequence | Meaning | ' 'Notes |\n' '+===================+===================================+=========+\n' '| "\\newline" | Ignored ' '| |\n' '+-------------------+-----------------------------------+---------+\n' '| "\\\\" | Backslash ("\\") ' '| |\n' '+-------------------+-----------------------------------+---------+\n' '| "\\\'" | Single quote ("\'") ' '| |\n' '+-------------------+-----------------------------------+---------+\n' '| "\\"" | Double quote (""") ' '| |\n' '+-------------------+-----------------------------------+---------+\n' '| "\\a" | ASCII Bell (BEL) ' '| |\n' '+-------------------+-----------------------------------+---------+\n' '| "\\b" | ASCII Backspace (BS) ' '| |\n' '+-------------------+-----------------------------------+---------+\n' '| "\\f" | ASCII Formfeed (FF) ' '| |\n' '+-------------------+-----------------------------------+---------+\n' '| "\\n" | ASCII Linefeed (LF) ' '| |\n' '+-------------------+-----------------------------------+---------+\n' '| "\\N{name}" | Character named *name* in the ' '| |\n' '| | Unicode database (Unicode only) ' '| |\n' '+-------------------+-----------------------------------+---------+\n' '| "\\r" | ASCII Carriage Return (CR) ' '| |\n' '+-------------------+-----------------------------------+---------+\n' '| "\\t" | ASCII Horizontal Tab (TAB) ' '| |\n' '+-------------------+-----------------------------------+---------+\n' '| "\\uxxxx" | Character with 16-bit hex value | ' '(1) |\n' '| | *xxxx* (Unicode only) ' '| |\n' '+-------------------+-----------------------------------+---------+\n' '| "\\Uxxxxxxxx" | Character with 32-bit hex value | ' '(2) |\n' '| | *xxxxxxxx* (Unicode only) ' '| |\n' '+-------------------+-----------------------------------+---------+\n' '| "\\v" | ASCII Vertical Tab (VT) ' '| |\n' '+-------------------+-----------------------------------+---------+\n' '| "\\ooo" | Character with octal value *ooo* | ' '(3,5) |\n' '+-------------------+-----------------------------------+---------+\n' '| "\\xhh" | Character with hex value *hh* | ' '(4,5) |\n' '+-------------------+-----------------------------------+---------+\n' '\n' 'Notes:\n' '\n' '1. Individual code units which form parts of a surrogate pair ' 'can\n' ' be encoded using this escape sequence.\n' '\n' '2. Any Unicode character can be encoded this way, but ' 'characters\n' ' outside the Basic Multilingual Plane (BMP) will be encoded ' 'using a\n' ' surrogate pair if Python is compiled to use 16-bit code ' 'units (the\n' ' default).\n' '\n' '3. As in Standard C, up to three octal digits are accepted.\n' '\n' '4. Unlike in Standard C, exactly two hex digits are required.\n' '\n' '5. In a string literal, hexadecimal and octal escapes denote ' 'the\n' ' byte with the given value; it is not necessary that the ' 'byte\n' ' encodes a character in the source character set. In a ' 'Unicode\n' ' literal, these escapes denote a Unicode character with the ' 'given\n' ' value.\n' '\n' 'Unlike Standard C, all unrecognized escape sequences are left ' 'in the\n' 'string unchanged, i.e., *the backslash is left in the string*. ' '(This\n' 'behavior is useful when debugging: if an escape sequence is ' 'mistyped,\n' 'the resulting output is more easily recognized as broken.) It ' 'is also\n' 'important to note that the escape sequences marked as "(Unicode ' 'only)"\n' 'in the table above fall into the category of unrecognized ' 'escapes for\n' 'non-Unicode string literals.\n' '\n' 'When an "\'r\'" or "\'R\'" prefix is present, a character ' 'following a\n' 'backslash is included in the string without change, and *all\n' 'backslashes are left in the string*. For example, the string ' 'literal\n' '"r"\\n"" consists of two characters: a backslash and a ' 'lowercase "\'n\'".\n' 'String quotes can be escaped with a backslash, but the ' 'backslash\n' 'remains in the string; for example, "r"\\""" is a valid string ' 'literal\n' 'consisting of two characters: a backslash and a double quote; ' '"r"\\""\n' 'is not a valid string literal (even a raw string cannot end in ' 'an odd\n' 'number of backslashes). Specifically, *a raw string cannot end ' 'in a\n' 'single backslash* (since the backslash would escape the ' 'following\n' 'quote character). Note also that a single backslash followed ' 'by a\n' 'newline is interpreted as those two characters as part of the ' 'string,\n' '*not* as a line continuation.\n' '\n' 'When an "\'r\'" or "\'R\'" prefix is used in conjunction with a ' '"\'u\'" or\n' '"\'U\'" prefix, then the "\\uXXXX" and "\\UXXXXXXXX" escape ' 'sequences are\n' 'processed while *all other backslashes are left in the ' 'string*. For\n' 'example, the string literal "ur"\\u0062\\n"" consists of three ' 'Unicode\n' "characters: 'LATIN SMALL LETTER B', 'REVERSE SOLIDUS', and " "'LATIN\n" "SMALL LETTER N'. Backslashes can be escaped with a preceding\n" 'backslash; however, both remain in the string. As a result, ' '"\\uXXXX"\n' 'escape sequences are only recognized when there are an odd ' 'number of\n' 'backslashes.\n', 'subscriptions': '\n' 'Subscriptions\n' '*************\n' '\n' 'A subscription selects an item of a sequence (string, ' 'tuple or list)\n' 'or mapping (dictionary) object:\n' '\n' ' subscription ::= primary "[" expression_list "]"\n' '\n' 'The primary must evaluate to an object of a sequence or ' 'mapping type.\n' '\n' 'If the primary is a mapping, the expression list must ' 'evaluate to an\n' 'object whose value is one of the keys of the mapping, and ' 'the\n' 'subscription selects the value in the mapping that ' 'corresponds to that\n' 'key. (The expression list is a tuple except if it has ' 'exactly one\n' 'item.)\n' '\n' 'If the primary is a sequence, the expression (list) must ' 'evaluate to a\n' 'plain integer. If this value is negative, the length of ' 'the sequence\n' 'is added to it (so that, e.g., "x[-1]" selects the last ' 'item of "x".)\n' 'The resulting value must be a nonnegative integer less ' 'than the number\n' 'of items in the sequence, and the subscription selects ' 'the item whose\n' 'index is that value (counting from zero).\n' '\n' "A string's items are characters. A character is not a " 'separate data\n' 'type but a string of exactly one character.\n', 'truth': '\n' 'Truth Value Testing\n' '*******************\n' '\n' 'Any object can be tested for truth value, for use in an "if" or\n' '"while" condition or as operand of the Boolean operations below. ' 'The\n' 'following values are considered false:\n' '\n' '* "None"\n' '\n' '* "False"\n' '\n' '* zero of any numeric type, for example, "0", "0L", "0.0", "0j".\n' '\n' '* any empty sequence, for example, "\'\'", "()", "[]".\n' '\n' '* any empty mapping, for example, "{}".\n' '\n' '* instances of user-defined classes, if the class defines a\n' ' "__nonzero__()" or "__len__()" method, when that method returns ' 'the\n' ' integer zero or "bool" value "False". [1]\n' '\n' 'All other values are considered true --- so objects of many types ' 'are\n' 'always true.\n' '\n' 'Operations and built-in functions that have a Boolean result ' 'always\n' 'return "0" or "False" for false and "1" or "True" for true, ' 'unless\n' 'otherwise stated. (Important exception: the Boolean operations ' '"or"\n' 'and "and" always return one of their operands.)\n', 'try': '\n' 'The "try" statement\n' '*******************\n' '\n' 'The "try" statement specifies exception handlers and/or cleanup ' 'code\n' 'for a group of statements:\n' '\n' ' try_stmt ::= try1_stmt | try2_stmt\n' ' try1_stmt ::= "try" ":" suite\n' ' ("except" [expression [("as" | ",") identifier]] ' '":" suite)+\n' ' ["else" ":" suite]\n' ' ["finally" ":" suite]\n' ' try2_stmt ::= "try" ":" suite\n' ' "finally" ":" suite\n' '\n' 'Changed in version 2.5: In previous versions of Python,\n' '"try"..."except"..."finally" did not work. "try"..."except" had to ' 'be\n' 'nested in "try"..."finally".\n' '\n' 'The "except" clause(s) specify one or more exception handlers. When ' 'no\n' 'exception occurs in the "try" clause, no exception handler is\n' 'executed. When an exception occurs in the "try" suite, a search for ' 'an\n' 'exception handler is started. This search inspects the except ' 'clauses\n' 'in turn until one is found that matches the exception. An ' 'expression-\n' 'less except clause, if present, must be last; it matches any\n' 'exception. For an except clause with an expression, that ' 'expression\n' 'is evaluated, and the clause matches the exception if the ' 'resulting\n' 'object is "compatible" with the exception. An object is ' 'compatible\n' 'with an exception if it is the class or a base class of the ' 'exception\n' 'object, or a tuple containing an item compatible with the ' 'exception.\n' '\n' 'If no except clause matches the exception, the search for an ' 'exception\n' 'handler continues in the surrounding code and on the invocation ' 'stack.\n' '[1]\n' '\n' 'If the evaluation of an expression in the header of an except ' 'clause\n' 'raises an exception, the original search for a handler is canceled ' 'and\n' 'a search starts for the new exception in the surrounding code and ' 'on\n' 'the call stack (it is treated as if the entire "try" statement ' 'raised\n' 'the exception).\n' '\n' 'When a matching except clause is found, the exception is assigned ' 'to\n' 'the target specified in that except clause, if present, and the ' 'except\n' "clause's suite is executed. All except clauses must have an\n" 'executable block. When the end of this block is reached, ' 'execution\n' 'continues normally after the entire try statement. (This means ' 'that\n' 'if two nested handlers exist for the same exception, and the ' 'exception\n' 'occurs in the try clause of the inner handler, the outer handler ' 'will\n' 'not handle the exception.)\n' '\n' "Before an except clause's suite is executed, details about the\n" 'exception are assigned to three variables in the "sys" module:\n' '"sys.exc_type" receives the object identifying the exception;\n' '"sys.exc_value" receives the exception\'s parameter;\n' '"sys.exc_traceback" receives a traceback object (see section The\n' 'standard type hierarchy) identifying the point in the program ' 'where\n' 'the exception occurred. These details are also available through ' 'the\n' '"sys.exc_info()" function, which returns a tuple "(exc_type,\n' 'exc_value, exc_traceback)". Use of the corresponding variables is\n' 'deprecated in favor of this function, since their use is unsafe in ' 'a\n' 'threaded program. As of Python 1.5, the variables are restored to\n' 'their previous values (before the call) when returning from a ' 'function\n' 'that handled an exception.\n' '\n' 'The optional "else" clause is executed if and when control flows ' 'off\n' 'the end of the "try" clause. [2] Exceptions in the "else" clause ' 'are\n' 'not handled by the preceding "except" clauses.\n' '\n' 'If "finally" is present, it specifies a \'cleanup\' handler. The ' '"try"\n' 'clause is executed, including any "except" and "else" clauses. If ' 'an\n' 'exception occurs in any of the clauses and is not handled, the\n' 'exception is temporarily saved. The "finally" clause is executed. ' 'If\n' 'there is a saved exception, it is re-raised at the end of the\n' '"finally" clause. If the "finally" clause raises another exception ' 'or\n' 'executes a "return" or "break" statement, the saved exception is\n' 'discarded:\n' '\n' ' >>> def f():\n' ' ... try:\n' ' ... 1/0\n' ' ... finally:\n' ' ... return 42\n' ' ...\n' ' >>> f()\n' ' 42\n' '\n' 'The exception information is not available to the program during\n' 'execution of the "finally" clause.\n' '\n' 'When a "return", "break" or "continue" statement is executed in ' 'the\n' '"try" suite of a "try"..."finally" statement, the "finally" clause ' 'is\n' 'also executed \'on the way out.\' A "continue" statement is illegal ' 'in\n' 'the "finally" clause. (The reason is a problem with the current\n' 'implementation --- this restriction may be lifted in the future).\n' '\n' 'The return value of a function is determined by the last "return"\n' 'statement executed. Since the "finally" clause always executes, a\n' '"return" statement executed in the "finally" clause will always be ' 'the\n' 'last one executed:\n' '\n' ' >>> def foo():\n' ' ... try:\n' " ... return 'try'\n" ' ... finally:\n' " ... return 'finally'\n" ' ...\n' ' >>> foo()\n' " 'finally'\n" '\n' 'Additional information on exceptions can be found in section\n' 'Exceptions, and information on using the "raise" statement to ' 'generate\n' 'exceptions may be found in section The raise statement.\n', 'types': '\n' 'The standard type hierarchy\n' '***************************\n' '\n' 'Below is a list of the types that are built into Python. ' 'Extension\n' 'modules (written in C, Java, or other languages, depending on ' 'the\n' 'implementation) can define additional types. Future versions of\n' 'Python may add types to the type hierarchy (e.g., rational ' 'numbers,\n' 'efficiently stored arrays of integers, etc.).\n' '\n' 'Some of the type descriptions below contain a paragraph listing\n' "'special attributes.' These are attributes that provide access " 'to the\n' 'implementation and are not intended for general use. Their ' 'definition\n' 'may change in the future.\n' '\n' 'None\n' ' This type has a single value. There is a single object with ' 'this\n' ' value. This object is accessed through the built-in name ' '"None". It\n' ' is used to signify the absence of a value in many situations, ' 'e.g.,\n' " it is returned from functions that don't explicitly return\n" ' anything. Its truth value is false.\n' '\n' 'NotImplemented\n' ' This type has a single value. There is a single object with ' 'this\n' ' value. This object is accessed through the built-in name\n' ' "NotImplemented". Numeric methods and rich comparison methods ' 'may\n' ' return this value if they do not implement the operation for ' 'the\n' ' operands provided. (The interpreter will then try the ' 'reflected\n' ' operation, or some other fallback, depending on the ' 'operator.) Its\n' ' truth value is true.\n' '\n' 'Ellipsis\n' ' This type has a single value. There is a single object with ' 'this\n' ' value. This object is accessed through the built-in name\n' ' "Ellipsis". It is used to indicate the presence of the "..." ' 'syntax\n' ' in a slice. Its truth value is true.\n' '\n' '"numbers.Number"\n' ' These are created by numeric literals and returned as results ' 'by\n' ' arithmetic operators and arithmetic built-in functions. ' 'Numeric\n' ' objects are immutable; once created their value never ' 'changes.\n' ' Python numbers are of course strongly related to mathematical\n' ' numbers, but subject to the limitations of numerical ' 'representation\n' ' in computers.\n' '\n' ' Python distinguishes between integers, floating point numbers, ' 'and\n' ' complex numbers:\n' '\n' ' "numbers.Integral"\n' ' These represent elements from the mathematical set of ' 'integers\n' ' (positive and negative).\n' '\n' ' There are three types of integers:\n' '\n' ' Plain integers\n' ' These represent numbers in the range -2147483648 ' 'through\n' ' 2147483647. (The range may be larger on machines with a\n' ' larger natural word size, but not smaller.) When the ' 'result\n' ' of an operation would fall outside this range, the ' 'result is\n' ' normally returned as a long integer (in some cases, the\n' ' exception "OverflowError" is raised instead). For the\n' ' purpose of shift and mask operations, integers are ' 'assumed to\n' " have a binary, 2's complement notation using 32 or more " 'bits,\n' ' and hiding no bits from the user (i.e., all 4294967296\n' ' different bit patterns correspond to different values).\n' '\n' ' Long integers\n' ' These represent numbers in an unlimited range, subject ' 'to\n' ' available (virtual) memory only. For the purpose of ' 'shift\n' ' and mask operations, a binary representation is assumed, ' 'and\n' " negative numbers are represented in a variant of 2's\n" ' complement which gives the illusion of an infinite ' 'string of\n' ' sign bits extending to the left.\n' '\n' ' Booleans\n' ' These represent the truth values False and True. The ' 'two\n' ' objects representing the values "False" and "True" are ' 'the\n' ' only Boolean objects. The Boolean type is a subtype of ' 'plain\n' ' integers, and Boolean values behave like the values 0 ' 'and 1,\n' ' respectively, in almost all contexts, the exception ' 'being\n' ' that when converted to a string, the strings ""False"" ' 'or\n' ' ""True"" are returned, respectively.\n' '\n' ' The rules for integer representation are intended to give ' 'the\n' ' most meaningful interpretation of shift and mask ' 'operations\n' ' involving negative integers and the least surprises when\n' ' switching between the plain and long integer domains. Any\n' ' operation, if it yields a result in the plain integer ' 'domain,\n' ' will yield the same result in the long integer domain or ' 'when\n' ' using mixed operands. The switch between domains is ' 'transparent\n' ' to the programmer.\n' '\n' ' "numbers.Real" ("float")\n' ' These represent machine-level double precision floating ' 'point\n' ' numbers. You are at the mercy of the underlying machine\n' ' architecture (and C or Java implementation) for the ' 'accepted\n' ' range and handling of overflow. Python does not support ' 'single-\n' ' precision floating point numbers; the savings in processor ' 'and\n' ' memory usage that are usually the reason for using these ' 'are\n' ' dwarfed by the overhead of using objects in Python, so ' 'there is\n' ' no reason to complicate the language with two kinds of ' 'floating\n' ' point numbers.\n' '\n' ' "numbers.Complex"\n' ' These represent complex numbers as a pair of machine-level\n' ' double precision floating point numbers. The same caveats ' 'apply\n' ' as for floating point numbers. The real and imaginary parts ' 'of a\n' ' complex number "z" can be retrieved through the read-only\n' ' attributes "z.real" and "z.imag".\n' '\n' 'Sequences\n' ' These represent finite ordered sets indexed by non-negative\n' ' numbers. The built-in function "len()" returns the number of ' 'items\n' ' of a sequence. When the length of a sequence is *n*, the index ' 'set\n' ' contains the numbers 0, 1, ..., *n*-1. Item *i* of sequence ' '*a* is\n' ' selected by "a[i]".\n' '\n' ' Sequences also support slicing: "a[i:j]" selects all items ' 'with\n' ' index *k* such that *i* "<=" *k* "<" *j*. When used as an\n' ' expression, a slice is a sequence of the same type. This ' 'implies\n' ' that the index set is renumbered so that it starts at 0.\n' '\n' ' Some sequences also support "extended slicing" with a third ' '"step"\n' ' parameter: "a[i:j:k]" selects all items of *a* with index *x* ' 'where\n' ' "x = i + n*k", *n* ">=" "0" and *i* "<=" *x* "<" *j*.\n' '\n' ' Sequences are distinguished according to their mutability:\n' '\n' ' Immutable sequences\n' ' An object of an immutable sequence type cannot change once ' 'it is\n' ' created. (If the object contains references to other ' 'objects,\n' ' these other objects may be mutable and may be changed; ' 'however,\n' ' the collection of objects directly referenced by an ' 'immutable\n' ' object cannot change.)\n' '\n' ' The following types are immutable sequences:\n' '\n' ' Strings\n' ' The items of a string are characters. There is no ' 'separate\n' ' character type; a character is represented by a string ' 'of one\n' ' item. Characters represent (at least) 8-bit bytes. The\n' ' built-in functions "chr()" and "ord()" convert between\n' ' characters and nonnegative integers representing the ' 'byte\n' ' values. Bytes with the values 0-127 usually represent ' 'the\n' ' corresponding ASCII values, but the interpretation of ' 'values\n' ' is up to the program. The string data type is also used ' 'to\n' ' represent arrays of bytes, e.g., to hold data read from ' 'a\n' ' file.\n' '\n' ' (On systems whose native character set is not ASCII, ' 'strings\n' ' may use EBCDIC in their internal representation, ' 'provided the\n' ' functions "chr()" and "ord()" implement a mapping ' 'between\n' ' ASCII and EBCDIC, and string comparison preserves the ' 'ASCII\n' ' order. Or perhaps someone can propose a better rule?)\n' '\n' ' Unicode\n' ' The items of a Unicode object are Unicode code units. ' 'A\n' ' Unicode code unit is represented by a Unicode object of ' 'one\n' ' item and can hold either a 16-bit or 32-bit value\n' ' representing a Unicode ordinal (the maximum value for ' 'the\n' ' ordinal is given in "sys.maxunicode", and depends on ' 'how\n' ' Python is configured at compile time). Surrogate pairs ' 'may\n' ' be present in the Unicode object, and will be reported ' 'as two\n' ' separate items. The built-in functions "unichr()" and\n' ' "ord()" convert between code units and nonnegative ' 'integers\n' ' representing the Unicode ordinals as defined in the ' 'Unicode\n' ' Standard 3.0. Conversion from and to other encodings ' 'are\n' ' possible through the Unicode method "encode()" and the ' 'built-\n' ' in function "unicode()".\n' '\n' ' Tuples\n' ' The items of a tuple are arbitrary Python objects. ' 'Tuples of\n' ' two or more items are formed by comma-separated lists ' 'of\n' " expressions. A tuple of one item (a 'singleton') can " 'be\n' ' formed by affixing a comma to an expression (an ' 'expression by\n' ' itself does not create a tuple, since parentheses must ' 'be\n' ' usable for grouping of expressions). An empty tuple can ' 'be\n' ' formed by an empty pair of parentheses.\n' '\n' ' Mutable sequences\n' ' Mutable sequences can be changed after they are created. ' 'The\n' ' subscription and slicing notations can be used as the ' 'target of\n' ' assignment and "del" (delete) statements.\n' '\n' ' There are currently two intrinsic mutable sequence types:\n' '\n' ' Lists\n' ' The items of a list are arbitrary Python objects. Lists ' 'are\n' ' formed by placing a comma-separated list of expressions ' 'in\n' ' square brackets. (Note that there are no special cases ' 'needed\n' ' to form lists of length 0 or 1.)\n' '\n' ' Byte Arrays\n' ' A bytearray object is a mutable array. They are created ' 'by\n' ' the built-in "bytearray()" constructor. Aside from ' 'being\n' ' mutable (and hence unhashable), byte arrays otherwise ' 'provide\n' ' the same interface and functionality as immutable bytes\n' ' objects.\n' '\n' ' The extension module "array" provides an additional example ' 'of a\n' ' mutable sequence type.\n' '\n' 'Set types\n' ' These represent unordered, finite sets of unique, immutable\n' ' objects. As such, they cannot be indexed by any subscript. ' 'However,\n' ' they can be iterated over, and the built-in function "len()"\n' ' returns the number of items in a set. Common uses for sets are ' 'fast\n' ' membership testing, removing duplicates from a sequence, and\n' ' computing mathematical operations such as intersection, ' 'union,\n' ' difference, and symmetric difference.\n' '\n' ' For set elements, the same immutability rules apply as for\n' ' dictionary keys. Note that numeric types obey the normal rules ' 'for\n' ' numeric comparison: if two numbers compare equal (e.g., "1" ' 'and\n' ' "1.0"), only one of them can be contained in a set.\n' '\n' ' There are currently two intrinsic set types:\n' '\n' ' Sets\n' ' These represent a mutable set. They are created by the ' 'built-in\n' ' "set()" constructor and can be modified afterwards by ' 'several\n' ' methods, such as "add()".\n' '\n' ' Frozen sets\n' ' These represent an immutable set. They are created by the\n' ' built-in "frozenset()" constructor. As a frozenset is ' 'immutable\n' ' and *hashable*, it can be used again as an element of ' 'another\n' ' set, or as a dictionary key.\n' '\n' 'Mappings\n' ' These represent finite sets of objects indexed by arbitrary ' 'index\n' ' sets. The subscript notation "a[k]" selects the item indexed ' 'by "k"\n' ' from the mapping "a"; this can be used in expressions and as ' 'the\n' ' target of assignments or "del" statements. The built-in ' 'function\n' ' "len()" returns the number of items in a mapping.\n' '\n' ' There is currently a single intrinsic mapping type:\n' '\n' ' Dictionaries\n' ' These represent finite sets of objects indexed by nearly\n' ' arbitrary values. The only types of values not acceptable ' 'as\n' ' keys are values containing lists or dictionaries or other\n' ' mutable types that are compared by value rather than by ' 'object\n' ' identity, the reason being that the efficient ' 'implementation of\n' " dictionaries requires a key's hash value to remain " 'constant.\n' ' Numeric types used for keys obey the normal rules for ' 'numeric\n' ' comparison: if two numbers compare equal (e.g., "1" and ' '"1.0")\n' ' then they can be used interchangeably to index the same\n' ' dictionary entry.\n' '\n' ' Dictionaries are mutable; they can be created by the ' '"{...}"\n' ' notation (see section Dictionary displays).\n' '\n' ' The extension modules "dbm", "gdbm", and "bsddb" provide\n' ' additional examples of mapping types.\n' '\n' 'Callable types\n' ' These are the types to which the function call operation (see\n' ' section Calls) can be applied:\n' '\n' ' User-defined functions\n' ' A user-defined function object is created by a function\n' ' definition (see section Function definitions). It should ' 'be\n' ' called with an argument list containing the same number of ' 'items\n' " as the function's formal parameter list.\n" '\n' ' Special attributes:\n' '\n' ' ' '+-------------------------+---------------------------------+-------------+\n' ' | Attribute | Meaning ' '| |\n' ' ' '+=========================+=================================+=============+\n' ' | "__doc__" "func_doc" | The function\'s ' 'documentation | Writable |\n' ' | | string, or "None" if ' '| |\n' ' | | unavailable. ' '| |\n' ' ' '+-------------------------+---------------------------------+-------------+\n' ' | "__name__" "func_name" | The function\'s ' 'name. | Writable |\n' ' ' '+-------------------------+---------------------------------+-------------+\n' ' | "__module__" | The name of the module the ' '| Writable |\n' ' | | function was defined in, or ' '| |\n' ' | | "None" if unavailable. ' '| |\n' ' ' '+-------------------------+---------------------------------+-------------+\n' ' | "__defaults__" | A tuple containing default ' '| Writable |\n' ' | "func_defaults" | argument values for those ' '| |\n' ' | | arguments that have defaults, ' '| |\n' ' | | or "None" if no arguments have ' '| |\n' ' | | a default value. ' '| |\n' ' ' '+-------------------------+---------------------------------+-------------+\n' ' | "__code__" "func_code" | The code object representing ' '| Writable |\n' ' | | the compiled function body. ' '| |\n' ' ' '+-------------------------+---------------------------------+-------------+\n' ' | "__globals__" | A reference to the dictionary ' '| Read-only |\n' ' | "func_globals" | that holds the ' "function's | |\n" ' | | global variables --- the global ' '| |\n' ' | | namespace of the module in ' '| |\n' ' | | which the function was defined. ' '| |\n' ' ' '+-------------------------+---------------------------------+-------------+\n' ' | "__dict__" "func_dict" | The namespace supporting ' '| Writable |\n' ' | | arbitrary function attributes. ' '| |\n' ' ' '+-------------------------+---------------------------------+-------------+\n' ' | "__closure__" | "None" or a tuple of cells that ' '| Read-only |\n' ' | "func_closure" | contain bindings for the ' '| |\n' " | | function's free variables. " '| |\n' ' ' '+-------------------------+---------------------------------+-------------+\n' '\n' ' Most of the attributes labelled "Writable" check the type ' 'of the\n' ' assigned value.\n' '\n' ' Changed in version 2.4: "func_name" is now writable.\n' '\n' ' Changed in version 2.6: The double-underscore attributes\n' ' "__closure__", "__code__", "__defaults__", and ' '"__globals__"\n' ' were introduced as aliases for the corresponding "func_*"\n' ' attributes for forwards compatibility with Python 3.\n' '\n' ' Function objects also support getting and setting ' 'arbitrary\n' ' attributes, which can be used, for example, to attach ' 'metadata\n' ' to functions. Regular attribute dot-notation is used to ' 'get and\n' ' set such attributes. *Note that the current implementation ' 'only\n' ' supports function attributes on user-defined functions. ' 'Function\n' ' attributes on built-in functions may be supported in the\n' ' future.*\n' '\n' " Additional information about a function's definition can " 'be\n' ' retrieved from its code object; see the description of ' 'internal\n' ' types below.\n' '\n' ' User-defined methods\n' ' A user-defined method object combines a class, a class ' 'instance\n' ' (or "None") and any callable object (normally a ' 'user-defined\n' ' function).\n' '\n' ' Special read-only attributes: "im_self" is the class ' 'instance\n' ' object, "im_func" is the function object; "im_class" is ' 'the\n' ' class of "im_self" for bound methods or the class that ' 'asked for\n' ' the method for unbound methods; "__doc__" is the method\'s\n' ' documentation (same as "im_func.__doc__"); "__name__" is ' 'the\n' ' method name (same as "im_func.__name__"); "__module__" is ' 'the\n' ' name of the module the method was defined in, or "None" if\n' ' unavailable.\n' '\n' ' Changed in version 2.2: "im_self" used to refer to the ' 'class\n' ' that defined the method.\n' '\n' ' Changed in version 2.6: For Python 3 ' 'forward-compatibility,\n' ' "im_func" is also available as "__func__", and "im_self" ' 'as\n' ' "__self__".\n' '\n' ' Methods also support accessing (but not setting) the ' 'arbitrary\n' ' function attributes on the underlying function object.\n' '\n' ' User-defined method objects may be created when getting an\n' ' attribute of a class (perhaps via an instance of that ' 'class), if\n' ' that attribute is a user-defined function object, an ' 'unbound\n' ' user-defined method object, or a class method object. When ' 'the\n' ' attribute is a user-defined method object, a new method ' 'object\n' ' is only created if the class from which it is being ' 'retrieved is\n' ' the same as, or a derived class of, the class stored in ' 'the\n' ' original method object; otherwise, the original method ' 'object is\n' ' used as it is.\n' '\n' ' When a user-defined method object is created by retrieving ' 'a\n' ' user-defined function object from a class, its "im_self"\n' ' attribute is "None" and the method object is said to be ' 'unbound.\n' ' When one is created by retrieving a user-defined function ' 'object\n' ' from a class via one of its instances, its "im_self" ' 'attribute\n' ' is the instance, and the method object is said to be bound. ' 'In\n' ' either case, the new method\'s "im_class" attribute is the ' 'class\n' ' from which the retrieval takes place, and its "im_func"\n' ' attribute is the original function object.\n' '\n' ' When a user-defined method object is created by retrieving\n' ' another method object from a class or instance, the ' 'behaviour is\n' ' the same as for a function object, except that the ' '"im_func"\n' ' attribute of the new instance is not the original method ' 'object\n' ' but its "im_func" attribute.\n' '\n' ' When a user-defined method object is created by retrieving ' 'a\n' ' class method object from a class or instance, its ' '"im_self"\n' ' attribute is the class itself, and its "im_func" attribute ' 'is\n' ' the function object underlying the class method.\n' '\n' ' When an unbound user-defined method object is called, the\n' ' underlying function ("im_func") is called, with the ' 'restriction\n' ' that the first argument must be an instance of the proper ' 'class\n' ' ("im_class") or of a derived class thereof.\n' '\n' ' When a bound user-defined method object is called, the\n' ' underlying function ("im_func") is called, inserting the ' 'class\n' ' instance ("im_self") in front of the argument list. For\n' ' instance, when "C" is a class which contains a definition ' 'for a\n' ' function "f()", and "x" is an instance of "C", calling ' '"x.f(1)"\n' ' is equivalent to calling "C.f(x, 1)".\n' '\n' ' When a user-defined method object is derived from a class ' 'method\n' ' object, the "class instance" stored in "im_self" will ' 'actually\n' ' be the class itself, so that calling either "x.f(1)" or ' '"C.f(1)"\n' ' is equivalent to calling "f(C,1)" where "f" is the ' 'underlying\n' ' function.\n' '\n' ' Note that the transformation from function object to ' '(unbound or\n' ' bound) method object happens each time the attribute is\n' ' retrieved from the class or instance. In some cases, a ' 'fruitful\n' ' optimization is to assign the attribute to a local variable ' 'and\n' ' call that local variable. Also notice that this ' 'transformation\n' ' only happens for user-defined functions; other callable ' 'objects\n' ' (and all non-callable objects) are retrieved without\n' ' transformation. It is also important to note that ' 'user-defined\n' ' functions which are attributes of a class instance are not\n' ' converted to bound methods; this *only* happens when the\n' ' function is an attribute of the class.\n' '\n' ' Generator functions\n' ' A function or method which uses the "yield" statement (see\n' ' section The yield statement) is called a *generator ' 'function*.\n' ' Such a function, when called, always returns an iterator ' 'object\n' ' which can be used to execute the body of the function: ' 'calling\n' ' the iterator\'s "next()" method will cause the function to\n' ' execute until it provides a value using the "yield" ' 'statement.\n' ' When the function executes a "return" statement or falls ' 'off the\n' ' end, a "StopIteration" exception is raised and the iterator ' 'will\n' ' have reached the end of the set of values to be returned.\n' '\n' ' Built-in functions\n' ' A built-in function object is a wrapper around a C ' 'function.\n' ' Examples of built-in functions are "len()" and ' '"math.sin()"\n' ' ("math" is a standard built-in module). The number and type ' 'of\n' ' the arguments are determined by the C function. Special ' 'read-\n' ' only attributes: "__doc__" is the function\'s ' 'documentation\n' ' string, or "None" if unavailable; "__name__" is the ' "function's\n" ' name; "__self__" is set to "None" (but see the next item);\n' ' "__module__" is the name of the module the function was ' 'defined\n' ' in or "None" if unavailable.\n' '\n' ' Built-in methods\n' ' This is really a different disguise of a built-in function, ' 'this\n' ' time containing an object passed to the C function as an\n' ' implicit extra argument. An example of a built-in method ' 'is\n' ' "alist.append()", assuming *alist* is a list object. In ' 'this\n' ' case, the special read-only attribute "__self__" is set to ' 'the\n' ' object denoted by *alist*.\n' '\n' ' Class Types\n' ' Class types, or "new-style classes," are callable. These\n' ' objects normally act as factories for new instances of\n' ' themselves, but variations are possible for class types ' 'that\n' ' override "__new__()". The arguments of the call are passed ' 'to\n' ' "__new__()" and, in the typical case, to "__init__()" to\n' ' initialize the new instance.\n' '\n' ' Classic Classes\n' ' Class objects are described below. When a class object is\n' ' called, a new class instance (also described below) is ' 'created\n' " and returned. This implies a call to the class's " '"__init__()"\n' ' method if it has one. Any arguments are passed on to the\n' ' "__init__()" method. If there is no "__init__()" method, ' 'the\n' ' class must be called without arguments.\n' '\n' ' Class instances\n' ' Class instances are described below. Class instances are\n' ' callable only when the class has a "__call__()" method;\n' ' "x(arguments)" is a shorthand for "x.__call__(arguments)".\n' '\n' 'Modules\n' ' Modules are imported by the "import" statement (see section ' 'The\n' ' import statement). A module object has a namespace implemented ' 'by a\n' ' dictionary object (this is the dictionary referenced by the\n' ' func_globals attribute of functions defined in the module).\n' ' Attribute references are translated to lookups in this ' 'dictionary,\n' ' e.g., "m.x" is equivalent to "m.__dict__["x"]". A module ' 'object\n' ' does not contain the code object used to initialize the ' 'module\n' " (since it isn't needed once the initialization is done).\n" '\n' " Attribute assignment updates the module's namespace " 'dictionary,\n' ' e.g., "m.x = 1" is equivalent to "m.__dict__["x"] = 1".\n' '\n' ' Special read-only attribute: "__dict__" is the module\'s ' 'namespace\n' ' as a dictionary object.\n' '\n' ' **CPython implementation detail:** Because of the way CPython\n' ' clears module dictionaries, the module dictionary will be ' 'cleared\n' ' when the module falls out of scope even if the dictionary ' 'still has\n' ' live references. To avoid this, copy the dictionary or keep ' 'the\n' ' module around while using its dictionary directly.\n' '\n' ' Predefined (writable) attributes: "__name__" is the module\'s ' 'name;\n' ' "__doc__" is the module\'s documentation string, or "None" if\n' ' unavailable; "__file__" is the pathname of the file from which ' 'the\n' ' module was loaded, if it was loaded from a file. The ' '"__file__"\n' ' attribute is not present for C modules that are statically ' 'linked\n' ' into the interpreter; for extension modules loaded dynamically ' 'from\n' ' a shared library, it is the pathname of the shared library ' 'file.\n' '\n' 'Classes\n' ' Both class types (new-style classes) and class objects (old-\n' ' style/classic classes) are typically created by class ' 'definitions\n' ' (see section Class definitions). A class has a namespace\n' ' implemented by a dictionary object. Class attribute references ' 'are\n' ' translated to lookups in this dictionary, e.g., "C.x" is ' 'translated\n' ' to "C.__dict__["x"]" (although for new-style classes in ' 'particular\n' ' there are a number of hooks which allow for other means of ' 'locating\n' ' attributes). When the attribute name is not found there, the\n' ' attribute search continues in the base classes. For ' 'old-style\n' ' classes, the search is depth-first, left-to-right in the order ' 'of\n' ' occurrence in the base class list. New-style classes use the ' 'more\n' ' complex C3 method resolution order which behaves correctly ' 'even in\n' " the presence of 'diamond' inheritance structures where there " 'are\n' ' multiple inheritance paths leading back to a common ancestor.\n' ' Additional details on the C3 MRO used by new-style classes can ' 'be\n' ' found in the documentation accompanying the 2.3 release at\n' ' https://www.python.org/download/releases/2.3/mro/.\n' '\n' ' When a class attribute reference (for class "C", say) would ' 'yield a\n' ' user-defined function object or an unbound user-defined ' 'method\n' ' object whose associated class is either "C" or one of its ' 'base\n' ' classes, it is transformed into an unbound user-defined ' 'method\n' ' object whose "im_class" attribute is "C". When it would yield ' 'a\n' ' class method object, it is transformed into a bound ' 'user-defined\n' ' method object whose "im_self" attribute is "C". When it ' 'would\n' ' yield a static method object, it is transformed into the ' 'object\n' ' wrapped by the static method object. See section Implementing\n' ' Descriptors for another way in which attributes retrieved from ' 'a\n' ' class may differ from those actually contained in its ' '"__dict__"\n' ' (note that only new-style classes support descriptors).\n' '\n' " Class attribute assignments update the class's dictionary, " 'never\n' ' the dictionary of a base class.\n' '\n' ' A class object can be called (see above) to yield a class ' 'instance\n' ' (see below).\n' '\n' ' Special attributes: "__name__" is the class name; "__module__" ' 'is\n' ' the module name in which the class was defined; "__dict__" is ' 'the\n' ' dictionary containing the class\'s namespace; "__bases__" is a ' 'tuple\n' ' (possibly empty or a singleton) containing the base classes, ' 'in the\n' ' order of their occurrence in the base class list; "__doc__" is ' 'the\n' " class's documentation string, or None if undefined.\n" '\n' 'Class instances\n' ' A class instance is created by calling a class object (see ' 'above).\n' ' A class instance has a namespace implemented as a dictionary ' 'which\n' ' is the first place in which attribute references are ' 'searched.\n' " When an attribute is not found there, and the instance's class " 'has\n' ' an attribute by that name, the search continues with the ' 'class\n' ' attributes. If a class attribute is found that is a ' 'user-defined\n' ' function object or an unbound user-defined method object ' 'whose\n' ' associated class is the class (call it "C") of the instance ' 'for\n' ' which the attribute reference was initiated or one of its ' 'bases, it\n' ' is transformed into a bound user-defined method object whose\n' ' "im_class" attribute is "C" and whose "im_self" attribute is ' 'the\n' ' instance. Static method and class method objects are also\n' ' transformed, as if they had been retrieved from class "C"; ' 'see\n' ' above under "Classes". See section Implementing Descriptors ' 'for\n' ' another way in which attributes of a class retrieved via its\n' ' instances may differ from the objects actually stored in the\n' ' class\'s "__dict__". If no class attribute is found, and the\n' ' object\'s class has a "__getattr__()" method, that is called ' 'to\n' ' satisfy the lookup.\n' '\n' " Attribute assignments and deletions update the instance's\n" " dictionary, never a class's dictionary. If the class has a\n" ' "__setattr__()" or "__delattr__()" method, this is called ' 'instead\n' ' of updating the instance dictionary directly.\n' '\n' ' Class instances can pretend to be numbers, sequences, or ' 'mappings\n' ' if they have methods with certain special names. See section\n' ' Special method names.\n' '\n' ' Special attributes: "__dict__" is the attribute dictionary;\n' ' "__class__" is the instance\'s class.\n' '\n' 'Files\n' ' A file object represents an open file. File objects are ' 'created by\n' ' the "open()" built-in function, and also by "os.popen()",\n' ' "os.fdopen()", and the "makefile()" method of socket objects ' '(and\n' ' perhaps by other functions or methods provided by extension\n' ' modules). The objects "sys.stdin", "sys.stdout" and ' '"sys.stderr"\n' ' are initialized to file objects corresponding to the ' "interpreter's\n" ' standard input, output and error streams. See File Objects ' 'for\n' ' complete documentation of file objects.\n' '\n' 'Internal types\n' ' A few types used internally by the interpreter are exposed to ' 'the\n' ' user. Their definitions may change with future versions of ' 'the\n' ' interpreter, but they are mentioned here for completeness.\n' '\n' ' Code objects\n' ' Code objects represent *byte-compiled* executable Python ' 'code,\n' ' or *bytecode*. The difference between a code object and a\n' ' function object is that the function object contains an ' 'explicit\n' " reference to the function's globals (the module in which it " 'was\n' ' defined), while a code object contains no context; also ' 'the\n' ' default argument values are stored in the function object, ' 'not\n' ' in the code object (because they represent values ' 'calculated at\n' ' run-time). Unlike function objects, code objects are ' 'immutable\n' ' and contain no references (directly or indirectly) to ' 'mutable\n' ' objects.\n' '\n' ' Special read-only attributes: "co_name" gives the function ' 'name;\n' ' "co_argcount" is the number of positional arguments ' '(including\n' ' arguments with default values); "co_nlocals" is the number ' 'of\n' ' local variables used by the function (including ' 'arguments);\n' ' "co_varnames" is a tuple containing the names of the local\n' ' variables (starting with the argument names); "co_cellvars" ' 'is a\n' ' tuple containing the names of local variables that are\n' ' referenced by nested functions; "co_freevars" is a tuple\n' ' containing the names of free variables; "co_code" is a ' 'string\n' ' representing the sequence of bytecode instructions; ' '"co_consts"\n' ' is a tuple containing the literals used by the bytecode;\n' ' "co_names" is a tuple containing the names used by the ' 'bytecode;\n' ' "co_filename" is the filename from which the code was ' 'compiled;\n' ' "co_firstlineno" is the first line number of the function;\n' ' "co_lnotab" is a string encoding the mapping from bytecode\n' ' offsets to line numbers (for details see the source code of ' 'the\n' ' interpreter); "co_stacksize" is the required stack size\n' ' (including local variables); "co_flags" is an integer ' 'encoding a\n' ' number of flags for the interpreter.\n' '\n' ' The following flag bits are defined for "co_flags": bit ' '"0x04"\n' ' is set if the function uses the "*arguments" syntax to ' 'accept an\n' ' arbitrary number of positional arguments; bit "0x08" is set ' 'if\n' ' the function uses the "**keywords" syntax to accept ' 'arbitrary\n' ' keyword arguments; bit "0x20" is set if the function is a\n' ' generator.\n' '\n' ' Future feature declarations ("from __future__ import ' 'division")\n' ' also use bits in "co_flags" to indicate whether a code ' 'object\n' ' was compiled with a particular feature enabled: bit ' '"0x2000" is\n' ' set if the function was compiled with future division ' 'enabled;\n' ' bits "0x10" and "0x1000" were used in earlier versions of\n' ' Python.\n' '\n' ' Other bits in "co_flags" are reserved for internal use.\n' '\n' ' If a code object represents a function, the first item in\n' ' "co_consts" is the documentation string of the function, ' 'or\n' ' "None" if undefined.\n' '\n' ' Frame objects\n' ' Frame objects represent execution frames. They may occur ' 'in\n' ' traceback objects (see below).\n' '\n' ' Special read-only attributes: "f_back" is to the previous ' 'stack\n' ' frame (towards the caller), or "None" if this is the ' 'bottom\n' ' stack frame; "f_code" is the code object being executed in ' 'this\n' ' frame; "f_locals" is the dictionary used to look up local\n' ' variables; "f_globals" is used for global variables;\n' ' "f_builtins" is used for built-in (intrinsic) names;\n' ' "f_restricted" is a flag indicating whether the function ' 'is\n' ' executing in restricted execution mode; "f_lasti" gives ' 'the\n' ' precise instruction (this is an index into the bytecode ' 'string\n' ' of the code object).\n' '\n' ' Special writable attributes: "f_trace", if not "None", is ' 'a\n' ' function called at the start of each source code line (this ' 'is\n' ' used by the debugger); "f_exc_type", "f_exc_value",\n' ' "f_exc_traceback" represent the last exception raised in ' 'the\n' ' parent frame provided another exception was ever raised in ' 'the\n' ' current frame (in all other cases they are None); ' '"f_lineno" is\n' ' the current line number of the frame --- writing to this ' 'from\n' ' within a trace function jumps to the given line (only for ' 'the\n' ' bottom-most frame). A debugger can implement a Jump ' 'command\n' ' (aka Set Next Statement) by writing to f_lineno.\n' '\n' ' Traceback objects\n' ' Traceback objects represent a stack trace of an exception. ' 'A\n' ' traceback object is created when an exception occurs. When ' 'the\n' ' search for an exception handler unwinds the execution ' 'stack, at\n' ' each unwound level a traceback object is inserted in front ' 'of\n' ' the current traceback. When an exception handler is ' 'entered,\n' ' the stack trace is made available to the program. (See ' 'section\n' ' The try statement.) It is accessible as ' '"sys.exc_traceback", and\n' ' also as the third item of the tuple returned by\n' ' "sys.exc_info()". The latter is the preferred interface, ' 'since\n' ' it works correctly when the program is using multiple ' 'threads.\n' ' When the program contains no suitable handler, the stack ' 'trace\n' ' is written (nicely formatted) to the standard error stream; ' 'if\n' ' the interpreter is interactive, it is also made available ' 'to the\n' ' user as "sys.last_traceback".\n' '\n' ' Special read-only attributes: "tb_next" is the next level ' 'in the\n' ' stack trace (towards the frame where the exception ' 'occurred), or\n' ' "None" if there is no next level; "tb_frame" points to the\n' ' execution frame of the current level; "tb_lineno" gives the ' 'line\n' ' number where the exception occurred; "tb_lasti" indicates ' 'the\n' ' precise instruction. The line number and last instruction ' 'in\n' ' the traceback may differ from the line number of its frame\n' ' object if the exception occurred in a "try" statement with ' 'no\n' ' matching except clause or with a finally clause.\n' '\n' ' Slice objects\n' ' Slice objects are used to represent slices when *extended ' 'slice\n' ' syntax* is used. This is a slice using two colons, or ' 'multiple\n' ' slices or ellipses separated by commas, e.g., ' '"a[i:j:step]",\n' ' "a[i:j, k:l]", or "a[..., i:j]". They are also created by ' 'the\n' ' built-in "slice()" function.\n' '\n' ' Special read-only attributes: "start" is the lower bound; ' '"stop"\n' ' is the upper bound; "step" is the step value; each is ' '"None" if\n' ' omitted. These attributes can have any type.\n' '\n' ' Slice objects support one method:\n' '\n' ' slice.indices(self, length)\n' '\n' ' This method takes a single integer argument *length* ' 'and\n' ' computes information about the extended slice that the ' 'slice\n' ' object would describe if applied to a sequence of ' '*length*\n' ' items. It returns a tuple of three integers; ' 'respectively\n' ' these are the *start* and *stop* indices and the *step* ' 'or\n' ' stride length of the slice. Missing or out-of-bounds ' 'indices\n' ' are handled in a manner consistent with regular slices.\n' '\n' ' New in version 2.3.\n' '\n' ' Static method objects\n' ' Static method objects provide a way of defeating the\n' ' transformation of function objects to method objects ' 'described\n' ' above. A static method object is a wrapper around any ' 'other\n' ' object, usually a user-defined method object. When a ' 'static\n' ' method object is retrieved from a class or a class ' 'instance, the\n' ' object actually returned is the wrapped object, which is ' 'not\n' ' subject to any further transformation. Static method ' 'objects are\n' ' not themselves callable, although the objects they wrap ' 'usually\n' ' are. Static method objects are created by the built-in\n' ' "staticmethod()" constructor.\n' '\n' ' Class method objects\n' ' A class method object, like a static method object, is a ' 'wrapper\n' ' around another object that alters the way in which that ' 'object\n' ' is retrieved from classes and class instances. The ' 'behaviour of\n' ' class method objects upon such retrieval is described ' 'above,\n' ' under "User-defined methods". Class method objects are ' 'created\n' ' by the built-in "classmethod()" constructor.\n', 'typesfunctions': '\n' 'Functions\n' '*********\n' '\n' 'Function objects are created by function definitions. ' 'The only\n' 'operation on a function object is to call it: ' '"func(argument-list)".\n' '\n' 'There are really two flavors of function objects: ' 'built-in functions\n' 'and user-defined functions. Both support the same ' 'operation (to call\n' 'the function), but the implementation is different, ' 'hence the\n' 'different object types.\n' '\n' 'See Function definitions for more information.\n', 'typesmapping': '\n' 'Mapping Types --- "dict"\n' '************************\n' '\n' 'A *mapping* object maps *hashable* values to arbitrary ' 'objects.\n' 'Mappings are mutable objects. There is currently only one ' 'standard\n' 'mapping type, the *dictionary*. (For other containers see ' 'the built\n' 'in "list", "set", and "tuple" classes, and the ' '"collections" module.)\n' '\n' "A dictionary's keys are *almost* arbitrary values. Values " 'that are\n' 'not *hashable*, that is, values containing lists, ' 'dictionaries or\n' 'other mutable types (that are compared by value rather ' 'than by object\n' 'identity) may not be used as keys. Numeric types used for ' 'keys obey\n' 'the normal rules for numeric comparison: if two numbers ' 'compare equal\n' '(such as "1" and "1.0") then they can be used ' 'interchangeably to index\n' 'the same dictionary entry. (Note however, that since ' 'computers store\n' 'floating-point numbers as approximations it is usually ' 'unwise to use\n' 'them as dictionary keys.)\n' '\n' 'Dictionaries can be created by placing a comma-separated ' 'list of "key:\n' 'value" pairs within braces, for example: "{\'jack\': 4098, ' "'sjoerd':\n" '4127}" or "{4098: \'jack\', 4127: \'sjoerd\'}", or by the ' '"dict"\n' 'constructor.\n' '\n' 'class class dict(**kwarg)\n' 'class class dict(mapping, **kwarg)\n' 'class class dict(iterable, **kwarg)\n' '\n' ' Return a new dictionary initialized from an optional ' 'positional\n' ' argument and a possibly empty set of keyword ' 'arguments.\n' '\n' ' If no positional argument is given, an empty dictionary ' 'is created.\n' ' If a positional argument is given and it is a mapping ' 'object, a\n' ' dictionary is created with the same key-value pairs as ' 'the mapping\n' ' object. Otherwise, the positional argument must be an ' '*iterable*\n' ' object. Each item in the iterable must itself be an ' 'iterable with\n' ' exactly two objects. The first object of each item ' 'becomes a key\n' ' in the new dictionary, and the second object the ' 'corresponding\n' ' value. If a key occurs more than once, the last value ' 'for that key\n' ' becomes the corresponding value in the new dictionary.\n' '\n' ' If keyword arguments are given, the keyword arguments ' 'and their\n' ' values are added to the dictionary created from the ' 'positional\n' ' argument. If a key being added is already present, the ' 'value from\n' ' the keyword argument replaces the value from the ' 'positional\n' ' argument.\n' '\n' ' To illustrate, the following examples all return a ' 'dictionary equal\n' ' to "{"one": 1, "two": 2, "three": 3}":\n' '\n' ' >>> a = dict(one=1, two=2, three=3)\n' " >>> b = {'one': 1, 'two': 2, 'three': 3}\n" " >>> c = dict(zip(['one', 'two', 'three'], [1, 2, " '3]))\n' " >>> d = dict([('two', 2), ('one', 1), ('three', " '3)])\n' " >>> e = dict({'three': 3, 'one': 1, 'two': 2})\n" ' >>> a == b == c == d == e\n' ' True\n' '\n' ' Providing keyword arguments as in the first example ' 'only works for\n' ' keys that are valid Python identifiers. Otherwise, any ' 'valid keys\n' ' can be used.\n' '\n' ' New in version 2.2.\n' '\n' ' Changed in version 2.3: Support for building a ' 'dictionary from\n' ' keyword arguments added.\n' '\n' ' These are the operations that dictionaries support (and ' 'therefore,\n' ' custom mapping types should support too):\n' '\n' ' len(d)\n' '\n' ' Return the number of items in the dictionary *d*.\n' '\n' ' d[key]\n' '\n' ' Return the item of *d* with key *key*. Raises a ' '"KeyError" if\n' ' *key* is not in the map.\n' '\n' ' If a subclass of dict defines a method ' '"__missing__()" and *key*\n' ' is not present, the "d[key]" operation calls that ' 'method with\n' ' the key *key* as argument. The "d[key]" operation ' 'then returns\n' ' or raises whatever is returned or raised by the\n' ' "__missing__(key)" call. No other operations or ' 'methods invoke\n' ' "__missing__()". If "__missing__()" is not defined, ' '"KeyError"\n' ' is raised. "__missing__()" must be a method; it ' 'cannot be an\n' ' instance variable:\n' '\n' ' >>> class Counter(dict):\n' ' ... def __missing__(self, key):\n' ' ... return 0\n' ' >>> c = Counter()\n' " >>> c['red']\n" ' 0\n' " >>> c['red'] += 1\n" " >>> c['red']\n" ' 1\n' '\n' ' The example above shows part of the implementation ' 'of\n' ' "collections.Counter". A different "__missing__" ' 'method is used\n' ' by "collections.defaultdict".\n' '\n' ' New in version 2.5: Recognition of __missing__ ' 'methods of dict\n' ' subclasses.\n' '\n' ' d[key] = value\n' '\n' ' Set "d[key]" to *value*.\n' '\n' ' del d[key]\n' '\n' ' Remove "d[key]" from *d*. Raises a "KeyError" if ' '*key* is not\n' ' in the map.\n' '\n' ' key in d\n' '\n' ' Return "True" if *d* has a key *key*, else "False".\n' '\n' ' New in version 2.2.\n' '\n' ' key not in d\n' '\n' ' Equivalent to "not key in d".\n' '\n' ' New in version 2.2.\n' '\n' ' iter(d)\n' '\n' ' Return an iterator over the keys of the dictionary. ' 'This is a\n' ' shortcut for "iterkeys()".\n' '\n' ' clear()\n' '\n' ' Remove all items from the dictionary.\n' '\n' ' copy()\n' '\n' ' Return a shallow copy of the dictionary.\n' '\n' ' fromkeys(seq[, value])\n' '\n' ' Create a new dictionary with keys from *seq* and ' 'values set to\n' ' *value*.\n' '\n' ' "fromkeys()" is a class method that returns a new ' 'dictionary.\n' ' *value* defaults to "None".\n' '\n' ' New in version 2.3.\n' '\n' ' get(key[, default])\n' '\n' ' Return the value for *key* if *key* is in the ' 'dictionary, else\n' ' *default*. If *default* is not given, it defaults to ' '"None", so\n' ' that this method never raises a "KeyError".\n' '\n' ' has_key(key)\n' '\n' ' Test for the presence of *key* in the dictionary. ' '"has_key()"\n' ' is deprecated in favor of "key in d".\n' '\n' ' items()\n' '\n' ' Return a copy of the dictionary\'s list of "(key, ' 'value)" pairs.\n' '\n' ' **CPython implementation detail:** Keys and values ' 'are listed in\n' ' an arbitrary order which is non-random, varies ' 'across Python\n' " implementations, and depends on the dictionary's " 'history of\n' ' insertions and deletions.\n' '\n' ' If "items()", "keys()", "values()", "iteritems()", ' '"iterkeys()",\n' ' and "itervalues()" are called with no intervening ' 'modifications\n' ' to the dictionary, the lists will directly ' 'correspond. This\n' ' allows the creation of "(value, key)" pairs using ' '"zip()":\n' ' "pairs = zip(d.values(), d.keys())". The same ' 'relationship\n' ' holds for the "iterkeys()" and "itervalues()" ' 'methods: "pairs =\n' ' zip(d.itervalues(), d.iterkeys())" provides the same ' 'value for\n' ' "pairs". Another way to create the same list is ' '"pairs = [(v, k)\n' ' for (k, v) in d.iteritems()]".\n' '\n' ' iteritems()\n' '\n' ' Return an iterator over the dictionary\'s "(key, ' 'value)" pairs.\n' ' See the note for "dict.items()".\n' '\n' ' Using "iteritems()" while adding or deleting entries ' 'in the\n' ' dictionary may raise a "RuntimeError" or fail to ' 'iterate over\n' ' all entries.\n' '\n' ' New in version 2.2.\n' '\n' ' iterkeys()\n' '\n' " Return an iterator over the dictionary's keys. See " 'the note for\n' ' "dict.items()".\n' '\n' ' Using "iterkeys()" while adding or deleting entries ' 'in the\n' ' dictionary may raise a "RuntimeError" or fail to ' 'iterate over\n' ' all entries.\n' '\n' ' New in version 2.2.\n' '\n' ' itervalues()\n' '\n' " Return an iterator over the dictionary's values. " 'See the note\n' ' for "dict.items()".\n' '\n' ' Using "itervalues()" while adding or deleting ' 'entries in the\n' ' dictionary may raise a "RuntimeError" or fail to ' 'iterate over\n' ' all entries.\n' '\n' ' New in version 2.2.\n' '\n' ' keys()\n' '\n' " Return a copy of the dictionary's list of keys. See " 'the note\n' ' for "dict.items()".\n' '\n' ' pop(key[, default])\n' '\n' ' If *key* is in the dictionary, remove it and return ' 'its value,\n' ' else return *default*. If *default* is not given ' 'and *key* is\n' ' not in the dictionary, a "KeyError" is raised.\n' '\n' ' New in version 2.3.\n' '\n' ' popitem()\n' '\n' ' Remove and return an arbitrary "(key, value)" pair ' 'from the\n' ' dictionary.\n' '\n' ' "popitem()" is useful to destructively iterate over ' 'a\n' ' dictionary, as often used in set algorithms. If the ' 'dictionary\n' ' is empty, calling "popitem()" raises a "KeyError".\n' '\n' ' setdefault(key[, default])\n' '\n' ' If *key* is in the dictionary, return its value. If ' 'not, insert\n' ' *key* with a value of *default* and return ' '*default*. *default*\n' ' defaults to "None".\n' '\n' ' update([other])\n' '\n' ' Update the dictionary with the key/value pairs from ' '*other*,\n' ' overwriting existing keys. Return "None".\n' '\n' ' "update()" accepts either another dictionary object ' 'or an\n' ' iterable of key/value pairs (as tuples or other ' 'iterables of\n' ' length two). If keyword arguments are specified, ' 'the dictionary\n' ' is then updated with those key/value pairs: ' '"d.update(red=1,\n' ' blue=2)".\n' '\n' ' Changed in version 2.4: Allowed the argument to be ' 'an iterable\n' ' of key/value pairs and allowed keyword arguments.\n' '\n' ' values()\n' '\n' " Return a copy of the dictionary's list of values. " 'See the note\n' ' for "dict.items()".\n' '\n' ' viewitems()\n' '\n' ' Return a new view of the dictionary\'s items ("(key, ' 'value)"\n' ' pairs). See below for documentation of view ' 'objects.\n' '\n' ' New in version 2.7.\n' '\n' ' viewkeys()\n' '\n' " Return a new view of the dictionary's keys. See " 'below for\n' ' documentation of view objects.\n' '\n' ' New in version 2.7.\n' '\n' ' viewvalues()\n' '\n' " Return a new view of the dictionary's values. See " 'below for\n' ' documentation of view objects.\n' '\n' ' New in version 2.7.\n' '\n' ' Dictionaries compare equal if and only if they have the ' 'same "(key,\n' ' value)" pairs.\n' '\n' '\n' 'Dictionary view objects\n' '=======================\n' '\n' 'The objects returned by "dict.viewkeys()", ' '"dict.viewvalues()" and\n' '"dict.viewitems()" are *view objects*. They provide a ' 'dynamic view on\n' "the dictionary's entries, which means that when the " 'dictionary\n' 'changes, the view reflects these changes.\n' '\n' 'Dictionary views can be iterated over to yield their ' 'respective data,\n' 'and support membership tests:\n' '\n' 'len(dictview)\n' '\n' ' Return the number of entries in the dictionary.\n' '\n' 'iter(dictview)\n' '\n' ' Return an iterator over the keys, values or items ' '(represented as\n' ' tuples of "(key, value)") in the dictionary.\n' '\n' ' Keys and values are iterated over in an arbitrary order ' 'which is\n' ' non-random, varies across Python implementations, and ' 'depends on\n' " the dictionary's history of insertions and deletions. " 'If keys,\n' ' values and items views are iterated over with no ' 'intervening\n' ' modifications to the dictionary, the order of items ' 'will directly\n' ' correspond. This allows the creation of "(value, key)" ' 'pairs using\n' ' "zip()": "pairs = zip(d.values(), d.keys())". Another ' 'way to\n' ' create the same list is "pairs = [(v, k) for (k, v) in ' 'd.items()]".\n' '\n' ' Iterating views while adding or deleting entries in the ' 'dictionary\n' ' may raise a "RuntimeError" or fail to iterate over all ' 'entries.\n' '\n' 'x in dictview\n' '\n' ' Return "True" if *x* is in the underlying dictionary\'s ' 'keys, values\n' ' or items (in the latter case, *x* should be a "(key, ' 'value)"\n' ' tuple).\n' '\n' 'Keys views are set-like since their entries are unique and ' 'hashable.\n' 'If all values are hashable, so that (key, value) pairs are ' 'unique and\n' 'hashable, then the items view is also set-like. (Values ' 'views are not\n' 'treated as set-like since the entries are generally not ' 'unique.) Then\n' 'these set operations are available ("other" refers either ' 'to another\n' 'view or a set):\n' '\n' 'dictview & other\n' '\n' ' Return the intersection of the dictview and the other ' 'object as a\n' ' new set.\n' '\n' 'dictview | other\n' '\n' ' Return the union of the dictview and the other object ' 'as a new set.\n' '\n' 'dictview - other\n' '\n' ' Return the difference between the dictview and the ' 'other object\n' " (all elements in *dictview* that aren't in *other*) as " 'a new set.\n' '\n' 'dictview ^ other\n' '\n' ' Return the symmetric difference (all elements either in ' '*dictview*\n' ' or *other*, but not in both) of the dictview and the ' 'other object\n' ' as a new set.\n' '\n' 'An example of dictionary view usage:\n' '\n' " >>> dishes = {'eggs': 2, 'sausage': 1, 'bacon': 1, " "'spam': 500}\n" ' >>> keys = dishes.viewkeys()\n' ' >>> values = dishes.viewvalues()\n' '\n' ' >>> # iteration\n' ' >>> n = 0\n' ' >>> for val in values:\n' ' ... n += val\n' ' >>> print(n)\n' ' 504\n' '\n' ' >>> # keys and values are iterated over in the same ' 'order\n' ' >>> list(keys)\n' " ['eggs', 'bacon', 'sausage', 'spam']\n" ' >>> list(values)\n' ' [2, 1, 1, 500]\n' '\n' ' >>> # view objects are dynamic and reflect dict ' 'changes\n' " >>> del dishes['eggs']\n" " >>> del dishes['sausage']\n" ' >>> list(keys)\n' " ['spam', 'bacon']\n" '\n' ' >>> # set operations\n' " >>> keys & {'eggs', 'bacon', 'salad'}\n" " {'bacon'}\n", 'typesmethods': '\n' 'Methods\n' '*******\n' '\n' 'Methods are functions that are called using the attribute ' 'notation.\n' 'There are two flavors: built-in methods (such as ' '"append()" on lists)\n' 'and class instance methods. Built-in methods are ' 'described with the\n' 'types that support them.\n' '\n' 'The implementation adds two special read-only attributes ' 'to class\n' 'instance methods: "m.im_self" is the object on which the ' 'method\n' 'operates, and "m.im_func" is the function implementing the ' 'method.\n' 'Calling "m(arg-1, arg-2, ..., arg-n)" is completely ' 'equivalent to\n' 'calling "m.im_func(m.im_self, arg-1, arg-2, ..., arg-n)".\n' '\n' 'Class instance methods are either *bound* or *unbound*, ' 'referring to\n' 'whether the method was accessed through an instance or a ' 'class,\n' 'respectively. When a method is unbound, its "im_self" ' 'attribute will\n' 'be "None" and if called, an explicit "self" object must be ' 'passed as\n' 'the first argument. In this case, "self" must be an ' 'instance of the\n' "unbound method's class (or a subclass of that class), " 'otherwise a\n' '"TypeError" is raised.\n' '\n' 'Like function objects, methods objects support getting ' 'arbitrary\n' 'attributes. However, since method attributes are actually ' 'stored on\n' 'the underlying function object ("meth.im_func"), setting ' 'method\n' 'attributes on either bound or unbound methods is ' 'disallowed.\n' 'Attempting to set an attribute on a method results in an\n' '"AttributeError" being raised. In order to set a method ' 'attribute,\n' 'you need to explicitly set it on the underlying function ' 'object:\n' '\n' ' >>> class C:\n' ' ... def method(self):\n' ' ... pass\n' ' ...\n' ' >>> c = C()\n' " >>> c.method.whoami = 'my name is method' # can't set " 'on the method\n' ' Traceback (most recent call last):\n' ' File "<stdin>", line 1, in <module>\n' " AttributeError: 'instancemethod' object has no " "attribute 'whoami'\n" " >>> c.method.im_func.whoami = 'my name is method'\n" ' >>> c.method.whoami\n' " 'my name is method'\n" '\n' 'See The standard type hierarchy for more information.\n', 'typesmodules': '\n' 'Modules\n' '*******\n' '\n' 'The only special operation on a module is attribute ' 'access: "m.name",\n' 'where *m* is a module and *name* accesses a name defined ' "in *m*'s\n" 'symbol table. Module attributes can be assigned to. (Note ' 'that the\n' '"import" statement is not, strictly speaking, an operation ' 'on a module\n' 'object; "import foo" does not require a module object ' 'named *foo* to\n' 'exist, rather it requires an (external) *definition* for a ' 'module\n' 'named *foo* somewhere.)\n' '\n' 'A special attribute of every module is "__dict__". This is ' 'the\n' "dictionary containing the module's symbol table. Modifying " 'this\n' "dictionary will actually change the module's symbol table, " 'but direct\n' 'assignment to the "__dict__" attribute is not possible ' '(you can write\n' '"m.__dict__[\'a\'] = 1", which defines "m.a" to be "1", ' "but you can't\n" 'write "m.__dict__ = {}"). Modifying "__dict__" directly ' 'is not\n' 'recommended.\n' '\n' 'Modules built into the interpreter are written like this: ' '"<module\n' '\'sys\' (built-in)>". If loaded from a file, they are ' 'written as\n' '"<module \'os\' from ' '\'/usr/local/lib/pythonX.Y/os.pyc\'>".\n', 'typesseq': '\n' 'Sequence Types --- "str", "unicode", "list", "tuple", ' '"bytearray", "buffer", "xrange"\n' '*************************************************************************************\n' '\n' 'There are seven sequence types: strings, Unicode strings, ' 'lists,\n' 'tuples, bytearrays, buffers, and xrange objects.\n' '\n' 'For other containers see the built in "dict" and "set" ' 'classes, and\n' 'the "collections" module.\n' '\n' 'String literals are written in single or double quotes: ' '"\'xyzzy\'",\n' '""frobozz"". See String literals for more about string ' 'literals.\n' 'Unicode strings are much like strings, but are specified in ' 'the syntax\n' 'using a preceding "\'u\'" character: "u\'abc\'", "u"def"". In ' 'addition to\n' 'the functionality described here, there are also ' 'string-specific\n' 'methods described in the String Methods section. Lists are ' 'constructed\n' 'with square brackets, separating items with commas: "[a, b, ' 'c]".\n' 'Tuples are constructed by the comma operator (not within ' 'square\n' 'brackets), with or without enclosing parentheses, but an empty ' 'tuple\n' 'must have the enclosing parentheses, such as "a, b, c" or ' '"()". A\n' 'single item tuple must have a trailing comma, such as "(d,)".\n' '\n' 'Bytearray objects are created with the built-in function\n' '"bytearray()".\n' '\n' 'Buffer objects are not directly supported by Python syntax, ' 'but can be\n' 'created by calling the built-in function "buffer()". They ' "don't\n" 'support concatenation or repetition.\n' '\n' 'Objects of type xrange are similar to buffers in that there is ' 'no\n' 'specific syntax to create them, but they are created using ' 'the\n' '"xrange()" function. They don\'t support slicing, ' 'concatenation or\n' 'repetition, and using "in", "not in", "min()" or "max()" on ' 'them is\n' 'inefficient.\n' '\n' 'Most sequence types support the following operations. The ' '"in" and\n' '"not in" operations have the same priorities as the ' 'comparison\n' 'operations. The "+" and "*" operations have the same priority ' 'as the\n' 'corresponding numeric operations. [3] Additional methods are ' 'provided\n' 'for Mutable Sequence Types.\n' '\n' 'This table lists the sequence operations sorted in ascending ' 'priority.\n' 'In the table, *s* and *t* are sequences of the same type; *n*, ' '*i* and\n' '*j* are integers:\n' '\n' '+--------------------+----------------------------------+------------+\n' '| Operation | Result | ' 'Notes |\n' '+====================+==================================+============+\n' '| "x in s" | "True" if an item of *s* is | ' '(1) |\n' '| | equal to *x*, else "False" ' '| |\n' '+--------------------+----------------------------------+------------+\n' '| "x not in s" | "False" if an item of *s* is | ' '(1) |\n' '| | equal to *x*, else "True" ' '| |\n' '+--------------------+----------------------------------+------------+\n' '| "s + t" | the concatenation of *s* and *t* | ' '(6) |\n' '+--------------------+----------------------------------+------------+\n' '| "s * n, n * s" | equivalent to adding *s* to | ' '(2) |\n' '| | itself *n* times ' '| |\n' '+--------------------+----------------------------------+------------+\n' '| "s[i]" | *i*th item of *s*, origin 0 | ' '(3) |\n' '+--------------------+----------------------------------+------------+\n' '| "s[i:j]" | slice of *s* from *i* to *j* | ' '(3)(4) |\n' '+--------------------+----------------------------------+------------+\n' '| "s[i:j:k]" | slice of *s* from *i* to *j* | ' '(3)(5) |\n' '| | with step *k* ' '| |\n' '+--------------------+----------------------------------+------------+\n' '| "len(s)" | length of *s* ' '| |\n' '+--------------------+----------------------------------+------------+\n' '| "min(s)" | smallest item of *s* ' '| |\n' '+--------------------+----------------------------------+------------+\n' '| "max(s)" | largest item of *s* ' '| |\n' '+--------------------+----------------------------------+------------+\n' '| "s.index(x)" | index of the first occurrence of ' '| |\n' '| | *x* in *s* ' '| |\n' '+--------------------+----------------------------------+------------+\n' '| "s.count(x)" | total number of occurrences of ' '| |\n' '| | *x* in *s* ' '| |\n' '+--------------------+----------------------------------+------------+\n' '\n' 'Sequence types also support comparisons. In particular, tuples ' 'and\n' 'lists are compared lexicographically by comparing ' 'corresponding\n' 'elements. This means that to compare equal, every element must ' 'compare\n' 'equal and the two sequences must be of the same type and have ' 'the same\n' 'length. (For full details see Comparisons in the language ' 'reference.)\n' '\n' 'Notes:\n' '\n' '1. When *s* is a string or Unicode string object the "in" and ' '"not\n' ' in" operations act like a substring test. In Python ' 'versions\n' ' before 2.3, *x* had to be a string of length 1. In Python ' '2.3 and\n' ' beyond, *x* may be a string of any length.\n' '\n' '2. Values of *n* less than "0" are treated as "0" (which ' 'yields an\n' ' empty sequence of the same type as *s*). Note that items ' 'in the\n' ' sequence *s* are not copied; they are referenced multiple ' 'times.\n' ' This often haunts new Python programmers; consider:\n' '\n' ' >>> lists = [[]] * 3\n' ' >>> lists\n' ' [[], [], []]\n' ' >>> lists[0].append(3)\n' ' >>> lists\n' ' [[3], [3], [3]]\n' '\n' ' What has happened is that "[[]]" is a one-element list ' 'containing\n' ' an empty list, so all three elements of "[[]] * 3" are ' 'references\n' ' to this single empty list. Modifying any of the elements ' 'of\n' ' "lists" modifies this single list. You can create a list ' 'of\n' ' different lists this way:\n' '\n' ' >>> lists = [[] for i in range(3)]\n' ' >>> lists[0].append(3)\n' ' >>> lists[1].append(5)\n' ' >>> lists[2].append(7)\n' ' >>> lists\n' ' [[3], [5], [7]]\n' '\n' ' Further explanation is available in the FAQ entry How do I ' 'create a\n' ' multidimensional list?.\n' '\n' '3. If *i* or *j* is negative, the index is relative to the end ' 'of\n' ' the string: "len(s) + i" or "len(s) + j" is substituted. ' 'But note\n' ' that "-0" is still "0".\n' '\n' '4. The slice of *s* from *i* to *j* is defined as the sequence ' 'of\n' ' items with index *k* such that "i <= k < j". If *i* or *j* ' 'is\n' ' greater than "len(s)", use "len(s)". If *i* is omitted or ' '"None",\n' ' use "0". If *j* is omitted or "None", use "len(s)". If ' '*i* is\n' ' greater than or equal to *j*, the slice is empty.\n' '\n' '5. The slice of *s* from *i* to *j* with step *k* is defined ' 'as the\n' ' sequence of items with index "x = i + n*k" such that "0 <= ' 'n <\n' ' (j-i)/k". In other words, the indices are "i", "i+k", ' '"i+2*k",\n' ' "i+3*k" and so on, stopping when *j* is reached (but never\n' ' including *j*). If *i* or *j* is greater than "len(s)", ' 'use\n' ' "len(s)". If *i* or *j* are omitted or "None", they become ' '"end"\n' ' values (which end depends on the sign of *k*). Note, *k* ' 'cannot be\n' ' zero. If *k* is "None", it is treated like "1".\n' '\n' '6. **CPython implementation detail:** If *s* and *t* are both\n' ' strings, some Python implementations such as CPython can ' 'usually\n' ' perform an in-place optimization for assignments of the ' 'form "s = s\n' ' + t" or "s += t". When applicable, this optimization ' 'makes\n' ' quadratic run-time much less likely. This optimization is ' 'both\n' ' version and implementation dependent. For performance ' 'sensitive\n' ' code, it is preferable to use the "str.join()" method which ' 'assures\n' ' consistent linear concatenation performance across versions ' 'and\n' ' implementations.\n' '\n' ' Changed in version 2.4: Formerly, string concatenation ' 'never\n' ' occurred in-place.\n' '\n' '\n' 'String Methods\n' '==============\n' '\n' 'Below are listed the string methods which both 8-bit strings ' 'and\n' 'Unicode objects support. Some of them are also available on\n' '"bytearray" objects.\n' '\n' "In addition, Python's strings support the sequence type " 'methods\n' 'described in the Sequence Types --- str, unicode, list, ' 'tuple,\n' 'bytearray, buffer, xrange section. To output formatted strings ' 'use\n' 'template strings or the "%" operator described in the String\n' 'Formatting Operations section. Also, see the "re" module for ' 'string\n' 'functions based on regular expressions.\n' '\n' 'str.capitalize()\n' '\n' ' Return a copy of the string with its first character ' 'capitalized\n' ' and the rest lowercased.\n' '\n' ' For 8-bit strings, this method is locale-dependent.\n' '\n' 'str.center(width[, fillchar])\n' '\n' ' Return centered in a string of length *width*. Padding is ' 'done\n' ' using the specified *fillchar* (default is a space).\n' '\n' ' Changed in version 2.4: Support for the *fillchar* ' 'argument.\n' '\n' 'str.count(sub[, start[, end]])\n' '\n' ' Return the number of non-overlapping occurrences of ' 'substring *sub*\n' ' in the range [*start*, *end*]. Optional arguments *start* ' 'and\n' ' *end* are interpreted as in slice notation.\n' '\n' 'str.decode([encoding[, errors]])\n' '\n' ' Decodes the string using the codec registered for ' '*encoding*.\n' ' *encoding* defaults to the default string encoding. ' '*errors* may\n' ' be given to set a different error handling scheme. The ' 'default is\n' ' "\'strict\'", meaning that encoding errors raise ' '"UnicodeError".\n' ' Other possible values are "\'ignore\'", "\'replace\'" and ' 'any other\n' ' name registered via "codecs.register_error()", see section ' 'Codec\n' ' Base Classes.\n' '\n' ' New in version 2.2.\n' '\n' ' Changed in version 2.3: Support for other error handling ' 'schemes\n' ' added.\n' '\n' ' Changed in version 2.7: Support for keyword arguments ' 'added.\n' '\n' 'str.encode([encoding[, errors]])\n' '\n' ' Return an encoded version of the string. Default encoding ' 'is the\n' ' current default string encoding. *errors* may be given to ' 'set a\n' ' different error handling scheme. The default for *errors* ' 'is\n' ' "\'strict\'", meaning that encoding errors raise a ' '"UnicodeError".\n' ' Other possible values are "\'ignore\'", "\'replace\'",\n' ' "\'xmlcharrefreplace\'", "\'backslashreplace\'" and any ' 'other name\n' ' registered via "codecs.register_error()", see section Codec ' 'Base\n' ' Classes. For a list of possible encodings, see section ' 'Standard\n' ' Encodings.\n' '\n' ' New in version 2.0.\n' '\n' ' Changed in version 2.3: Support for "\'xmlcharrefreplace\'" ' 'and\n' ' "\'backslashreplace\'" and other error handling schemes ' 'added.\n' '\n' ' Changed in version 2.7: Support for keyword arguments ' 'added.\n' '\n' 'str.endswith(suffix[, start[, end]])\n' '\n' ' Return "True" if the string ends with the specified ' '*suffix*,\n' ' otherwise return "False". *suffix* can also be a tuple of ' 'suffixes\n' ' to look for. With optional *start*, test beginning at ' 'that\n' ' position. With optional *end*, stop comparing at that ' 'position.\n' '\n' ' Changed in version 2.5: Accept tuples as *suffix*.\n' '\n' 'str.expandtabs([tabsize])\n' '\n' ' Return a copy of the string where all tab characters are ' 'replaced\n' ' by one or more spaces, depending on the current column and ' 'the\n' ' given tab size. Tab positions occur every *tabsize* ' 'characters\n' ' (default is 8, giving tab positions at columns 0, 8, 16 and ' 'so on).\n' ' To expand the string, the current column is set to zero and ' 'the\n' ' string is examined character by character. If the ' 'character is a\n' ' tab ("\\t"), one or more space characters are inserted in ' 'the result\n' ' until the current column is equal to the next tab position. ' '(The\n' ' tab character itself is not copied.) If the character is a ' 'newline\n' ' ("\\n") or return ("\\r"), it is copied and the current ' 'column is\n' ' reset to zero. Any other character is copied unchanged and ' 'the\n' ' current column is incremented by one regardless of how the\n' ' character is represented when printed.\n' '\n' " >>> '01\\t012\\t0123\\t01234'.expandtabs()\n" " '01 012 0123 01234'\n" " >>> '01\\t012\\t0123\\t01234'.expandtabs(4)\n" " '01 012 0123 01234'\n" '\n' 'str.find(sub[, start[, end]])\n' '\n' ' Return the lowest index in the string where substring *sub* ' 'is\n' ' found, such that *sub* is contained in the slice ' '"s[start:end]".\n' ' Optional arguments *start* and *end* are interpreted as in ' 'slice\n' ' notation. Return "-1" if *sub* is not found.\n' '\n' ' Note: The "find()" method should be used only if you need ' 'to know\n' ' the position of *sub*. To check if *sub* is a substring ' 'or not,\n' ' use the "in" operator:\n' '\n' " >>> 'Py' in 'Python'\n" ' True\n' '\n' 'str.format(*args, **kwargs)\n' '\n' ' Perform a string formatting operation. The string on which ' 'this\n' ' method is called can contain literal text or replacement ' 'fields\n' ' delimited by braces "{}". Each replacement field contains ' 'either\n' ' the numeric index of a positional argument, or the name of ' 'a\n' ' keyword argument. Returns a copy of the string where each\n' ' replacement field is replaced with the string value of the\n' ' corresponding argument.\n' '\n' ' >>> "The sum of 1 + 2 is {0}".format(1+2)\n' " 'The sum of 1 + 2 is 3'\n" '\n' ' See Format String Syntax for a description of the various\n' ' formatting options that can be specified in format ' 'strings.\n' '\n' ' This method of string formatting is the new standard in ' 'Python 3,\n' ' and should be preferred to the "%" formatting described in ' 'String\n' ' Formatting Operations in new code.\n' '\n' ' New in version 2.6.\n' '\n' 'str.index(sub[, start[, end]])\n' '\n' ' Like "find()", but raise "ValueError" when the substring is ' 'not\n' ' found.\n' '\n' 'str.isalnum()\n' '\n' ' Return true if all characters in the string are ' 'alphanumeric and\n' ' there is at least one character, false otherwise.\n' '\n' ' For 8-bit strings, this method is locale-dependent.\n' '\n' 'str.isalpha()\n' '\n' ' Return true if all characters in the string are alphabetic ' 'and\n' ' there is at least one character, false otherwise.\n' '\n' ' For 8-bit strings, this method is locale-dependent.\n' '\n' 'str.isdigit()\n' '\n' ' Return true if all characters in the string are digits and ' 'there is\n' ' at least one character, false otherwise.\n' '\n' ' For 8-bit strings, this method is locale-dependent.\n' '\n' 'str.islower()\n' '\n' ' Return true if all cased characters [4] in the string are ' 'lowercase\n' ' and there is at least one cased character, false ' 'otherwise.\n' '\n' ' For 8-bit strings, this method is locale-dependent.\n' '\n' 'str.isspace()\n' '\n' ' Return true if there are only whitespace characters in the ' 'string\n' ' and there is at least one character, false otherwise.\n' '\n' ' For 8-bit strings, this method is locale-dependent.\n' '\n' 'str.istitle()\n' '\n' ' Return true if the string is a titlecased string and there ' 'is at\n' ' least one character, for example uppercase characters may ' 'only\n' ' follow uncased characters and lowercase characters only ' 'cased ones.\n' ' Return false otherwise.\n' '\n' ' For 8-bit strings, this method is locale-dependent.\n' '\n' 'str.isupper()\n' '\n' ' Return true if all cased characters [4] in the string are ' 'uppercase\n' ' and there is at least one cased character, false ' 'otherwise.\n' '\n' ' For 8-bit strings, this method is locale-dependent.\n' '\n' 'str.join(iterable)\n' '\n' ' Return a string which is the concatenation of the strings ' 'in the\n' ' *iterable* *iterable*. The separator between elements is ' 'the\n' ' string providing this method.\n' '\n' 'str.ljust(width[, fillchar])\n' '\n' ' Return the string left justified in a string of length ' '*width*.\n' ' Padding is done using the specified *fillchar* (default is ' 'a\n' ' space). The original string is returned if *width* is less ' 'than or\n' ' equal to "len(s)".\n' '\n' ' Changed in version 2.4: Support for the *fillchar* ' 'argument.\n' '\n' 'str.lower()\n' '\n' ' Return a copy of the string with all the cased characters ' '[4]\n' ' converted to lowercase.\n' '\n' ' For 8-bit strings, this method is locale-dependent.\n' '\n' 'str.lstrip([chars])\n' '\n' ' Return a copy of the string with leading characters ' 'removed. The\n' ' *chars* argument is a string specifying the set of ' 'characters to be\n' ' removed. If omitted or "None", the *chars* argument ' 'defaults to\n' ' removing whitespace. The *chars* argument is not a prefix; ' 'rather,\n' ' all combinations of its values are stripped:\n' '\n' " >>> ' spacious '.lstrip()\n" " 'spacious '\n" " >>> 'www.example.com'.lstrip('cmowz.')\n" " 'example.com'\n" '\n' ' Changed in version 2.2.2: Support for the *chars* ' 'argument.\n' '\n' 'str.partition(sep)\n' '\n' ' Split the string at the first occurrence of *sep*, and ' 'return a\n' ' 3-tuple containing the part before the separator, the ' 'separator\n' ' itself, and the part after the separator. If the separator ' 'is not\n' ' found, return a 3-tuple containing the string itself, ' 'followed by\n' ' two empty strings.\n' '\n' ' New in version 2.5.\n' '\n' 'str.replace(old, new[, count])\n' '\n' ' Return a copy of the string with all occurrences of ' 'substring *old*\n' ' replaced by *new*. If the optional argument *count* is ' 'given, only\n' ' the first *count* occurrences are replaced.\n' '\n' 'str.rfind(sub[, start[, end]])\n' '\n' ' Return the highest index in the string where substring ' '*sub* is\n' ' found, such that *sub* is contained within "s[start:end]".\n' ' Optional arguments *start* and *end* are interpreted as in ' 'slice\n' ' notation. Return "-1" on failure.\n' '\n' 'str.rindex(sub[, start[, end]])\n' '\n' ' Like "rfind()" but raises "ValueError" when the substring ' '*sub* is\n' ' not found.\n' '\n' 'str.rjust(width[, fillchar])\n' '\n' ' Return the string right justified in a string of length ' '*width*.\n' ' Padding is done using the specified *fillchar* (default is ' 'a\n' ' space). The original string is returned if *width* is less ' 'than or\n' ' equal to "len(s)".\n' '\n' ' Changed in version 2.4: Support for the *fillchar* ' 'argument.\n' '\n' 'str.rpartition(sep)\n' '\n' ' Split the string at the last occurrence of *sep*, and ' 'return a\n' ' 3-tuple containing the part before the separator, the ' 'separator\n' ' itself, and the part after the separator. If the separator ' 'is not\n' ' found, return a 3-tuple containing two empty strings, ' 'followed by\n' ' the string itself.\n' '\n' ' New in version 2.5.\n' '\n' 'str.rsplit([sep[, maxsplit]])\n' '\n' ' Return a list of the words in the string, using *sep* as ' 'the\n' ' delimiter string. If *maxsplit* is given, at most ' '*maxsplit* splits\n' ' are done, the *rightmost* ones. If *sep* is not specified ' 'or\n' ' "None", any whitespace string is a separator. Except for ' 'splitting\n' ' from the right, "rsplit()" behaves like "split()" which is\n' ' described in detail below.\n' '\n' ' New in version 2.4.\n' '\n' 'str.rstrip([chars])\n' '\n' ' Return a copy of the string with trailing characters ' 'removed. The\n' ' *chars* argument is a string specifying the set of ' 'characters to be\n' ' removed. If omitted or "None", the *chars* argument ' 'defaults to\n' ' removing whitespace. The *chars* argument is not a suffix; ' 'rather,\n' ' all combinations of its values are stripped:\n' '\n' " >>> ' spacious '.rstrip()\n" " ' spacious'\n" " >>> 'mississippi'.rstrip('ipz')\n" " 'mississ'\n" '\n' ' Changed in version 2.2.2: Support for the *chars* ' 'argument.\n' '\n' 'str.split([sep[, maxsplit]])\n' '\n' ' Return a list of the words in the string, using *sep* as ' 'the\n' ' delimiter string. If *maxsplit* is given, at most ' '*maxsplit*\n' ' splits are done (thus, the list will have at most ' '"maxsplit+1"\n' ' elements). If *maxsplit* is not specified or "-1", then ' 'there is\n' ' no limit on the number of splits (all possible splits are ' 'made).\n' '\n' ' If *sep* is given, consecutive delimiters are not grouped ' 'together\n' ' and are deemed to delimit empty strings (for example,\n' ' "\'1,,2\'.split(\',\')" returns "[\'1\', \'\', \'2\']"). ' 'The *sep* argument\n' ' may consist of multiple characters (for example,\n' ' "\'1<>2<>3\'.split(\'<>\')" returns "[\'1\', \'2\', ' '\'3\']"). Splitting an\n' ' empty string with a specified separator returns "[\'\']".\n' '\n' ' If *sep* is not specified or is "None", a different ' 'splitting\n' ' algorithm is applied: runs of consecutive whitespace are ' 'regarded\n' ' as a single separator, and the result will contain no empty ' 'strings\n' ' at the start or end if the string has leading or trailing\n' ' whitespace. Consequently, splitting an empty string or a ' 'string\n' ' consisting of just whitespace with a "None" separator ' 'returns "[]".\n' '\n' ' For example, "\' 1 2 3 \'.split()" returns "[\'1\', ' '\'2\', \'3\']", and\n' ' "\' 1 2 3 \'.split(None, 1)" returns "[\'1\', \'2 3 ' '\']".\n' '\n' 'str.splitlines([keepends])\n' '\n' ' Return a list of the lines in the string, breaking at line\n' ' boundaries. This method uses the *universal newlines* ' 'approach to\n' ' splitting lines. Line breaks are not included in the ' 'resulting list\n' ' unless *keepends* is given and true.\n' '\n' ' For example, "\'ab c\\n\\nde fg\\rkl\\r\\n\'.splitlines()" ' 'returns "[\'ab\n' ' c\', \'\', \'de fg\', \'kl\']", while the same call with\n' ' "splitlines(True)" returns "[\'ab c\\n\', \'\\n\', \'de ' 'fg\\r\', \'kl\\r\\n\']".\n' '\n' ' Unlike "split()" when a delimiter string *sep* is given, ' 'this\n' ' method returns an empty list for the empty string, and a ' 'terminal\n' ' line break does not result in an extra line.\n' '\n' 'str.startswith(prefix[, start[, end]])\n' '\n' ' Return "True" if string starts with the *prefix*, otherwise ' 'return\n' ' "False". *prefix* can also be a tuple of prefixes to look ' 'for.\n' ' With optional *start*, test string beginning at that ' 'position.\n' ' With optional *end*, stop comparing string at that ' 'position.\n' '\n' ' Changed in version 2.5: Accept tuples as *prefix*.\n' '\n' 'str.strip([chars])\n' '\n' ' Return a copy of the string with the leading and trailing\n' ' characters removed. The *chars* argument is a string ' 'specifying the\n' ' set of characters to be removed. If omitted or "None", the ' '*chars*\n' ' argument defaults to removing whitespace. The *chars* ' 'argument is\n' ' not a prefix or suffix; rather, all combinations of its ' 'values are\n' ' stripped:\n' '\n' " >>> ' spacious '.strip()\n" " 'spacious'\n" " >>> 'www.example.com'.strip('cmowz.')\n" " 'example'\n" '\n' ' Changed in version 2.2.2: Support for the *chars* ' 'argument.\n' '\n' 'str.swapcase()\n' '\n' ' Return a copy of the string with uppercase characters ' 'converted to\n' ' lowercase and vice versa.\n' '\n' ' For 8-bit strings, this method is locale-dependent.\n' '\n' 'str.title()\n' '\n' ' Return a titlecased version of the string where words start ' 'with an\n' ' uppercase character and the remaining characters are ' 'lowercase.\n' '\n' ' The algorithm uses a simple language-independent definition ' 'of a\n' ' word as groups of consecutive letters. The definition ' 'works in\n' ' many contexts but it means that apostrophes in contractions ' 'and\n' ' possessives form word boundaries, which may not be the ' 'desired\n' ' result:\n' '\n' ' >>> "they\'re bill\'s friends from the UK".title()\n' ' "They\'Re Bill\'S Friends From The Uk"\n' '\n' ' A workaround for apostrophes can be constructed using ' 'regular\n' ' expressions:\n' '\n' ' >>> import re\n' ' >>> def titlecase(s):\n' ' ... return re.sub(r"[A-Za-z]+(\'[A-Za-z]+)?",\n' ' ... lambda mo: mo.group(0)[0].upper() ' '+\n' ' ... ' 'mo.group(0)[1:].lower(),\n' ' ... s)\n' ' ...\n' ' >>> titlecase("they\'re bill\'s friends.")\n' ' "They\'re Bill\'s Friends."\n' '\n' ' For 8-bit strings, this method is locale-dependent.\n' '\n' 'str.translate(table[, deletechars])\n' '\n' ' Return a copy of the string where all characters occurring ' 'in the\n' ' optional argument *deletechars* are removed, and the ' 'remaining\n' ' characters have been mapped through the given translation ' 'table,\n' ' which must be a string of length 256.\n' '\n' ' You can use the "maketrans()" helper function in the ' '"string"\n' ' module to create a translation table. For string objects, ' 'set the\n' ' *table* argument to "None" for translations that only ' 'delete\n' ' characters:\n' '\n' " >>> 'read this short text'.translate(None, 'aeiou')\n" " 'rd ths shrt txt'\n" '\n' ' New in version 2.6: Support for a "None" *table* argument.\n' '\n' ' For Unicode objects, the "translate()" method does not ' 'accept the\n' ' optional *deletechars* argument. Instead, it returns a ' 'copy of the\n' ' *s* where all characters have been mapped through the ' 'given\n' ' translation table which must be a mapping of Unicode ' 'ordinals to\n' ' Unicode ordinals, Unicode strings or "None". Unmapped ' 'characters\n' ' are left untouched. Characters mapped to "None" are ' 'deleted. Note,\n' ' a more flexible approach is to create a custom character ' 'mapping\n' ' codec using the "codecs" module (see "encodings.cp1251" for ' 'an\n' ' example).\n' '\n' 'str.upper()\n' '\n' ' Return a copy of the string with all the cased characters ' '[4]\n' ' converted to uppercase. Note that "str.upper().isupper()" ' 'might be\n' ' "False" if "s" contains uncased characters or if the ' 'Unicode\n' ' category of the resulting character(s) is not "Lu" ' '(Letter,\n' ' uppercase), but e.g. "Lt" (Letter, titlecase).\n' '\n' ' For 8-bit strings, this method is locale-dependent.\n' '\n' 'str.zfill(width)\n' '\n' ' Return the numeric string left filled with zeros in a ' 'string of\n' ' length *width*. A sign prefix is handled correctly. The ' 'original\n' ' string is returned if *width* is less than or equal to ' '"len(s)".\n' '\n' ' New in version 2.2.2.\n' '\n' 'The following methods are present only on unicode objects:\n' '\n' 'unicode.isnumeric()\n' '\n' ' Return "True" if there are only numeric characters in S, ' '"False"\n' ' otherwise. Numeric characters include digit characters, and ' 'all\n' ' characters that have the Unicode numeric value property, ' 'e.g.\n' ' U+2155, VULGAR FRACTION ONE FIFTH.\n' '\n' 'unicode.isdecimal()\n' '\n' ' Return "True" if there are only decimal characters in S, ' '"False"\n' ' otherwise. Decimal characters include digit characters, and ' 'all\n' ' characters that can be used to form decimal-radix numbers, ' 'e.g.\n' ' U+0660, ARABIC-INDIC DIGIT ZERO.\n' '\n' '\n' 'String Formatting Operations\n' '============================\n' '\n' 'String and Unicode objects have one unique built-in operation: ' 'the "%"\n' 'operator (modulo). This is also known as the string ' '*formatting* or\n' '*interpolation* operator. Given "format % values" (where ' '*format* is\n' 'a string or Unicode object), "%" conversion specifications in ' '*format*\n' 'are replaced with zero or more elements of *values*. The ' 'effect is\n' 'similar to the using "sprintf()" in the C language. If ' '*format* is a\n' 'Unicode object, or if any of the objects being converted using ' 'the\n' '"%s" conversion are Unicode objects, the result will also be a ' 'Unicode\n' 'object.\n' '\n' 'If *format* requires a single argument, *values* may be a ' 'single non-\n' 'tuple object. [5] Otherwise, *values* must be a tuple with ' 'exactly\n' 'the number of items specified by the format string, or a ' 'single\n' 'mapping object (for example, a dictionary).\n' '\n' 'A conversion specifier contains two or more characters and has ' 'the\n' 'following components, which must occur in this order:\n' '\n' '1. The "\'%\'" character, which marks the start of the ' 'specifier.\n' '\n' '2. Mapping key (optional), consisting of a parenthesised ' 'sequence\n' ' of characters (for example, "(somename)").\n' '\n' '3. Conversion flags (optional), which affect the result of ' 'some\n' ' conversion types.\n' '\n' '4. Minimum field width (optional). If specified as an ' '"\'*\'"\n' ' (asterisk), the actual width is read from the next element ' 'of the\n' ' tuple in *values*, and the object to convert comes after ' 'the\n' ' minimum field width and optional precision.\n' '\n' '5. Precision (optional), given as a "\'.\'" (dot) followed by ' 'the\n' ' precision. If specified as "\'*\'" (an asterisk), the ' 'actual width\n' ' is read from the next element of the tuple in *values*, and ' 'the\n' ' value to convert comes after the precision.\n' '\n' '6. Length modifier (optional).\n' '\n' '7. Conversion type.\n' '\n' 'When the right argument is a dictionary (or other mapping ' 'type), then\n' 'the formats in the string *must* include a parenthesised ' 'mapping key\n' 'into that dictionary inserted immediately after the "\'%\'" ' 'character.\n' 'The mapping key selects the value to be formatted from the ' 'mapping.\n' 'For example:\n' '\n' ">>> print '%(language)s has %(number)03d quote types.' % \\\n" '... {"language": "Python", "number": 2}\n' 'Python has 002 quote types.\n' '\n' 'In this case no "*" specifiers may occur in a format (since ' 'they\n' 'require a sequential parameter list).\n' '\n' 'The conversion flag characters are:\n' '\n' '+-----------+-----------------------------------------------------------------------+\n' '| Flag | ' 'Meaning ' '|\n' '+===========+=======================================================================+\n' '| "\'#\'" | The value conversion will use the "alternate ' 'form" (where defined |\n' '| | ' 'below). ' '|\n' '+-----------+-----------------------------------------------------------------------+\n' '| "\'0\'" | The conversion will be zero padded for numeric ' 'values. |\n' '+-----------+-----------------------------------------------------------------------+\n' '| "\'-\'" | The converted value is left adjusted ' '(overrides the "\'0\'" conversion |\n' '| | if both are ' 'given). |\n' '+-----------+-----------------------------------------------------------------------+\n' '| "\' \'" | (a space) A blank should be left before a ' 'positive number (or empty |\n' '| | string) produced by a signed ' 'conversion. |\n' '+-----------+-----------------------------------------------------------------------+\n' '| "\'+\'" | A sign character ("\'+\'" or "\'-\'") will ' 'precede the conversion |\n' '| | (overrides a "space" ' 'flag). |\n' '+-----------+-----------------------------------------------------------------------+\n' '\n' 'A length modifier ("h", "l", or "L") may be present, but is ' 'ignored as\n' 'it is not necessary for Python -- so e.g. "%ld" is identical ' 'to "%d".\n' '\n' 'The conversion types are:\n' '\n' '+--------------+-------------------------------------------------------+---------+\n' '| Conversion | ' 'Meaning | ' 'Notes |\n' '+==============+=======================================================+=========+\n' '| "\'d\'" | Signed integer ' 'decimal. | |\n' '+--------------+-------------------------------------------------------+---------+\n' '| "\'i\'" | Signed integer ' 'decimal. | |\n' '+--------------+-------------------------------------------------------+---------+\n' '| "\'o\'" | Signed octal ' 'value. | (1) |\n' '+--------------+-------------------------------------------------------+---------+\n' '| "\'u\'" | Obsolete type -- it is identical to ' '"\'d\'". | (7) |\n' '+--------------+-------------------------------------------------------+---------+\n' '| "\'x\'" | Signed hexadecimal ' '(lowercase). | (2) |\n' '+--------------+-------------------------------------------------------+---------+\n' '| "\'X\'" | Signed hexadecimal ' '(uppercase). | (2) |\n' '+--------------+-------------------------------------------------------+---------+\n' '| "\'e\'" | Floating point exponential format ' '(lowercase). | (3) |\n' '+--------------+-------------------------------------------------------+---------+\n' '| "\'E\'" | Floating point exponential format ' '(uppercase). | (3) |\n' '+--------------+-------------------------------------------------------+---------+\n' '| "\'f\'" | Floating point decimal ' 'format. | (3) |\n' '+--------------+-------------------------------------------------------+---------+\n' '| "\'F\'" | Floating point decimal ' 'format. | (3) |\n' '+--------------+-------------------------------------------------------+---------+\n' '| "\'g\'" | Floating point format. Uses lowercase ' 'exponential | (4) |\n' '| | format if exponent is less than -4 or not ' 'less than | |\n' '| | precision, decimal format ' 'otherwise. | |\n' '+--------------+-------------------------------------------------------+---------+\n' '| "\'G\'" | Floating point format. Uses uppercase ' 'exponential | (4) |\n' '| | format if exponent is less than -4 or not ' 'less than | |\n' '| | precision, decimal format ' 'otherwise. | |\n' '+--------------+-------------------------------------------------------+---------+\n' '| "\'c\'" | Single character (accepts integer or single ' 'character | |\n' '| | ' 'string). ' '| |\n' '+--------------+-------------------------------------------------------+---------+\n' '| "\'r\'" | String (converts any Python object using ' 'repr()). | (5) |\n' '+--------------+-------------------------------------------------------+---------+\n' '| "\'s\'" | String (converts any Python object using ' '"str()"). | (6) |\n' '+--------------+-------------------------------------------------------+---------+\n' '| "\'%\'" | No argument is converted, results in a ' '"\'%\'" | |\n' '| | character in the ' 'result. | |\n' '+--------------+-------------------------------------------------------+---------+\n' '\n' 'Notes:\n' '\n' '1. The alternate form causes a leading zero ("\'0\'") to be ' 'inserted\n' ' between left-hand padding and the formatting of the number ' 'if the\n' ' leading character of the result is not already a zero.\n' '\n' '2. The alternate form causes a leading "\'0x\'" or "\'0X\'" ' '(depending\n' ' on whether the "\'x\'" or "\'X\'" format was used) to be ' 'inserted\n' ' between left-hand padding and the formatting of the number ' 'if the\n' ' leading character of the result is not already a zero.\n' '\n' '3. The alternate form causes the result to always contain a ' 'decimal\n' ' point, even if no digits follow it.\n' '\n' ' The precision determines the number of digits after the ' 'decimal\n' ' point and defaults to 6.\n' '\n' '4. The alternate form causes the result to always contain a ' 'decimal\n' ' point, and trailing zeroes are not removed as they would ' 'otherwise\n' ' be.\n' '\n' ' The precision determines the number of significant digits ' 'before\n' ' and after the decimal point and defaults to 6.\n' '\n' '5. The "%r" conversion was added in Python 2.0.\n' '\n' ' The precision determines the maximal number of characters ' 'used.\n' '\n' '6. If the object or format provided is a "unicode" string, ' 'the\n' ' resulting string will also be "unicode".\n' '\n' ' The precision determines the maximal number of characters ' 'used.\n' '\n' '7. See **PEP 237**.\n' '\n' 'Since Python strings have an explicit length, "%s" conversions ' 'do not\n' 'assume that "\'\\0\'" is the end of the string.\n' '\n' 'Changed in version 2.7: "%f" conversions for numbers whose ' 'absolute\n' 'value is over 1e50 are no longer replaced by "%g" ' 'conversions.\n' '\n' 'Additional string operations are defined in standard modules ' '"string"\n' 'and "re".\n' '\n' '\n' 'XRange Type\n' '===========\n' '\n' 'The "xrange" type is an immutable sequence which is commonly ' 'used for\n' 'looping. The advantage of the "xrange" type is that an ' '"xrange"\n' 'object will always take the same amount of memory, no matter ' 'the size\n' 'of the range it represents. There are no consistent ' 'performance\n' 'advantages.\n' '\n' 'XRange objects have very little behavior: they only support ' 'indexing,\n' 'iteration, and the "len()" function.\n' '\n' '\n' 'Mutable Sequence Types\n' '======================\n' '\n' 'List and "bytearray" objects support additional operations ' 'that allow\n' 'in-place modification of the object. Other mutable sequence ' 'types\n' '(when added to the language) should also support these ' 'operations.\n' 'Strings and tuples are immutable sequence types: such objects ' 'cannot\n' 'be modified once created. The following operations are defined ' 'on\n' 'mutable sequence types (where *x* is an arbitrary object):\n' '\n' '+--------------------------------+----------------------------------+-----------------------+\n' '| Operation | ' 'Result | Notes |\n' '+================================+==================================+=======================+\n' '| "s[i] = x" | item *i* of *s* is replaced ' 'by | |\n' '| | ' '*x* | |\n' '+--------------------------------+----------------------------------+-----------------------+\n' '| "s[i:j] = t" | slice of *s* from *i* to ' '*j* is | |\n' '| | replaced by the contents of ' 'the | |\n' '| | iterable ' '*t* | |\n' '+--------------------------------+----------------------------------+-----------------------+\n' '| "del s[i:j]" | same as "s[i:j] = ' '[]" | |\n' '+--------------------------------+----------------------------------+-----------------------+\n' '| "s[i:j:k] = t" | the elements of "s[i:j:k]" ' 'are | (1) |\n' '| | replaced by those of ' '*t* | |\n' '+--------------------------------+----------------------------------+-----------------------+\n' '| "del s[i:j:k]" | removes the elements ' 'of | |\n' '| | "s[i:j:k]" from the ' 'list | |\n' '+--------------------------------+----------------------------------+-----------------------+\n' '| "s.append(x)" | same as "s[len(s):len(s)] = ' '[x]" | (2) |\n' '+--------------------------------+----------------------------------+-----------------------+\n' '| "s.extend(x)" or "s += t" | for the most part the same ' 'as | (3) |\n' '| | "s[len(s):len(s)] = ' 'x" | |\n' '+--------------------------------+----------------------------------+-----------------------+\n' '| "s *= n" | updates *s* with its ' 'contents | (11) |\n' '| | repeated *n* ' 'times | |\n' '+--------------------------------+----------------------------------+-----------------------+\n' '| "s.count(x)" | return number of *i*\'s for ' 'which | |\n' '| | "s[i] == ' 'x" | |\n' '+--------------------------------+----------------------------------+-----------------------+\n' '| "s.index(x[, i[, j]])" | return smallest *k* such ' 'that | (4) |\n' '| | "s[k] == x" and "i <= k < ' 'j" | |\n' '+--------------------------------+----------------------------------+-----------------------+\n' '| "s.insert(i, x)" | same as "s[i:i] = ' '[x]" | (5) |\n' '+--------------------------------+----------------------------------+-----------------------+\n' '| "s.pop([i])" | same as "x = s[i]; del ' 's[i]; | (6) |\n' '| | return ' 'x" | |\n' '+--------------------------------+----------------------------------+-----------------------+\n' '| "s.remove(x)" | same as "del ' 's[s.index(x)]" | (4) |\n' '+--------------------------------+----------------------------------+-----------------------+\n' '| "s.reverse()" | reverses the items of *s* ' 'in | (7) |\n' '| | ' 'place | |\n' '+--------------------------------+----------------------------------+-----------------------+\n' '| "s.sort([cmp[, key[, | sort the items of *s* in ' 'place | (7)(8)(9)(10) |\n' '| reverse]]])" ' '| | |\n' '+--------------------------------+----------------------------------+-----------------------+\n' '\n' 'Notes:\n' '\n' '1. *t* must have the same length as the slice it is ' 'replacing.\n' '\n' '2. The C implementation of Python has historically accepted\n' ' multiple parameters and implicitly joined them into a ' 'tuple; this\n' ' no longer works in Python 2.0. Use of this misfeature has ' 'been\n' ' deprecated since Python 1.4.\n' '\n' '3. *x* can be any iterable object.\n' '\n' '4. Raises "ValueError" when *x* is not found in *s*. When a\n' ' negative index is passed as the second or third parameter ' 'to the\n' ' "index()" method, the list length is added, as for slice ' 'indices.\n' ' If it is still negative, it is truncated to zero, as for ' 'slice\n' ' indices.\n' '\n' ' Changed in version 2.3: Previously, "index()" didn\'t have ' 'arguments\n' ' for specifying start and stop positions.\n' '\n' '5. When a negative index is passed as the first parameter to ' 'the\n' ' "insert()" method, the list length is added, as for slice ' 'indices.\n' ' If it is still negative, it is truncated to zero, as for ' 'slice\n' ' indices.\n' '\n' ' Changed in version 2.3: Previously, all negative indices ' 'were\n' ' truncated to zero.\n' '\n' '6. The "pop()" method\'s optional argument *i* defaults to ' '"-1", so\n' ' that by default the last item is removed and returned.\n' '\n' '7. The "sort()" and "reverse()" methods modify the list in ' 'place\n' ' for economy of space when sorting or reversing a large ' 'list. To\n' " remind you that they operate by side effect, they don't " 'return the\n' ' sorted or reversed list.\n' '\n' '8. The "sort()" method takes optional arguments for ' 'controlling the\n' ' comparisons.\n' '\n' ' *cmp* specifies a custom comparison function of two ' 'arguments (list\n' ' items) which should return a negative, zero or positive ' 'number\n' ' depending on whether the first argument is considered ' 'smaller than,\n' ' equal to, or larger than the second argument: "cmp=lambda ' 'x,y:\n' ' cmp(x.lower(), y.lower())". The default value is "None".\n' '\n' ' *key* specifies a function of one argument that is used to ' 'extract\n' ' a comparison key from each list element: "key=str.lower". ' 'The\n' ' default value is "None".\n' '\n' ' *reverse* is a boolean value. If set to "True", then the ' 'list\n' ' elements are sorted as if each comparison were reversed.\n' '\n' ' In general, the *key* and *reverse* conversion processes ' 'are much\n' ' faster than specifying an equivalent *cmp* function. This ' 'is\n' ' because *cmp* is called multiple times for each list ' 'element while\n' ' *key* and *reverse* touch each element only once. Use\n' ' "functools.cmp_to_key()" to convert an old-style *cmp* ' 'function to\n' ' a *key* function.\n' '\n' ' Changed in version 2.3: Support for "None" as an equivalent ' 'to\n' ' omitting *cmp* was added.\n' '\n' ' Changed in version 2.4: Support for *key* and *reverse* was ' 'added.\n' '\n' '9. Starting with Python 2.3, the "sort()" method is guaranteed ' 'to\n' ' be stable. A sort is stable if it guarantees not to change ' 'the\n' ' relative order of elements that compare equal --- this is ' 'helpful\n' ' for sorting in multiple passes (for example, sort by ' 'department,\n' ' then by salary grade).\n' '\n' '10. **CPython implementation detail:** While a list is being\n' ' sorted, the effect of attempting to mutate, or even ' 'inspect, the\n' ' list is undefined. The C implementation of Python 2.3 and ' 'newer\n' ' makes the list appear empty for the duration, and raises\n' ' "ValueError" if it can detect that the list has been ' 'mutated\n' ' during a sort.\n' '\n' '11. The value *n* is an integer, or an object implementing\n' ' "__index__()". Zero and negative values of *n* clear the\n' ' sequence. Items in the sequence are not copied; they are\n' ' referenced multiple times, as explained for "s * n" under ' 'Sequence\n' ' Types --- str, unicode, list, tuple, bytearray, buffer, ' 'xrange.\n', 'typesseq-mutable': '\n' 'Mutable Sequence Types\n' '**********************\n' '\n' 'List and "bytearray" objects support additional ' 'operations that allow\n' 'in-place modification of the object. Other mutable ' 'sequence types\n' '(when added to the language) should also support these ' 'operations.\n' 'Strings and tuples are immutable sequence types: such ' 'objects cannot\n' 'be modified once created. The following operations are ' 'defined on\n' 'mutable sequence types (where *x* is an arbitrary ' 'object):\n' '\n' '+--------------------------------+----------------------------------+-----------------------+\n' '| Operation | ' 'Result | ' 'Notes |\n' '+================================+==================================+=======================+\n' '| "s[i] = x" | item *i* of *s* is ' 'replaced by | |\n' '| | ' '*x* ' '| |\n' '+--------------------------------+----------------------------------+-----------------------+\n' '| "s[i:j] = t" | slice of *s* from ' '*i* to *j* is | |\n' '| | replaced by the ' 'contents of the | |\n' '| | iterable ' '*t* | |\n' '+--------------------------------+----------------------------------+-----------------------+\n' '| "del s[i:j]" | same as "s[i:j] = ' '[]" | |\n' '+--------------------------------+----------------------------------+-----------------------+\n' '| "s[i:j:k] = t" | the elements of ' '"s[i:j:k]" are | (1) |\n' '| | replaced by those ' 'of *t* | |\n' '+--------------------------------+----------------------------------+-----------------------+\n' '| "del s[i:j:k]" | removes the ' 'elements of | |\n' '| | "s[i:j:k]" from the ' 'list | |\n' '+--------------------------------+----------------------------------+-----------------------+\n' '| "s.append(x)" | same as ' '"s[len(s):len(s)] = [x]" | (2) |\n' '+--------------------------------+----------------------------------+-----------------------+\n' '| "s.extend(x)" or "s += t" | for the most part ' 'the same as | (3) |\n' '| | "s[len(s):len(s)] = ' 'x" | |\n' '+--------------------------------+----------------------------------+-----------------------+\n' '| "s *= n" | updates *s* with ' 'its contents | (11) |\n' '| | repeated *n* ' 'times | |\n' '+--------------------------------+----------------------------------+-----------------------+\n' '| "s.count(x)" | return number of ' "*i*'s for which | |\n" '| | "s[i] == ' 'x" | |\n' '+--------------------------------+----------------------------------+-----------------------+\n' '| "s.index(x[, i[, j]])" | return smallest *k* ' 'such that | (4) |\n' '| | "s[k] == x" and "i ' '<= k < j" | |\n' '+--------------------------------+----------------------------------+-----------------------+\n' '| "s.insert(i, x)" | same as "s[i:i] = ' '[x]" | (5) |\n' '+--------------------------------+----------------------------------+-----------------------+\n' '| "s.pop([i])" | same as "x = s[i]; ' 'del s[i]; | (6) |\n' '| | return ' 'x" | |\n' '+--------------------------------+----------------------------------+-----------------------+\n' '| "s.remove(x)" | same as "del ' 's[s.index(x)]" | (4) |\n' '+--------------------------------+----------------------------------+-----------------------+\n' '| "s.reverse()" | reverses the items ' 'of *s* in | (7) |\n' '| | ' 'place ' '| |\n' '+--------------------------------+----------------------------------+-----------------------+\n' '| "s.sort([cmp[, key[, | sort the items of ' '*s* in place | (7)(8)(9)(10) |\n' '| reverse]]])" ' '| ' '| |\n' '+--------------------------------+----------------------------------+-----------------------+\n' '\n' 'Notes:\n' '\n' '1. *t* must have the same length as the slice it is ' 'replacing.\n' '\n' '2. The C implementation of Python has historically ' 'accepted\n' ' multiple parameters and implicitly joined them into ' 'a tuple; this\n' ' no longer works in Python 2.0. Use of this ' 'misfeature has been\n' ' deprecated since Python 1.4.\n' '\n' '3. *x* can be any iterable object.\n' '\n' '4. Raises "ValueError" when *x* is not found in *s*. ' 'When a\n' ' negative index is passed as the second or third ' 'parameter to the\n' ' "index()" method, the list length is added, as for ' 'slice indices.\n' ' If it is still negative, it is truncated to zero, ' 'as for slice\n' ' indices.\n' '\n' ' Changed in version 2.3: Previously, "index()" ' "didn't have arguments\n" ' for specifying start and stop positions.\n' '\n' '5. When a negative index is passed as the first ' 'parameter to the\n' ' "insert()" method, the list length is added, as for ' 'slice indices.\n' ' If it is still negative, it is truncated to zero, ' 'as for slice\n' ' indices.\n' '\n' ' Changed in version 2.3: Previously, all negative ' 'indices were\n' ' truncated to zero.\n' '\n' '6. The "pop()" method\'s optional argument *i* ' 'defaults to "-1", so\n' ' that by default the last item is removed and ' 'returned.\n' '\n' '7. The "sort()" and "reverse()" methods modify the ' 'list in place\n' ' for economy of space when sorting or reversing a ' 'large list. To\n' ' remind you that they operate by side effect, they ' "don't return the\n" ' sorted or reversed list.\n' '\n' '8. The "sort()" method takes optional arguments for ' 'controlling the\n' ' comparisons.\n' '\n' ' *cmp* specifies a custom comparison function of two ' 'arguments (list\n' ' items) which should return a negative, zero or ' 'positive number\n' ' depending on whether the first argument is ' 'considered smaller than,\n' ' equal to, or larger than the second argument: ' '"cmp=lambda x,y:\n' ' cmp(x.lower(), y.lower())". The default value is ' '"None".\n' '\n' ' *key* specifies a function of one argument that is ' 'used to extract\n' ' a comparison key from each list element: ' '"key=str.lower". The\n' ' default value is "None".\n' '\n' ' *reverse* is a boolean value. If set to "True", ' 'then the list\n' ' elements are sorted as if each comparison were ' 'reversed.\n' '\n' ' In general, the *key* and *reverse* conversion ' 'processes are much\n' ' faster than specifying an equivalent *cmp* ' 'function. This is\n' ' because *cmp* is called multiple times for each ' 'list element while\n' ' *key* and *reverse* touch each element only once. ' 'Use\n' ' "functools.cmp_to_key()" to convert an old-style ' '*cmp* function to\n' ' a *key* function.\n' '\n' ' Changed in version 2.3: Support for "None" as an ' 'equivalent to\n' ' omitting *cmp* was added.\n' '\n' ' Changed in version 2.4: Support for *key* and ' '*reverse* was added.\n' '\n' '9. Starting with Python 2.3, the "sort()" method is ' 'guaranteed to\n' ' be stable. A sort is stable if it guarantees not ' 'to change the\n' ' relative order of elements that compare equal --- ' 'this is helpful\n' ' for sorting in multiple passes (for example, sort ' 'by department,\n' ' then by salary grade).\n' '\n' '10. **CPython implementation detail:** While a list is ' 'being\n' ' sorted, the effect of attempting to mutate, or ' 'even inspect, the\n' ' list is undefined. The C implementation of Python ' '2.3 and newer\n' ' makes the list appear empty for the duration, and ' 'raises\n' ' "ValueError" if it can detect that the list has ' 'been mutated\n' ' during a sort.\n' '\n' '11. The value *n* is an integer, or an object ' 'implementing\n' ' "__index__()". Zero and negative values of *n* ' 'clear the\n' ' sequence. Items in the sequence are not copied; ' 'they are\n' ' referenced multiple times, as explained for "s * ' 'n" under Sequence\n' ' Types --- str, unicode, list, tuple, bytearray, ' 'buffer, xrange.\n', 'unary': '\n' 'Unary arithmetic and bitwise operations\n' '***************************************\n' '\n' 'All unary arithmetic and bitwise operations have the same ' 'priority:\n' '\n' ' u_expr ::= power | "-" u_expr | "+" u_expr | "~" u_expr\n' '\n' 'The unary "-" (minus) operator yields the negation of its ' 'numeric\n' 'argument.\n' '\n' 'The unary "+" (plus) operator yields its numeric argument ' 'unchanged.\n' '\n' 'The unary "~" (invert) operator yields the bitwise inversion of ' 'its\n' 'plain or long integer argument. The bitwise inversion of "x" is\n' 'defined as "-(x+1)". It only applies to integral numbers.\n' '\n' 'In all three cases, if the argument does not have the proper ' 'type, a\n' '"TypeError" exception is raised.\n', 'while': '\n' 'The "while" statement\n' '*********************\n' '\n' 'The "while" statement is used for repeated execution as long as ' 'an\n' 'expression is true:\n' '\n' ' while_stmt ::= "while" expression ":" suite\n' ' ["else" ":" suite]\n' '\n' 'This repeatedly tests the expression and, if it is true, executes ' 'the\n' 'first suite; if the expression is false (which may be the first ' 'time\n' 'it is tested) the suite of the "else" clause, if present, is ' 'executed\n' 'and the loop terminates.\n' '\n' 'A "break" statement executed in the first suite terminates the ' 'loop\n' 'without executing the "else" clause\'s suite. A "continue" ' 'statement\n' 'executed in the first suite skips the rest of the suite and goes ' 'back\n' 'to testing the expression.\n', 'with': '\n' 'The "with" statement\n' '********************\n' '\n' 'New in version 2.5.\n' '\n' 'The "with" statement is used to wrap the execution of a block ' 'with\n' 'methods defined by a context manager (see section With Statement\n' 'Context Managers). This allows common ' '"try"..."except"..."finally"\n' 'usage patterns to be encapsulated for convenient reuse.\n' '\n' ' with_stmt ::= "with" with_item ("," with_item)* ":" suite\n' ' with_item ::= expression ["as" target]\n' '\n' 'The execution of the "with" statement with one "item" proceeds as\n' 'follows:\n' '\n' '1. The context expression (the expression given in the ' '"with_item")\n' ' is evaluated to obtain a context manager.\n' '\n' '2. The context manager\'s "__exit__()" is loaded for later use.\n' '\n' '3. The context manager\'s "__enter__()" method is invoked.\n' '\n' '4. If a target was included in the "with" statement, the return\n' ' value from "__enter__()" is assigned to it.\n' '\n' ' Note: The "with" statement guarantees that if the ' '"__enter__()"\n' ' method returns without an error, then "__exit__()" will ' 'always be\n' ' called. Thus, if an error occurs during the assignment to ' 'the\n' ' target list, it will be treated the same as an error ' 'occurring\n' ' within the suite would be. See step 6 below.\n' '\n' '5. The suite is executed.\n' '\n' '6. The context manager\'s "__exit__()" method is invoked. If an\n' ' exception caused the suite to be exited, its type, value, and\n' ' traceback are passed as arguments to "__exit__()". Otherwise, ' 'three\n' ' "None" arguments are supplied.\n' '\n' ' If the suite was exited due to an exception, and the return ' 'value\n' ' from the "__exit__()" method was false, the exception is ' 'reraised.\n' ' If the return value was true, the exception is suppressed, and\n' ' execution continues with the statement following the "with"\n' ' statement.\n' '\n' ' If the suite was exited for any reason other than an exception, ' 'the\n' ' return value from "__exit__()" is ignored, and execution ' 'proceeds\n' ' at the normal location for the kind of exit that was taken.\n' '\n' 'With more than one item, the context managers are processed as if\n' 'multiple "with" statements were nested:\n' '\n' ' with A() as a, B() as b:\n' ' suite\n' '\n' 'is equivalent to\n' '\n' ' with A() as a:\n' ' with B() as b:\n' ' suite\n' '\n' 'Note: In Python 2.5, the "with" statement is only allowed when ' 'the\n' ' "with_statement" feature has been enabled. It is always enabled ' 'in\n' ' Python 2.6.\n' '\n' 'Changed in version 2.7: Support for multiple context expressions.\n' '\n' 'See also: **PEP 0343** - The "with" statement\n' '\n' ' The specification, background, and examples for the Python ' '"with"\n' ' statement.\n', 'yield': '\n' 'The "yield" statement\n' '*********************\n' '\n' ' yield_stmt ::= yield_expression\n' '\n' 'The "yield" statement is only used when defining a generator ' 'function,\n' 'and is only used in the body of the generator function. Using a\n' '"yield" statement in a function definition is sufficient to cause ' 'that\n' 'definition to create a generator function instead of a normal\n' 'function.\n' '\n' 'When a generator function is called, it returns an iterator known ' 'as a\n' 'generator iterator, or more commonly, a generator. The body of ' 'the\n' "generator function is executed by calling the generator's " '"next()"\n' 'method repeatedly until it raises an exception.\n' '\n' 'When a "yield" statement is executed, the state of the generator ' 'is\n' 'frozen and the value of "expression_list" is returned to ' '"next()"\'s\n' 'caller. By "frozen" we mean that all local state is retained,\n' 'including the current bindings of local variables, the ' 'instruction\n' 'pointer, and the internal evaluation stack: enough information ' 'is\n' 'saved so that the next time "next()" is invoked, the function ' 'can\n' 'proceed exactly as if the "yield" statement were just another ' 'external\n' 'call.\n' '\n' 'As of Python version 2.5, the "yield" statement is now allowed in ' 'the\n' '"try" clause of a "try" ... "finally" construct. If the ' 'generator is\n' 'not resumed before it is finalized (by reaching a zero reference ' 'count\n' "or by being garbage collected), the generator-iterator's " '"close()"\n' 'method will be called, allowing any pending "finally" clauses to\n' 'execute.\n' '\n' 'For full details of "yield" semantics, refer to the Yield ' 'expressions\n' 'section.\n' '\n' 'Note: In Python 2.2, the "yield" statement was only allowed when ' 'the\n' ' "generators" feature has been enabled. This "__future__" ' 'import\n' ' statement was used to enable the feature:\n' '\n' ' from __future__ import generators\n' '\n' 'See also: **PEP 0255** - Simple Generators\n' '\n' ' The proposal for adding generators and the "yield" statement ' 'to\n' ' Python.\n' '\n' ' **PEP 0342** - Coroutines via Enhanced Generators\n' ' The proposal that, among other generator enhancements, ' 'proposed\n' ' allowing "yield" to appear inside a "try" ... "finally" ' 'block.\n'} |